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Abstract. A new recursive technique for the synthesis of a p”-order inverse of a Volterra system
is presented. In such a method, the condition that the p"-order inverse be exactly of order p,
as proposed by Schetzen, is relaxed. The choice of the residuals, that is the operators of the
inverse whose order is higher than p, is done with the purpose of reducing the complexity of
the synthesis scheme and of deriving a recursive procedure to build-up such an inverse.

A comparison between the complexity of Schetzen’s synthesis schemes and those obtained
with our recursive procedure shows that the structures that we obtain are much less complex
and easier to derive, and the increment of complexity related to the increase in order is much

slower than in Schetzen’s case.

As an example of application, we use the proposed method in order to linearize a digital ra-
dio link in which the high-power amplifier is operated near saturation.

1. INTRODUCTION

Functional expansions are widely used in system the-
ory to obtain mathematical representations of nonlinear
systems. Although the functional series were present-
ed for the first time in 1887 by the mathematician V.
Volterra [1, 2], the researcher who first introduced this
representation into nonlinear circuit analysis was N.
Wiener [3], whose merit was primarily that of using the
Volterra series in order to characterize the response of
a nonlinear device. After his early work, Wiener devot-
ed his efforts to many problems of analysis and syn-
thesis of nonlinear systems [4]. Wiener’s work was fol-
lowed by many formal studies of the application of the
Volterra series to nonlinear systems, among which we
recall those of Barrett [5], Brilliant [6] and George [7].
Other important studies concerning the operational
representation were due to Zames [8] and, more recent-
ly, to Sandberg [9, 10]. The extension to the discrete
systems of a Volterra series was first proposed and
studied by Alper [11] in 1964.

An important problem which has involved many
researches for quite some time is that of the inversion
of a Volterra system. There are several possible appli-
cations of such an aspect of the system theory. Most
of them are related with the problem of the lineariza-
tion of systems, but there are also many other cases
of interest among which we recall the solution of non-
linear differential equations and the operatorial
representation of nonlinea: feedback systems.

A crucial aspect of the inversion of a Volterra sys-
tem is the determination of the conditions under which
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the system admits inverse. It is well known that not all
the nonlinear systems possess an inverse and that many
systems possess an inverse only for a restricted range
of the input amplitude. On the other hand there is a
class of inverses, called p”'-order inverses, in which the
input amplitude range is not restricted. The theory of
the p™-order inverses was developed by Schetzen
[12, 13] in 1976. He obtained the necessary and suffi-
cient conditions for the existence of the p™-order in-
verse and proposed a method for its synthesis. The
resulting structure of such a method is a p”-order
Volterra system, whose structural complexity increases
very rapidly with the order.

In this paper we propose a new approach to the syn-
thesis, relaxing the condition that the p”-order inverse
be of order p, i.e. allowing it to have kernels of higher
order as well. In this way we can simplify the synthesis
procedure and reduce the resulting structural complex-
ity. We illustrate some properties of the elementary in-
terconnections of Volterra systems, that is the parallel
and the cascade, and introduce some simple rules that
allow us to better understand the behavior of such in-
terconnections. With these tools we derive a recursive
technique for the synthesis of p™-order preinverses and
postinverses. Finally we prove that, even if it has ker-
nels whose order is higher than p, a p™-order prein-
verse is also a p™-order postinverse.

The material presented in this paper is organized in
such a way as to provide the reader with all the tools
necessary to understand it. In particular, Section 2 is
devoted to a brief introduction to the Volterra systems
and their operatorial representation. In Section 3 we
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discuss the properties of the interconnection which are
necessary for the inversion problem. The recursive tech-
niques for the synthesis of preinverses and postinverses
are developed and compared with the Schetzen’s
method in Section 4. Finally, in Section 5 an example
of application to the digital radio transmission systems
is considered and some simulation results are reported
and discussed.

