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Abstract

In this paper we propose and discuss a new technique for reducing the spectral redundancy of 2D digital signals
through decimation on an arbitrary sublattice. Starting from a second-order analysis of the signal’s spectral extension,
the method automatically selects a decimation grid that minimizes the overlap between spectral replicas and defines an
ideal hexagonal prefilter that maximizes the spectral energy to be preserved. Furthermore, the method automatically
designs the hexagonal prefilter through a modified version of the frequency transformation method. In particular, it
geometrically designs the transformation map in such a way to fit the prefilter'’s passband. The method has been
tested over a variety of 2D test signals (non-synthetic digital images) in order to evaluate the performance of the method
in terms of the impact of the spectral truncation on the overall quality of the reconstructed signal. © 1997 Elsevier
Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel stellen wir eine neue Technik vor, die die spektrale Redundanz zweidimensionaler Digitalsignale
durch Dezimierung auf ein willkiirliches Untergitter reduziert, und diskutieren sie. Ausgehend von einer Analyse zweiter
Ordnung der spektralen Erweiterung des Signals wihlt die Methode automatisch ein Dezimierungsgitter, das die
Uberlappung zwischen den spektralen Kopien minimiert, und definiert ein ideales hexagonales Vorfilter, das die
spektrale Energie, die erhalten werden soll, maximiert. AuBerdem entwirft sie durch eine modifizierte Version der
Methode der Frequenztranformation automatisch das hexagonale Vorfilter. Insbesondere entwirft sie geometrisch eine
an den DurchlaBbereich des Vorfilters angepaBte Ubertragungsfunktion. Die Methode wurde an einer Reihe von
zweidimensionalen Testsignalen (nichtsynthetische digitale Bilder) ausprobiert, um die Leistung der Methode hinsichtlich
der Auswirkung der spektralen Beschneidung auf die Gesamtqualitit des rekonstruierten Signals abschidtzen zu
konnen. © 1997 Elsevier Science B.V. All rights reserved.

Résumé

Nous proposons et discutons dans cet article une technique nouvelle pour la réduction de la redondance spectrale des
signaux numériques 2D par décimation sur un sous-treillis arbitraire. A partir d’'une analyse d’ordre deux de I'extension
spectrale du signal, la méthode sélectionne automatiquement une grille de décimation minimisant le recouvrement entre
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les répliques spectrales et définissant un pré-filtre hexagonal idéal qui maximise I'énergie spectrale a préserver. De plus, la
méthode congoit automatiquement le pré-filtre hexagonal avec une version modifiée de la méthode de transformation
fréquentielle. En particulier, elle congoit géométriquement la fonction de transformation de telle maniére & s’ajuster a la
bande passante du pré-filtre. La méthode a été testée sur une variété de signaux 2D (images numériques non synthétiques)
pour ¢valuer ses performances en termes d’impact de la troncation spectrale sur la qualité globale du signal

reconstruit. © 1997 Elsevier Science B.V. All rights reserved.
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1. Introduction

The spectral redundancy of multidimensional
digital signals can be thought of as the ‘degree of
sparseness’ of the spectral replicas of the original
analog signal, which are generated by the sampling
process. The problem of selecting a regular sampling
structure that results in the most densely packed
replications of the spectrum of the original 2D
analog signal has often been addressed in the litera-
ture. In fact, there exists a variety of applications,
from array processing [9, 21] (radar, sonar and
seismic) to image processing [5, 6, 8], that could
greatly benefit from a rational selection of data
samples and a careful elimination of negligible
spectral components for the purpose of avoiding
problems of aliasing. In fact, it is well-known that
minimizing the gap among the replicas (generated
by the sampling process) of the analog spectrum
reduces information redundancy [5].

Spectral packing through decimation is not an
easy task as it consists not just of a rational selection
of data samples, but it also needs a careful spectral
truncation for avoiding aliasing. In order to perform
anti-aliasing prefiltering, in fact, knowing the area
of the spectral extension (spectral occupancy) is not
sufficient; we also need to consider its shape.

In order to be able to reduce spectral redundancy
through decimation, we need to solve a number of
problems, the first of which is finding all possible
sublattices of an assigned order (density reduction
ratio). Given a sampling lattice, the number of
possible distinct decimation grids of a given order is
finite, but it increases very rapidly with the order.
As a consequence, in order to make an appropriate
selection of the subgrid according to the spectral

properties of the signal, not only do we need to
define and estimate the spectral extension of the
signal, but we need some criteria for limiting the
search space of candidate sublattices by ruling out
those that do not meet some specific conditions on
the spectral extension.

Another problem is the definition of spectral
extension according to which both decimation grid
and anti-aliasing filter are designed. As a matter of
fact, although the spectral energy of non-synthetic
2D signals is usually rather irregularly scattered
[6], what we need is a spectral extension model that
simplifies the design of the decimation prefilter. As
a general rule, it is convenient to select a class of
prefilters of interest and choose the spectral exten-
sion model accordingly.

If we restrict the class of prefilters we are interest-
ed in to those that have convex pass-band, we do
not need a detailed description of the spectral
extension shape, as we just need to determine the
direction around which the spectral energy is maxi-
mally concentrated and a measure of the energy
dispersion about it. This way of quantifying the
anisotropy of the spectral distribution corresponds
to approximating the spectral extension with an
ellipse whose shape is decided by the ratio between
the inertia moments of the power spectrum, while
its size is chosen according to the severity of the
spectral truncation we are willing to apply.