2. THE VOLTERRA OPERATORIAL
REPRESENTATION

A wide class of nonlinear systems with memory can
be modeled by means of an operatorial series

y(1) = H[x(1)] =Elﬂn [x (0] (1)

where H represents the system operator and H, is the
n™-order operator, defined as one for which the
response to a linear combination of signals is an n-linear
operation on the individual signals

N N N
H, |:2 ckxk(t)] = 2.2 Cky--
k=1 ki=1  ke=1

...Canngxkl(t),...,an(t)] 2)

where ¢k, kK = 1,...,n, are arbitrary constants and
H, {x1 (1), ..., x, (1)} is an n-linear operator (linear in
each argument when the others are held fixed).

The functional characterization of the system H is
the Volterra series, in which the n™*-order Volterra oper-
ator is described by the 1/0 relationship

H,[x(1)] = S hn (71, ---aTn)Hlx(t_Tj)de 3
gn j=
where h, (71, ..., 72) is the n"-order Volterra kernel,
and the n-linear operator of H is
Hy (x1(8), ..o, xn (1)) =
_ S (71, ooy )1 i (1= 1) %)
gn i=

Eq. (3) represents, for the continuous domain
9 = &R, a multiple convolution integral

H,[x(?)] = r r

—o0

ho (71, ooy T)X(E—1T11)...

—o0

o X(t—7n)dry ... d7y %)

and, when 9 is the discrete domain Z (7) (a domain
whose samples are equally spaced by the quantum 7),
it represents a multiple sum

H,[x(nT)] =
:ka h,,(/qT,...,k,,T)ﬁl Tx(nT—k;T) 6)

obtained by eq. (3) by means of the substitutions ¢ =
=nT, 7j = ij and de =T.

In this paper we consider the class of bounded in-
put, bounded output (BIBO) stable nonlinear systems
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whose system operator can be expressed in the power
series with memory (1).

In general a functional series, seen as an 1/0 rela-
tionship, is rather difficult to handle, expecially when
we are going to analyze structures which are more com-
plex than a simple cascade or a simple feedback. In par-
ticular the problem of the inversion of a Volterra sys-
tem could be very difficult or even impractical to af-
ford, as such, an operator-based approach is much
more convenient. This fact will be shown in next Sec-
tion.

3. INTERCONNECTION OF VOLTERRA
SYSTEMS

Before presenting the theory of the recursive synthe-
sis of a p™-order inverse we briefly discuss some proper-
ties of the interconnections between operators (system
operators and Volterra operators). In particular we con-
sider a pair of elementary interconnections which we
refer to as parallel and cascade.

3.A. Elementary interconnections

'[‘he parallel of two systems H and K, referred to as
H + K, is a Volterra system such that

(HK)x1= 5 (Hy [x] + Ky 1x]) = Hx] + K1x] ()

because the n”-order kernel of the parallel is the sum

of the n”-order kernels of the systems H and K.
The characterization of the cascade of two systems

H and K, denoted by HoK, is a system such that:

HOK L) = KIH 1) = 5 Ku | 5 Ha L)

n

Ku{Hm, [x],...,Hn,[x]}] (8)

I

M8
Ms
?IMS

I

1 m=1 mp=1

K, (x, ..., x»] being the n-linear operator of K.

In eq. (8), the single Volterra operators of the cas-
cade are not distinguishable from each other, therefore
such an expression is not written as a Volterra series.
Noticing that K, {Hm, [x], ..., Hm, [x]} can be seen as
the response of a Volterra operator of order m; +...
+ m, driven by the excitation x, we can write the k-
order term of the eq. (8) as

Oclxl= 2 2 ...MZZIK,,{H,,,I[x],...,H,,,n[x]} )

n=1 m=1

mi+...+mp=k

where the range of the summation index n can be limit-
edto 1l < n < k and the constraints on m;, ..., my, en-
sure that 1 <= my, ..., mp, <k—n + 1.

Eq. (9) gives the k™-order Volterra operator of Q in
terms of the Volterra operators of H and the multilinear
operators of K, therefore it has not any structural
meaning. In other words, it does not represent an in-
terconnection of Volterra operators of H and K.