Adopting a second-order model for the spectral
extension seems quite a reasonable choice, as it
allows us to detect the dominant direction over
which high-frequency portions of the 2D signal are
concentrated the most, and adopt decimation grids
that exhibit a higher density of samples in that
specific direction. According to our experience, any
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further extension of the class of prefilters we use
would only modestly improve the quality of the
signal reconstructed after decimation, and would
not justify the heavy complications that would arise
from it. Another important problem concerns the
design and the implementation of the anti-aliasing
filter. The design problems, in fact, crticially depend
on the shape of the prefilter’s passband.

In this article we propose and test a method for
optimally determining the decimation sublattice and
designing the relative prefilter. The method, starting
from a second-order spectral extension model of
the signal, jointly determines the decimation grid
and designs a zero-phase 2D FIR prefilter, in a fully
automatic fashion [22].

Starting from an estimate of the principal axes of
the power spectrum, an upper bound kysx for the
decimation order is determined as the ratio between
the area of one period of the spectrum of the original
signal and that of the spectral ellipse (i.e. an ellipse
whose axes are proportional to the inertia axes).
Among all possible decimation grids of order
k < kmax, those that are compatible with the ellipti-
cal spectral extension are selected. In other words,
we keep only the decimation grids that do not give
rise to aliasing between elliptic truncations of the
spectral extension of the signal. If no compatible
decimation grids of a certain order exist, then we
must repeat the search among grids of lower order
until we find some compatible ones. For each
compatible decimation grid we generate a hexagonal
ideal prefilter by following a fully geometric ap-
proach. The best prefilter-grid pair is finally chosen
as the one whose prefilter’s passband best fits the
spectral extension. The geometrical parameters of
sublattice and hexagonal prefilter, can now be used
for automatically designing a zero-phase FIR hex-
agonal prefilter that best approximates the ideal
one. In order to do so, a new method, which extends
the McClellan’s frequency transformation technique
[16-18], is proposed and tested. With this method
we automatically design a frequency transformation
that fits the prefilter’s hexagonal passband through
an entirely geometrical procedure. This way, any
hexagonal prefilter can be synthesized from the
same 1D zero-phase FIR filter.

The decimation strategy proposed in this
article has been implemented in a fully automatic

computer procedure and applied to a variety of 2D
test signals. In order to make the examples of applica-
tion as intuitive and visual as possible, we used
non-synthetic images with different spectral properties.

In Section 2 of this article we have included all
the basic information that is needed for the com-
prehension of the concepts discussed in the next
sections. In particular, a brief summary of the
properties of sampling lattices and sublattices is
included together with a brief review of concepts of
Fourier analysis on lattice structures. The readers
who are already familhar with the theory of sampling
lattices may ignore this section, while those who
would like a more complete introduction to lattice
structures, may refer to [1,2,8,9,15,24]. The
method for the determination of decimation subgrid
and prefilter is described in Section 3. The method
for designing zero-phase FIR 2D filters with hexag-
onal pass-band through frequency transformation
is proposed and illustrated in detail in Section 4.
Finally, some examples of application of the pro-
posed technique are reported in Section 5. Though
the notation adopted in this article is the same used
in [8, 9], in order to facilitate the reading, we have
also included a glossary in Appendix A.

2. Mathematical preliminaries

The decimation grids considered in this article
are regular point sets with enough algebraic struc-
ture to allow us to define a Fourier transform on
them, so that spectral analysis can be performed.
Such sampling structure are well-known as sampling
lattices [8-10,24], and are characterized by the
property of being invariant with respect to transla-
tion and reflection [24].

2.1. Lattices and sublattices

The M-dimensional lattice A generated by
a non-singular matrix 4 € R™ is defined as

A =LAT(A) = {xe RM | x = An,ne Z"},

which is the set of all possible linear combinations,
with integer coefficients, of the M linearly indepen-
dent vectors (basis of the lattice) represented by the
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columns of 4. Each basis generates a unique lattice,
while a lattice may have several bases.

Given a basis A, it is possible to derive all other
bases of the lattice A = LAT(A), by using the fact
that the generic basis A4’ can always be written as
A" = AU, where Ue Z,, 1s a unimodular matrix, i.e.
an integer matrix whose determinant has absolute
value equal to one (see Appendix B). As a conse-
quence, all bases of a lattice must have the same
modulus (absolute value of its determinant). The
modulus d(4) of a lattice A4 has a meaningful
geometric interpretation, which is related to the
definition of its fundamental cell.

A fundamental cell ¥ of an M-dimensional lattice
A is a (non-necessarily connected) closed region of
RM such that the collection S, = {¥ + a,ac A} of
all shifted version of % on all points of the lattice
tiles the whole space R without overlapping be-
tween distinct translations. It is not difficult to
verify that there exist infinite fundamental cells for
a single lattice, but their hypervolume is always
the same. Since the hyper-parallelogram £ corres-
ponding to the vectors of the basis 4 is a funda-
mental cell of the lattice A = LAT(4) and its
volume is equal to d(A), we conclude that d(A) is the
volume of all fundamental cells of A, therefore
1/d(A) can be interpreted as a measure of the lattice
density. The fundamental cell is very important in
problems of multidimensional sampling and inter-
polation, and some of its properties will be exten-
sively used in the next sections. Unfortunately, there
exist no general geometric classifications of all
possible fundamental cells of a given lattice. The
only results that are available in the literature
concern convex cells [14] and are particularly
simple in the two-dimensional case, in which case
the only convex regions that tile R* are hexagons
with central symmetry.

The concept of sublattice is particularly important
for the decimation problem. The decimation grids
we are considering are, in fact, sublattices of the
original sampling grid A, i.e. subsets of A that have
a lattice structure. In order to be able to select

! Such hexagons can become parallelograms when two oppo-
site sides have zero length.

a suitable sampling grid for a given digital signal,
it is of paramount importance to be able to classify
and generate all possible sublattices of given
order, i.e. those that have a pre-assigned decimation
ratio.

Given an M-dimensional lattice A = LAT(A), the
grid I' = LAT(B), is a sublattice of A if and only if
there exists a non-singular integer matrix H such
that B = AH. This result [4] is particularly impor-
tant as it provides us with a method for analytically
generating all sublattice bases. The integer number
|det(H)| = |det(B)}/|det(A4)] represents the ratio be-
tween the densities of A and I', and is often referred
to as the index of I' in A. This number, which is also
written as (A :1), corresponds to what we have
already called the decimation ratio from A to I
Notice, however, that a lattice may have several
bases, therefore the above result is not enough for
classification purposes, The problem of auto-
matically generating all k-th order sublattices of
a given M-dimensional lattice A = LAT(A),
however, has already been solved [11] and corres-
ponds to finding a partition of the set # =
{WeRy:W=AK KeZy,} into distinct classes
#, each of which identifies a unique sublattice. In
order to do so, we can look for a partition of the set
Zy . into distinct classes ¢ of right-equivalent
matrices. More specifically, we would like each
class J; to univocally determine a sublattice
I';=LAT(W;) of A through the relationship
W, = AK, K e ;. According to the Hermite normal
form theorem (see Appendix B), each class of right-
equivalent matrices of Z, , contains one and only
one matrix in Hermite normal form. Consequently
all kth order sublattice of A =LAT(A)
will be given by I'; = LAT(W,), where W, = AH,,
H;e #y,, where #) , is the set of integer matrices
in Hermite normal form whose determinant is equal
to k.

The number of distinct kth order sublattices of
a given lattice A corresponds to the number of
distinct matrices in Hermite normal form with
determinant k, i.e. on the number of possible integer
factorization of k. Such a number increases very
rapidly with the decimation index k (and the di-
mension of A). For example, there exist 91 distinct
sixth-order sublattices of a 3D lattice while, in the
2D case, the number drops down to 12.
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2.2. Fourier transform

The Fourier transform pair is defined on a lattice
A = LAT(A) as

U(f) = Z u(x)e-ﬂ"fT" = Z u(An)e—jznfTAn’

xeA nezM

feRM, 2.1)
u(An) = |det(4)| J U(f)e?™ ™ " df, neZM.

The Fourier transform U(f) is periodic and its
periodicity centers are given by the reciprocal lattice
[4,8] A*=LATA ") = {yeR¥:y"xeZ, xe A}.
The Fourier transform U(f) is thus completely
specified by its values in any fundamental cell 2
of A*.

2.3. Decimation and interpolation

In the multidimensional case, several different
subgrids having the same decimation ratio are
available. This fact is a source of complications
with respect to the one-dimensional case, but it also
offers greater freedom in the decimation setup.
Additional complications are caused by the fact
that for a single decimation grid, there exist a non-
numerable multitude of antialiasing filters, which
can always be chosen in such a way to favor some
spectral regions instead of others. In order to under-
stand the reason of this increased freedom, we need
two operators that will be extensively used in the
following sections: the ideal interpolator and the
decimator [7].

The interpolation can be though of as the cascade
of an elementary interpolator (zero interleaving)
and a filter. More specifically, the elementary inter-
polation of a signal s{x), from I'| = LAT({4,) to
I, = LAT(A,), ', being a sublattice of I';, is defined
as w(x) = s(x) for xe I';, and wix) = 0 for xe I'; but
x¢ . It is not difficult to verify [8] that
W(f) = S(f) which means that the ideal interpola-
tion does not affect the Fourier transform but just
the periodicity lattice, which is now I'}.

Decimating u from Iy = LATA,) to I, =
LAT(A,), whew I', is now a sub-lattice of I'; (ie.

I, cTI'y,and A7 '4, = M unimodular), returns the
signal v = (x) = u(x), xe I',. In this case the rela-
tionship between Fourier transform [8] turns out
to be

1 ;

T Irz)..ezf U(f+a), (2.2)
# being any I'f period of I'%, and (I'}: ;) =
|det(M)] the decimation factor.

In order to be able to perfectly reconstruct a signal
u defined on I'y from its decimated version v on I';,
i.e. in order for the decimation to invertible, it is
necessary for the support of U(f) to be confined
inside some fundamental cell 2, of I'}. In this case
the reconstruction can be done by using the cascade
of an ideal interpolator from I, to I'y and an ideal
filter with frequency response

V(if)=

Hf) = {(IH 1), fe2,, 23)
0, fePy, f¢P,.

As the impulse response of the filter is defined on

I'y, the frequency response H( f) is a I'f-periodic of

R?, therefore it is sufficient to specify it in a

I*-period 2, of R%,

3. Decimation approach

As seen in Section 2, decimating a signal on a kth
order sublattice causes its spectrum to replicate
k — 1 times, in correspondence to the points of the
decimation lattice’s reciprocal. In order for the
prefilter to prevent aliasing, its passband must be
completely contained in a fundamental cell of the
decimation grid’s reciprocal.

What we need now is a strategy for approaching
decimation problem in its globality. As we are
interested in reducing spectral redundancy, not only
do we need a systematic strategy for modeling the
spectral extension of a generic two-dimensional
digital signal, but we also need to be able to interpret
this information in order to make an optimal
selection of the decimation grid and, at the same
time, to design the anti-aliasing filter that best fits
the spectral extension. Such two operations cannot
be considered as separate and independent, therefore
they but must be performed jointly.
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In general, designing prefilter and sublattice joint-
ly is quite a difficult task whose solution can be
kept reasonably simple only under some simplifying
assumptions. The design method proposed in this
articleis based on a strategy presented in a previous
work [22], which approaches the problem by using
information on the spectral extension for drastically
reducing the number of candidate subgrids to con-
sider and geometrically constructing a prefilter for
each one of them.