A method for rewriting eq. (9) as an interconnection
of Volterra operators is described in Schetzen’s work
[12, 13] and represents the starting point of his tech-
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nique for the synthesis of the p”-order inverse. Our
procedure for the synthesis is based on a different ap-
proach which, in order to be explained, needs to be
preceded by a discussion on some simple properties of
the interconnections of operators.

3.B. Some properties of the interconnections

In the following considerations we will refer to the
p™-order truncation of a system operator H as

Hpy = [iy] - S H, (10)
@)

n=1 n=1

where the argument of the operators has been omitted
and the summation of operators is intended as a mul-
tiple parallel interconnection. Moreover we will refer
to the p™-order Volterra operator of a system as

[iﬂn] = H, (11)

n=1
With the above notation it is easy to introduce three
simple properties, to be used in the next Section, which
can be easily verified by means of egs. (9), (10) and (11).

Property 1. Given a pair of Volterra operators H,, and
K, of order m and n, respectively, we have

{HmOK,, if mmn=k

[Iyﬁzof(n]k = .
otherwise,

(12)

where 0 is the zero system operator, which maps ev-
ery input function in the identically zero function. As
a consequence of Property 1 we have

Property 2. Let Hy, be a Volterra operator and K a sys-
tem operator. The k™-order truncation of their cascade,
with k= m, is

[HmOK]w = HnOK) (13)
where n = |k/m] is the greatest integer not greater
than k/m.

When the Volterra operator follows the system oper-
ator we have

Property 3. Let H be a system operator and K, be an
n™-order Volterra operator. The k"-order Volterra
operator of their cascade, with k = m, is

[HoKnlk = [Hu-n+1n°Knlk (14)

Property 3 states that the operators H;,
i > k—n + 1, give no contribution to the k"-order ker-
nel of HoK,.

4. p"-ORDER INVERSION

The p”-order inverse of a nonlinear system Q is com-
monly referred to as a p™-order system Q)" such that,
cascaded with Q, results in a system in which the first-
order operator is I (I being the identity operator, which
maps every in;})lut function in itself), and the second
through the p™-order Volterra kernels are zero.

Hereafter we use a slightly different definition of
such an inverse, which gives us a certain degree of free-
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dom and allows us to follow a new approach for its
synthesis.

Definition 1. the system PP is a p™-order preinverse
of Qif

[PPoQ]p) =1 (15)

whatever the order of the system PP may be.

The postinverse is defined as in Definition 1, apart
from a change in the order of connection of the oper-
ators.

Definition 1 emphasizes that the p™-order inverse is
a system whose order is allowed to be greater than or
equal to p. This means that its general expression is

i RP

k=p+1

D
PP = El P + (16)

where the operators Py, 1 < k < p, are determined by
the conditions to be imposed on the first p Volterra
operators of the cascade of P? and Q, while R¥,
k > p, are unconstrained residual operators whose
choice represents the degree of freedom that we have
in the design of the inverse. The residuals R could
be chosen in order to minimize the complexity of the
resulting structure, or some other parameters of in-
terest, and to preserve the conditions of BIBO stabili-
ty for P® . In the following paragraphs we will show
two syntheses of P%’ that guarantee a BIBO stability.

4.A. p™-Order preinversion

Let us consider the cascade of two systems P and Q.
In order to be a p™-order preinverse, P must satisfy
two conditions which represent a different way of writ-

ing eq. (15)
[PoQ]y =1 (17)
[PoQ]k =0, (18)

Properties 2 and 3 allow us to write the k”*-order
Volterra operator of PoQ as

2<k=p

o= (5 5o
i=1 j=1 k
-3[(8r)]
j=1]\i=1 &
k k—j+1
-3 [( n)o@} (19
Jj=1 i=1 k
therefore, for k = 1, we get
[PoQ], = PioQ, (20)

which means that the first-order Volterra operator of
the cascade is the cascade of the first-order Volterra
operators of the involved systems, therefore condition
(17) becomes
PioQ =1 21)
which requires P; to be the inverse operator of Q. No-
tice that it is not always possible to find a BIBO stable
and causal linear operator P; which satisfies the con-
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dition (21), therefore its existence is a necessary condi-
tion for the solution of the synthesis problem. Under
this hypothesis, condition (21) becomes