The first step of the procedure consists of estima-
ting the second-order spectral extension of the signal
through the evaluation of the inertia axes of its
power spectrum. We can then determine an upper
bound for the index of the sublattices to choose
among, from the spectral occupancy of the estimated
spectral ellipse. The maximum decimation index
ko is the order from which to start looking for
suitable decimation grids. Given a decimation
order k, all distinct k-th order sublattices are gener-
ated and, among them, all those that are non-
compatible with the spectral extension, ie. those
that cause spectral ellipses to overlap, are ruled out.
If no compatible candidate subgrids can be found,
then the search will be repeated among sublattices
of an inferior order. For each compatible sublattice,
we geometrically generate the fundamental cell
that best fits the elliptical spectral extension.
The sublattice-cell pair that best fits the spectral
extension can be finally selected among the remain-
ing candidates.

3.1. Spectral extension estimation

In order to decimate the signal with a minimum
loss of information we need to determine the spectral
extension of the signal to be decimated. In other
words, we need to estimate a spectral region that
contains the most significant information on the
original signal. Such a region will be used later for
the selection of a decimation grid and the design of
an antialiasing filter that does not cause overlapping
between spectral replicas.

The spectral extension of a 2D discrete signal
u(x), x € A, can be simply defined as the portion & of
one A*-period 2 of R%, where the magnitude of the
spectrum U( f) of u(x) exceeds an assigned threshold

8. The bandwidth, or spectral occupancy of u can
thus be defined as B = area(&), and its normalized
value e = area(£)/area(#),0 < e < 1, can be used
as an index of the spectral efficiency.

The determination of decimation grid and funda-
mental cell that best fit a spectral extension obtained
through simple amplitude thresholding is quite
a formidable task. In fact, when dealing with non-
synthetic signals such as 2D images, that definition
of spectral extension usually produces sets & that
are rather complex in shape [6]. The spectral energy
of non-synthetic 2D signals, however, is normally
concentrated near the origin, and its distribution is
often limited to a connected region of the frequency
plane. It is thus reasonable to restrict the class of
prefilters we are interested in to those that have
a compact and convex passband region. As explained
in Section 2.1, the only convex regions that tile
R, are parallelograms and hexagons with central
symmetry, therefore the above assumption greatly
simplifies the problem.

In order to determine a compact and convex
model of the signal’s spectral extension, we just
need to determine the direction around which the
spectral energy is maximally concentrated (principal
axis) and a measure of the energy dispersion about
that axis. Quantifying the anisotropy of the spectral
distribution through this second-order model cor-
responds to approximating the spectral extension
with an ellipse whose shape is decided by the inertia
moments of the power spectrum, while its size is
chosen according to the severity of the spectral
truncation that we are willing to apply.

Any non-synthetic discrete 2D signal u(x), x€ 4,
has a limited region of support Q < R?, therefore
we may consider its ¥W-periodized version uy(x),
¥ being some sublattice of A, so that the spectrum
U o f) of uplx) results as being discrete over ¥* and
periodical over A*. It should be quite clear that, if
the ¥-periodization is correct, then the frequency
sampling associated to it does not cause any loss of
information. It is thus possible to derive all spectral
information about the signal u(x), for example,
through DFT computation.

In order to estimate the second-order model of
the power spectrum S(f) = |U(f)?>, we need to
determine the principal inertia axes d, and d, and
the relative radii of gyration p; and p, [25]. The
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axes d, and d, are determined from the eigenvectors
of the inertia matrix (matrix of the inertia moments),
while the radii p; = /Ii/Mand p, = /1,/M
depend on the principal inertia moments I, and
I, (eigenvalues of the inertia matrix) and the total
energy M of the 2D signal.

With respect to the reference frame (dy, d,), the
inertia ellipse is described by the equation
pid? + pid} = 1 therefore the second-order model
of the spectral extension is a set of the form
pid? + p3d3 < r% r being a scaling factor for the
radii of gyration, to be chosen in order for such
a spectral ellipse to contain the most significant
portion of the power spectrum (e.g. by selecting
a threshold for the signal energy included in the
ellipse). The spectral occupancy of the signal, L.e. the
area A = mp,p,/r® of the spectral ellipse, provides
us with an upper bound for the index k of the
sublattices that could be used for decimating the
signal. In fact, we must have k < ko, where ko is the
largest integer which is not greater than area (Z)/A
and 2 is any fundamental cell of the reciprocal
sampling lattice.

3.2. Determination of prefilter and decimation grid

As already seen in Section 2, the problem of
determining all kth order sublattices of a lattice 4,
with k < ko, can be solved by generating all matrices
in Hermite normal form [6] that have determinant
equal to k. For each one of such subgrids we need
to determine the compatible ones, i.e. those that do
not cause the above spectral ellipses to overlap, and
the relative ideal prefilters [22].

3.2.1. Compatible sublattices

The fact that the spectral extension model is
elliptical makes the compatibility check particularly
simple. In fact, given an ellipse, the curve described
by the centers of all of its tangent replicas is itself an
ellipse whose radii of gyration are twice the ellipse’s
radii. This threshold ellipse 7, described by the
equation (2p;)%d? + (2p,)*d} = r’, represents the
limit region for the replication centers beyond which
no overlapping occurs, therefore we just need to
make sure that all points of I'* lie outside Y.

Letting (d}, d,) be the coordinates of the generic
point of I'*, referred to the principal axes of the
ellipse (see Fig. 1), the compatibility check becomes

(291)‘?% + (2py)d3 > %

3.2.2. Prefilter’s geometry

The set of all compatible subgrids is much more
limited than the set of all possible sublattices of the
order k < kq. All such grids are good candidates for
decimation as none of them causes the spectral
ellipse’s replica to overlap. The choice will then be
made according to the prefilter that will be asso-
ciated to each one of them. In order to do so, we
need a fast method for generating a fundamental
cell that ‘well fits’ the spectral extension, for each
compatible sublattice. More specifically, the com-
pact and convex fundamental cells that we are
looking for must enclose the elliptical spectral
extension entirely, and the principal directions of
the prefiltered spectrum must be as close as possible
to those of the original spectrum

According to the results of Section 2, all convex
fundamental cells of two-dimensional lattice are
hexagons with central symmetry. A method for
determining a hexagonal fundamental cell of a given
compatible sublattice which entirely encircles the
elliptical spectral extension, is described in Fig. 1.
We begin by determining the six pairwise opposite
points a, b, c,a’, b, ¢’ of I'* that lie closest to the

Fig. 1. The hexagonal passband is given by the intersection
of the three parallelograms W, = [w{" w{']={b.c.b' ¢},
W, =w® wPl=lacac),Ws=mw> wil={abd b},
built on the six points of A* that lic the closest to the threshold
ellipse yn.
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threshold ellipse. We then build three parallelo-
grams on the three quadruples of points that can be
obtained by excluding an opposite pair of points, as
shown in Fig. 1. For example, the parallelogram
{b, ¢, b '} is obtained by ruling out the pair {a, a'}
of opposite points. This polygon can be geomet-
rically described by the vectors w{"” and w% that
connect the origin with the middle points of two
non-opposite parallelogram’s sides. In matrix form,
the three parallelograms are represented by the
2 x 2 matrices

W= wil, i=123 (3.1)

As we can see from Fig. 1, the intersection of the
three parallelogram W, i = 1, 2, 3, is a fundamental
cell that well fits the spectral ellipse and can be used
as a reference for constructing both the anti-aliasing
and the reconstruction filters. With this choice, the
shape of the refilter’s passband tends to capture the
spectral anisotropy in a natural fashion.

3.2.3. Final selection of the decimation set-up

Last step of the decimation procedure consists of
choosing the best decimation setup among the
compatible subgrid/refilter pairs. Although the
available candidates are all suitable for decimation,
we need a criterion of optimality that takes into
account how well the fundamental cell fits the
spectral extension. As the computational complexity
of the prefilter is expected to be kept reasonably
modest, it would be desirable to have a transition
band which is as uniform as possible. An operative
way of applying the above criterion consists of
selecting the sublattice whose prefilter has minimum
impact on the principal axis of the power spectral
distribution. More precisely, we can choose the
prefilter that minimizes the angle between the prin-
cipal axis of the non-prefiltered spectrum and that
of the prefiltered spectrum.

4. Prefilter’s design

As already explained in Section 3, the prefilter’s
passband is determined as an intersection of three
parallelograms whose matrix representation
(Eq. (3.1)) constitute a complete geometrical de-
scription of the whole decimation setup (subgrid

and reference refilter) and, in fact, represent the
only output of the procedure described in Section 3.

In order to design a low-pass anti-aliasing filter
with the above hexagonal passband, several strat-
egies can be adopted. It would be highly desirable,
however, to define and adopt a design strategy that,
starting from just the geometrical description of the
prefilter, generates the desired filter in a totally
unsupervised and automatic fashion.

The simplest solution to the prefilter’s design
problem is represented by spectral windowing based
on FFT computation [23]. Considering the fact
that the 2D test signals we selected are images,
however, a few considerations are in order. The
ideal prefilter determined in Section 3 exhibits sharp
transitions at the border of the passband region. As
a consequence, abrupt spectral truncation may give
rise to an undesired ‘ringing’ effect, which is highly
visible as it results in artifacts that are parallel to
the image edges. It is well-known, in fact, that our
visual system reacts to noise and disturbance in
highly anisotropic way [12]. For example, the
disturbance components that are parallel to edges
are much more visible than those that are perpen-
dicular to it. In principle, one should design a prefil-
ter taking into account the impulse response as well
as the frequency response [3, 20, 26]. A simple solu-
tion consists of adopting a smoothed version of the
ideal hexagonal prefilter, although smoothing the
filters’s transitions is not a straightforward procedure.

It is also important to keep in mind that comput-
ing the 2D FFT of a limited-support signal defined
on the lattice I', requires signal periodization over
a lattice ¥ which is a sublattice of the decimation
grid A and, consequently, of I'. Failing to perform
zero-padding prior the computation of the FFT
may result in the generation of undesirable artifacts.

The major drawback of spectral windowing is
the fact that it forces us to work in the frequency
domain. This lack of flexibility motivates us in
searching for a design solution which allows us to
choose between an implementation in the image
domain and one in the frequency domain.

The design strategy that we propose in this
section can be seen of as an extension of the
McClellan’s frequency transformation method
[13,16, 17]. As we will see, our technique uses just
one pre-designed 1D zero-phase FIR filter and
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geometrically transforms it into a 2D zero-phase
FIR filter that meets all the requirements specified
in Section 3. In order to do so, the frequency
transformation is automatically designed through
a fully geometrical procedure in such a way to
generate the desired hexagonal passband.