=Qr' (22)

Eq. (19) allows us to rewrite the condition (18) as
follows

PkOQ1 -I- iz [( _glpl> OQ]:|

2<k<p (23)

With some simple manipulations on both sides of the
operatorial equation (23), we get the following expres-
sion of the first p Volterra operators of the system P

[B[(% #)ee] e

k k—j+1
=2 [( 2 P,-)OQ,] o(-=P), 2<k=p (24
j=2 |\ i= X
where inserting a minus sign before an operator me-
ans changing the sign of its response or changing the
sign of the response of the linear operatorP; that fol-
lows.

It is now possible to write the general expression of
the p™-order preinverse P® substituting eqs. (22) and
(24) into eq. (16)

(o] s 5o

k—j+1 p—1
( 2 P+ 2 Pt

i=1 i=k—j+2

+ inp b OQ,} o(-P)+ X R¥
=P33R PeV0QLo(-P)F 2 RY

~ p ~ had
=P1+kZZ[P(”‘1)OQ(,,)]kO(—P1)+k > IR,(;”) (25)
- ot

where Q(y is the p™-order truncation of the system Q

in which the linear operator Q, has been suppressed
p

Q=20 (26)

and, according to Property 3, the second and the third
summations of

k—j+1

PrV= % P} T pi ZR("‘”

i=k—j+2

@7

which have been inserted in eq. (25), give no contribu-
tion to P®
By makmg the following choice of the residuals:

P =[PP DoQpko(~P1), k>p (28)
eq. (25) becomes
PP =Py E 3 [P0 Q0 k0 (~ Py)
=P+ P? " V0Q(0(—P) (29)
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Therefore PP can be synthesized by means of the

following recursive operatorial equation
P® = (PP~ DoQg) + (—=D)o(—P1) (30)

whose structure, shown in Fig. 1, holds if and only if
eq. (21) is satisfied by a BIBO stable and causal linear
operator P; = Qi *

) '
P ] %)

Fig. 1 - First recursive scheme of synthesis.

4.B. A different scheme of synthesis

According to Definition 1, the p™-order preinverses
of a system Q differ from each other in their residual
kernels RY, k > p. For this reason eq. (30) leads to
only one of the possible classes of preinverses. Such
a class is characterized by eq. (28). Other schemes of
synthesis are possible with different choices of residu-
als. For example, applying Properties 2 and 3 to eq.
(30) we get

PPy = (PP P0Qh) + (-1

p . ~
- [(Z PP-itVoQ; § (—I))O(—Pl)] 31
j=2 ®
therefore it is sufficient to choose
p . ~
Rff)=[(.221’@"“)0Q/+(—1)>0(—Pn)] , k>p (32)
J= k

to get a scheme of synthesis which is different from the
previous one

p
P<P>=(Zzpw—f“’og,i(—1)>o(—Pl) (33)
j=
The structure corresponding to eq. (33), depicted in
Fig. 2, seems to be more complex than that of Fig. 1,
because it involves all the preinverses whose order is
lower than p. On the other hand, such a complexity
increment is only apparent because the degree of
parallelization is much greater than in the other case.

P(p—l) Lyl Q

Fig. 2 - Second recursive scheme of synthesis.
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4.C. p™-Order postinversion

We prove that a p™-order preinverse is also a p"-
order postinverse in the case in which residual Volter-
ra operators are present. This result has been proven
by Schetzen [12, 13] in the less general situation in
which the inverse is exactly a p™-order system.

Theorem 1. Let Q be a system operator and P® be a
system of any order such that

I, k=1
PPo ={ ’ 34
[ Olk 0. 2=k=p (34)
then we have

I, k=1
[QoP® =[ ’ 35
0 I« 0. 2<k=p (35)

Proof: it is made by induction.
Using eq. (34) and Property 3 we get

[PPoQopP?); = [(1 Py s}ﬂ’) OP“’)]

i=p+1

=H1; 5 sgw] OP"’)] — Pi, k=p(36)
k k

i=p+1

which, for k =1, gives

PioQoP, =P, 37
therefore we have
QoP, =1 (38)

Letting H = QoP® we have H, = 0. In fact
[PP0QoPP), = [P0l + H)la = P, + PioH:  (39)

Recalling eq. (36) it results P;oH, = 0, therefore we
have H, = 0 because, in general, P, is not a zero opera-
tor.

Finally, supposing that H, = H; = ... = Hx -1 =0, we
get Hy = 0 because

k
[P(p)oQoP(p)]k — [PW)O >, Hi]
i=1

k
=[PP oI+ HY)lk = Px + P1oHi (40)

As done for H,, a simple comparison between egs.
(36) and (40) gives P, ° Hy = 0, therefore it results Hy =
[QoPP), =0, 2 < k <p, as stated by the Theorem.

4.D. Comparison between synthesis strategies

A comparison between inverses of the same order
resulting from the application of our recursive technique
and Schetzen’s method [12, 13] can be easily made. In
the following, Schetzen’s p™-order inverses will be called
minimal inverses, since their order is the minimum al-
lowed p.

Egs. (30) and (33), as shown in Fig. 3, give rise to
the same second-order inverse

P® = Po(Q0(—-Py) + 1) (41)
which, incidentally, results as minimal (without residu-
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Fig. 3 - Second-order mverse.

al operators). In fact Schetzen’s method yields the same
result.

Third-order inverses resulting from the application of
egs. (30) and (33) have different structures. The former
results

PO =Po{(Q:0(—P1)+Do(Q2+ @3)o(—P1) +1] (42)
and the latter is given by
PO =Po{((Q:20(—P1)+ D02+ Q3)o(—P))+ 1} (43)

In Fig. 4 the structures corresponding to egs. (42) and
(43) are compared to the minimal third-order inverse.
We see that the minimal scheme (c¢) involves one third-
order Volterra operator of @ and four of the second-
order, while the non-minimal schemes (a) and (b) involve

a)

b)

©)

Fig. 4 - Third-order inverse: a) first recursive scheme; b) second recur-
sive scheme; c) minimal scheme.

one third-order and just two second-order operators.
Therefore the recursive method begins to show its ef-
fectiveness with structures resulting from at least two
applications of the recursive equations. On the other
hand, the complexity reduction begins to be considera-
ble after three recursive order increments. In this case,
several schemes are possible, depending on which recur-
sive equation has been used at each step. Such schemes
are all characterized by the same structural complexity.
For example, applying eq. (33) twice we get the fourth-
order inverse of Fig. 5. The application of Schetzen’s
method for the synthesis of the fourth-order minimal
inverse gives rise to a structure whose complexity is enor-
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Ar ek

Fig. 5 - Fourth-order inverse obtained with the second synthesis
scheme.

mously greater. In Fig. 6 is reported only that part of
the minimal scheme corresponding to the fourth-order
Volterra operator in which P, and P;3 are second- and
third-order operators of the minimal inverses, respec-
tively. The complexity of P, and P; is of the same ord-

Fig. 6 - Fourth-order operator of the minimal inverse.

er as that of the systems shown in Fig. 3 and 4 ¢). This
should give an idea of the resulting complexity. The
reduction of complexity obtained with the recursive
procedure is related to the fact that our method synthe-
sizes the whole structure of the inverse while, in order
to obtain a minimal inverse it is necessary to synthesize
the individual Volterra operators and, consequently, to
implement individual multilinear operators.

5. EXAMPLE OF APPLICATION

In digital radio transmission systems, the necessity of
increasing the spectrum efficiency using high capacity
modulation formats such as multilevel quadrature am-
plitude modulation (QAM) contrasts with the need for
good power efficiency, as the former requires the en-
tire system to work in linear regime, while the latter al-
lows the high-power amplifier (HPA) to work near satu-
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ration, where the nonlinear distortion, acting on a band-
limited pulse stream, gives rise to nonlinear intersym-
bol interference (ISI).