4.1. Frequency transformation

It is well-known that a frequency transformation
of the form

cos(2nfd) = T(f), 4.1)

4 being the 1D sampling step, can be used for
mapping the frequency response Hp(f) of a 1D
zero-phase FIR filter onto a 2D zero-phase FIR
filter as follows:

N N
H(f)=} acos(2nfa) =3 aT{(f).
i=0 cos(2nf)=T(f)} i=0
(4.2)

According to Eq. (4.2), Eq. (4.1) maps the 1D
frequency value f onto an iso-level curve described
by the implicit equation T(f)=¢, where ¢ =
cos(2nfA). The idea behind the method we propose
and the goal of this section is to determine a fre-
quency transformation function T( f) that, starting
from the matrix description W, i = 1, 2, 3, of the
three parallelograms that constitute the hexagon,
maps fe[0, 1/2A)[ onto a closed curve that lies
entirely inside the hexagonal passband region, while
th Nyquist frequency fy = 1/(24} is mapped onto
the whole stopband region. With this choice, a 1D
zero-phase FIR filter having a zero at the Nyquist
frequency would be mapped onto a 2D filter which
prevents aliasing from occurring in the decimation
process. Furthermore, all geometrical parameters
of the sublattice/prefilter pair would be totally
embedded into the transformation map, therefore
a single 1D filter could be mapped onto any of the
2D prefilters of the type defined in Section 3.

Notice that, because of the flat response in the
stopband region, such an ideal transformation func-
tion cannot be found in FIR form, therefore we will
have to look for an approximate FIR solution.

In order to simplify the description of the hexag-
onal prefilter’s design method, we will first consider
the synthesis of prefilters whose passband is shaped
like a parallelogram and then will proceed with the
hexagonal case.

4.1.1. Transformation map for parallelograms
Let us consider the classical McClellan’s trans-
formation map

Tw(&) = —1+3(1 + cos(2né, 4,))
X (1 4+ cos(2né,4,)), 4.3)

of Fig. 2(b) and 2(c). Apart from a scale
factor and a range shift, the map (Eq. (4.3)) is
separable, therefore it can be written as a product of
the form

A1 + Twl(S)) = F1lE1)F2(E2),

where F (&) =14 cos(2né4,) and F,(&,) =
1 + cos(2n&,4,). Equivalently, it can aiso be written
as a periodic convolution of the form

A1 + T(8) = G1ODGH(E), (4.4)

where

k
G,(&) = F1(¢0Y 5(62 - A_2>’

k
GafE) = Fy(&2)Y) 6(:,“1 - A—).
k 1

As the extension of the convolution does not exceed
the M*-period, we can himit our analysis to one
square period. In order to do so, we define the
aperiodic blade function G(&) = F(£1)6(¢,) and
G,(€) = F,(,)5(¢,), which are oriented along &
and &,, respectively, and whose profile is shaped as

= Fi(&)),
Fj(sj)z{ (&5

0, elsewhere,

L £ 1
— 35 < ¢ < 24

j=12,...,

as shown in Fig. 2(c). The linear convolution of
such blade functions results in

T8 = —1+2G,(8) * Ga(d),

which needs to be I'*-periodized in order to return

Tw(&).
Let us now consider the linear transformation
f= WE of the frequency plane, where Wis a 2x2
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. X R -0. . 1 L 1
© 2A1

Fig. 2. McClellan’s frequency transformation map. The blade
functions (a) are used for generating the 2D profile (b) with the
iso-level curves, (c) through convolution.

matrix such that |[det(W)| < (4,4,)” . The matrix
W characterizes a parallelogram (its columns
represent the vectors that connect the origin with
the centers of two non-parallel sides of the parallel-
ogram) which we assume to be contained in the
I'*-period. The transformation map f= W¢

stretches the McClellan’s iso-level curves in such
a way to fit inside this parallelogram.

It is not difficult to show that, if G(¢) =
G1(£) * G(§), then

~ 1 ~ _
CW 1fy=——— —1 AW

(W) = qoii GHF )+ G ),
therefore the transformation map T:(f) that fits

the parallelogram W), i = 1, 2, 3, can be obtained
through I'*-periodization of

1

T(f)= -1 +—2det(M)

G{(Wi ' )GA(W7 ),

i=1,273.

In conclusion, apart from a scaling and a range
shift, a transformation map that fits the parallelo-
gram W can be expressed as a convolution of two
blade functions shaped like raised cosines and
nonzero along the lines that connect the centers of
opposite sides.

The above representation of a parallelogram-
shaped transformation map is not very useful from
the operative standpoint. In fact, the above method
implies frequency de-periodization (space inter-
polation on #?) followed by frequency (space)
warping and, finally, frequency periodization (space
resampling over I'). Furthermore, the presence of
a flat region in the I'*-period (outside the parallelo-
gram) prevents the transformation mask from hav-
ing finite extension. The above discussion, however,
will become useful later for defining a hexagonal
transformation map.

In order to define an operative procedure for
constructing a parallelogram-shaped zero-phase
FIR transformation map, let us apply the linear
transformation f = W¢ to the axes of the periodic
McClellan’s transformation map of Fig. 3(a). The
result of this change of reference frame is shown in
Fig. 3(c), where it is quite apparent that the iso-level
curves of Fig. 3(a) are now all mapped onto the
inside of the parallelogram W. Notice that, in order
for this result to be correct, we need to make sure
that I'* is a sublattice of ¥ = LAT(W), so that the
new transformation mat T,,(f) = T,(W~'f)is also
I'*-periodical.
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(a)

® L b

(c)

Fig. 3. The McClellan’s frequency transformation map (a) can
be used for deriving map (b) by removing all undesired replicas
from map (c). Map {(c) can be directly obtained from (a) through
linear transformation of the reference frame.

If t,(y),yeT, is the transformation mask asso-
ciated to T,,(&) (see Fig. 3(c)), then the transforma-
tion mask associated to T,,(f) = T.( W™ 'f)is

W Tx), W lxed,
tu(x) =
0, xel, x¢ A,

which is obtained from ¢, (y) by redistributing its
samples over the sublattice A while leaving all other
samples of A to zero.