The end-to-end link could be modeled as a Volterra
system [14], and we limit ourselves to consider the tech-
niques for reducing the ISI based on the nonlinear filter-
ing of the data stream entering the system (predistor-
tion) or on the nonlinear equalization at the receiver.
In other words, we are dealing with problems of p™-
order preinversion and postinversion, respectively. Such
problems could be solved with the recursive method of
Section 4. Others compensation methods have been pro-
posed in the literature, as for instance the global com-
pensation of the nonlinearity [18], but they requires a
different synthesis approach than the one here reported.

5.A. System model

A simplified baseband model of the system in ques-
tion is reported in Fig. 7. In this scheme, {a,] is a se-

{a} (b} x(0) y(0)

. dulator a
¥ predist. 2(0) HPA )
Z(T) Z(T) R R

{nd {d,)

detector b)

y(1) v(1)
Sfilter 3%
h(1)

R R Z(T) Z(T)

Fig. 7 - Model of the nonlinear digital transmission system: a) trans-
mitter side; b) receiver side.

quence of T-spaced complex symbols belonging to an
L-QAM constellation, therefore both %Re{a,] and
Sm {a,) take on values =1, =3, ..., +VL—1. Such a
sequence drives the compensator that we want to syn-
thesize, whose output is a sequence of complex samples
{bn}. g () is the bandlimited pulse shape of the modu-
lator, while all the transformations between the HPA
and the detector are represented by a single linear filter
whose impulse response /4 (¢) satisfies the Nyquist criteri-
on for the cancelation of the linear ISI. The HPA is mo-
deled by a complex function over a complex domain [15]
which, in general, can be described by a power series

y = _§1a2i+1|x|2ix (44)

The carrier reference and the timing are assumed to
be ideal and the thresholds of the detector are set at
0, +2, +4, ..., £VL—2. The discrete signal entering
the detector is v, + n., V» being the sequence of sam-
ples at the output of the receiver and {7,] a sequence
of complex samples of noise.

It is easy to verify that the system of Fig. 7 can be
represented by the discrete-time Volterra series

Va= 2 2 bic,...bi bk

i=0 ki aisr i+1

...bk2i+lQ2,‘+1()’lT—k1T,...,nT—k2,'+1T) (45)
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whose Volterra kernels are

Qi1 T,.. i T)=

02i+ 1

—00

2i+1

h(T)ﬁl g*(n;T— r)kH gne T—71)dr (46)
Jj= =i+1

The Volterra representation (45) differs from that of
eq. (6) in the fact that some of the input samples are
complex conjugates. The results obtained in Section 4,
however, continue to hold true.

5.B. Preinversion schemes (predistortion)

Using the recursive eq. (33), it is easy to derive the
schemes of a third-order and a fifth-order preinverse,
reported in Fig. 8. In such schemes, the linear part is

—|J Y
.23 b)

ay

Fig. 8 - Inverses of the nonlinear digital transmission system: a) third-
order predistorter; b) fifth-order predistorter.

given by a simple multiplication by 1/ «;, since the linear
part of the system is a Nyquist channel. The Volterra
operators V3 and Vs can be implemented as shown in
the scheme of Fig. 9, for k = 1 and k£ = 2, respective-
ly. The scheme of Fig. 9 requires to work ideally on the

—————————————————————————————————————————————

} interp. .

lte
3 filter (P -/;1 (‘:)r
i

21) ¢

Fig. 9 - Implementation of the operator Vy« + of the predistorters.

continuous time domain % within the dashed box.
However, we can work on discrete time domain Z ( 7¢)
in place of 9, without loosing any information, after
the following considerations: i) the signal driving the
dashed block is bandlimited to B = (1 + v)/27, with
0 < v =< 1 representing the roll-off factor, ii) the wider
bandwidth of the signals involved is after the nonlinear-
ity and it is equal to Bx = (2k + 1) B. Then, if we use
a sampling period 7, < 1/2Bx, we guarantee a perfect
signal reconstruction before sampling. If we choose
T. = T/M, M integer, we can build the structure of Fig.
9 with a polyphase filter with M parallel branches, each
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composed by a FIR working at a symbol rate 1 /T fol-
lowed by the nonlinearity and another FIR working at
a symbol rate 1/T.

We note that for a standard value v = 0.5, we get
M=5fork=1, M=8 for k=2 and M = 11 for
k=3.

However, for the application here reported we found
a residual error irrilevant for M = 3 and for the FIR
filter limited to 7 taps each.

5.C. Performance evaluation

In order to test effectiveness of the preinversion
schemes, we evaluated the performance of the system
by means of a simulation program. The performance
was measured in terms of the relative flat fade margin
F/Fmax, F being the signal reduction that can be sus-
tained on the link before the bit error rate (BER) reaches
a given performance threshold BERy, and Fpax being
the maximum theoretical value of F, which is a charac-
teristic of the operative conditions. The flat fade mar-
gin was measured as a function of the HPA input back-
off, which is defined as the reduction of the peak input
power from its maximum value. The difference between
the peak values of F'/ Fnax gives the gain due to the com-

pensators.
As shown in Fig. 10, the use of a fifth-order com-
F 256 QAM

[dB] T T —
-1

r

max

2t

-14 13 -12 <11 .10 9 8 -7 -6
Backoff [dB]

Fig. 10 - Relative flat-fade margins of a 256-QAM system: a) with
no predistortion; b) with a third-order predistorter; c) with a fifth-
order predistorter.

pensator [16, 17] gives rise to a gain of about 6 dB. No-
tice that a feasible fifth-order scheme can only be ob-
tained with the recursive synthesis method here present-
ed. In fact, a minimal inverse, obtained with Schetzen’s
technique, is feasible only in the third-order case, for
which the achievable gain is limited to only 2 dB.

5.D. Postinversion schemes (nonlinear equalization)

As stated by Theorem 1, a p™-order preinverse is also
a p™-order postinverse, therefore the predistorters of
Subsection 5.B. can be used as nonlinear equalizers.

The compensation of channel nonlinearities in digi-
tal radio communication systems by means of a non-
linear equalizer has already been studied by Biglieri et.al.
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[18]. The system described in [18], however, requires to
estimate a number of parameters related to the kernels
of the system to be linearized. Using the schemes of
postinversion described in Subsection 5.B the only
parameters to be estimated are the coefficients o, a3
and as of the 170 relationship (44) of the HPA, since
the pulse shape is known and, with no loss of generali-
ty, the linear part of the link is assumed to be a Nyquist
channel.

Notice that the recursive method allows us to build-
up postinverses of order 7 or more without any calcu-
lation, while conventional techniques based on function-
al representations of the nonlinear system would require
us to follow a long and tedious synthesis procedure.

6. CONCLUSION

A new recursive technique for the synthesis of the p™-
order inverse of a Volterra system, based on the opera-
tional point of view, has been presented. In the proposed
procedure, we relaxed the condition that the inverse be
of order p, allowing it to have residual kernels of higher
order. The choice of the residuals was made with the
aim of reducing the complexity of the resulting synthe-
sis schemes and with the purpose of simplifying the syn-
thesis method.

The recursive technique presented in Section 4, instead
of synthesizing one operator at a time, yields the syn-
thesis of the whole structure of the compensator in such
a way that it is not necessary to implement any mul-
tilinear operator by means of complex interconnection
of Volterra operators of the system to be inverted.
Moreover, as the technique is based on simple recursive
schemes, the synthesis results enormously simplified, and
does not require long and tedious operations.

A comparison between minimal structures obtained
by means of Schetzen’s method and those resulting from
the application of our recursive technique has been
presented, showing that the structures that we obtain
are much less complex, and that their complexity in-
creases much more slowly as the order of inversion in-
creases.

As an example of application of the proposed method,
we have considered the linearization of a digital radio
link in which the high-power amplifier is operated near
saturation. Two preinversion schemes have been present-
ed and the compensated system has shown a considera-
ble performance improvement.

A research aspect to be investigated, concerning the
synthesis approach which has been presented in this
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paper, is the possibility of making an appropriate choice
of the residual operators in order to optimize other sys-
tem characteristics.

Manuscript received on August 27, 1991
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