The transformation map that we are looking for
can be derived from T,(f) by eliminating the
undesired replicas of the parallelogram W, as shown
in Fig. 3(b). This operation corresponds to ideally
interpolating ¢,,(x) on I'. The resulting transforma-
tion function T(f) maps fe[0,fy[ onto one of
a family of closed curves that lie entirely inside the
parallelogram W and tend to approximate its border
as f approaches fy. The Nyquist frequency fy, in-
stead, is mapped onto both the border and the
outside of this parallelogram, as required.

It is important to notice that, in order for our
design method to be applicable, the final trans-
formation map t(x} must have limited support.
A mask obtained through ideal interpolation of
t,(x), however, would not be FIR therefore a non-
ideal FIR interpolation would be in order.

In alternative to interpolation, we propose to
derive t(x) from a properly chosen analog window
t(x) = h(W ™ Tx), where h(x) is any analog window
such that h(x) =t,{x) for xeI',x # 0. A possible
choice for h(x) is a separable analog Hanning win-
dow, whose amplitude range and whose sample at
the origin are modified in such a way that its
Fourier transform ranges from — 1to 1, as required
by Eq. (4.1). One apparent advantage in construct-
ing the transformation map through a sampling of
an analog function is the fact that it allows us to
remove the hypothesis according to which
I'* = Y = LAT(W), thus giving us the freedom of
arbitrarily scaling and/or modifying the shape of
the parallelogram.

4.1.2. Transformation map for hexagons

Our goal is to build a transformation map that
decreases monotonically from 1 to — 1 as it ap-
proaches the border of a regular hexagon with
central symmetry. Similarly to what seen in the
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Fig. 4. (a) Construction of the hexagonal frequency transforma-
tion map. The three blade functions are aligned with the vertex
lines of the hexagon. The extension ! of any blade function is half
the length of the vertex line which, in turn, is 2/3 the length w of
the corresponding parallelogram. (b) Convolving two blade
functions whose extension are the vertex lines {d, d'} and {e, ¢’}
resultsin a transformation map whose extension is the parallelo-
gram {h,f, b, f"}. Convolving this map with a blade function
whose support is the vertex line {f,f'} results in the external
hexagon {d,, e, f1,d4, €, /1 }. The vertex lines of this hexagon
are twice those of the desired one {d, e,/ d', ¢, f'}.

previous section, this function can be constructed
through the appropriate convolution of blade func-
tions. In particular, with reference to Fig. 4(a),
a proper hexagonal transformation map can be
obtained by convolving together three blade func-
tions oriented along the three lines that connect
opposite vertices of the hexagon (vertex lines) and
whose length are half such lines. Their shape is,
once again, given by raised cosine functions. In
order to verify that this procedure gives the correct
result, it might be easier to determine the result of
the convolution of blade functions whose extension
are the whole vertex lines of the hexagon. The result

will be a hexagon whose vertex lines are twice the
desired ones, as shown in Fig. 4(b).

In order to construct the desired hexagonal trans-
formation map we thus need to construct three FIR
transformation masks which approximate the I'*-
periodized blade functions in the frequency domain.
In fact, convolving together their Fourier transform
corresponds to multiplying them together in the
space domain.

With reference to Fig. 4, we notice that each one
of the three parallelograms

W, =" wi']={bc b, Y,
W,=[w? wil=/{aca,c},
W3 = [W(ls) w[23)] = {a> bs a/, bl}’

which intersect in the desired hexagon, exhibit
a dominant direction of extension along a hexagon’s
vertex line. This fact is not incidental and can be
used for determining a FIR approximation of the
blade functions,

Let T,(f),i = 1,2, 3, be the parallelogram-shaped
frequency transformation associated to the scaled
parallelograms W; = aW, i = 1,2, 3. With reference
to Fig. 4, it should be quite clear that the extension
of any of the three blade functions is 2/3 the longest
one of the two vectors that generate the relative
parallelogram. As a consequence, Ti(f),i = 1,2, 3,
represent the desired approximations of the blade
functions when o = 2/3, and can be derived by
following the procedure of Section 4.1.1. It is im-
portant to emphasize the fact that the scaling factor
o = 2/3 is fixed, and does not depend on the ge-
ometry of the sublattice/prefilter pair.

Notice that convolving together three parallelo-
gram-shaped maps, rather than blade functions,
has the desirable effect of reducing the residual
ripple of the final map, caused by imperfect interpo-
lation of the warped McClellan mask. Furthermore,
convolving together the three frequency maps cor-
responds to multiplying together the three corres-
ponding masks, with the result of limiting the extent
of the final transformation mask.

4.2. One-dimensional filter design

One problem that still needs to be solved is how
to choose the specifications of the zero-phase 1D
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FIR filter to be transformed. As already explained
above, the suppression of undesired replicas depends
on how well the frequency transformation map
flattens at —1 in the stopband region. Because of
the resampling of the analog window on I', besides
depending on the choice of window, stopband
suppression depends also on the alignment of the
hexagon’s sides with the principal directions (lines
of points) of I'*. In general, however, the stopband’s
residual ripple is never greater than the sidelobes of
the Fourier transform of the adopted analog win-
dow ¢, The iso-level curves associated to the fre-
quency transformation will not invade the stopband
region as long as the level is above the residual
ripple.

Let fi, be the threshold level beyond which the
iso-level curves invade the stopband region. In
order to guarantee the unwanted replicas to be
suppressed, we need to make sure that the stopband
region of the 1D filter includes the interval [ fi,, fy[.
In the rest of the frequency band, we would like the
1D filter to have a response which is as flat as
possible around 1.

In general, the 1D filter needs to be designed
according to the specific type of 2D signal that we
are dealing with. In the case of images, for example,
it is preferable for its frequency response not to
exhibit sharp transitions, in order to limit conse-
quent ringing phenomena.

4.3. Some practical considerations

The specifications determined above are quite
restrictive for a FIR filter. In order to smoothen
them down a little, we can introduce a transition
band before f,,, which requires further scaling of the
matrices W, in order to obtain the desired passband’s
size. Such scaling, however, needs to be balanced
with the loss of accuracy with which the passband’s
shape will approximate a hexagon. It is very impor-
tant to remind, however, that the above additional
scaling factor, as well as « (see Section 4.1.2), are
fixed, in the sense that they do not depend on the
geometry of the sublattice/prefilter pair. This means
that, changing the sublattice will result in a change
of just the transformation mask, with no tuning to
perform.

As far as the computational complexity is con-
cerned, spectral windowing benefits from the avail-
ability of fast algorithms for the computation of the
DFT. Conversely, direct convolution is quite
a costly operation. However, the fact that the
prefilter is immediately followed by an ideal sampler
suggests us that the only the samples that lie on
A should be computed, with the result that the
convolution’s complexity is reduced of a factor
[T : A]. In conclusion, the complexity of the two
strategies is comparable, while the advantage of the
one based on the frequency transformation method
over the FFT-based strategy are quite apparent.
The former is fully geometrical, and requires the
synthesis of just one 1D FIR filter as all geometrical
properties of the prefilter/sublattice pair are incorp-
orated into the transformation mask. In fact, if the
sublattice/prefilter pair changes, then we just need
to replace the mask while leaving the 1D filter
unchanged.

5. Example of application

As already mentioned in the introduction, the
search for a decimation grid and the generation of
a prefilter according to the method proposed in this
article has been implemented into a completely
automatic computer procedure and tested over
a series of real images.

A first example of application is represented by
the test image Train, shown in Fig. 5(a). The
spectrum of this image, shown in Fig. 5(b),
exhibits a certain anisotropy, as confirmed
by the orientation and the elongation of the spectral
ellipse. This fact can mainly be attributed to
the prevalence of detail aligned with the body
of the train. The principal axes of the elliptical
spectral extension have been chosen to be 3.5 times
the inertia axes of the power spectrum samples.
The maximum order of decimation in which some
compatible sublattices can be found is k = 12.
Among all hexagonal fundamental cells (built by
using the method of Section 3.2.2) that are asso-
ciated to the compatible 12th order sublattices, the
one whose principal axes are closest to those of the
elliptical spectral extension is chosen to define the
passband region of the image prefilter (see Fig. 5(c)),
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while the relative sublattice, whose basis (in Hermite tion, causes subgrid and prefilter to preserve the
normal form) is spectrum in that direction.
The geometrical description of the reference hex-
3 12 8 agonal filter of Fig. 5(c) is represented by the three
1o 1) parallelograms
is the corresponding decimation grid. 113 —1 17t =5
. . . . W — , W - ,
Decimating the image over the selected subgrid 1=%lo0 8 254 4 ]

causes the truncated power spectrum to replicate

like in Fig. 5(d), where it is quite apparent how the

elongation of the power spectrum due to the preva- _ i 4 =2
lence of some edges aligned along a specific direc- *T24l4 4

)

(©)

Fig. 5. Geometric characterization of prefilter and decimation grid for the test image train. (a) Original image, {b) spectrum and spectral
ellipse, (c) hexagonal passband, (d) tiled prefiltered spectrum.
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The blade functions that characterize the hexagonal
transformation map are approximated by the fre-
quency responses of three zero-phase FIR filters,
obtained with reference to the above parallelograms
through the method explained in Section 4.1.1. The
iso-level curves of the Fourier transforms of such
approximated maps are shown in Fig. 6(a)-6(c).
Such maps can be convolved together in order to

obtain the global transformation map of Fig. 6(d)
and 6(e).

By using the transformation map of Fig. 6, the
1D FIR filter whose frequency response is shown in
Fig. 7 is mapped onto the 2D FIR filter of Fig. 8.
Notice from Fig. 8(c) that the passband’s replicas of
the resulting filter (obtained by decimating its
impulse response over A) tile the frequency plane

ol

(e)

1!

Fig. 6. Construction of the frequency transformation map for the test image train. The Fourier transforms of the three
FIR approximations of the blade functions (a), {b) and (c) are convolved together to obtain the global transformation map (d)

and (e).
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Fig. 7. Frequency response of the zero-phase 1D FIR filter used for synthesizing the desired 2D prefilters.

perfectly. The anti-aliasing filter can also be used
for reconstructing the original image from the
decimated one.

The prefiltered image is shown in Fig. 9(a). Such
results are shown on the original sampling lattice
only because of obvious visualization limits, A
comparison between corresponding zoomed-in
details of original and prefiltered image are shown
in Fig. 9(b) and 9(c). As we can see, the blurring
due to the low-pass anti-aliasing filtering is still
acceptable, considering the reduction of 12 times in
the amount of samples that can actually be used for
describing the image itself. The residual ringing can
be further reduced by selecting a 1D filter specifically
designed for that purpose.

Another reconstruction example is shown in
Figs. 10-12. In this case the spectral extension
exhibits a different orientation in the spectral an-
1sotropy and the decimation factor is k = 15. Notice
that the prefilter of Fig. 11 has been obtained from
the same 1D filter used for the previous example. As
already emphasized in Section 4, the anti-aliasing
filter can also be used for reconstructing the original

image from the decimated one. In both cases,
however, the reconstructed image is identical to the
prefiltered one as no significant aliasing is introduc-
ed by the decimation process.

6. Conclusions

In this article we presented a new technique for
decimating discrete 2D signals, which is capable of
considerably reducing the spectral redundancy while
suppressing the least amount of spectral energy.
Spectral characteristics of the signal, such as spectral
extension shape and spectral occupancy, are taken
into account for determining both decimation grid
and anti-alias filter. In particular, the spectral
extension has been modeled as a second-order
energy distribution through its principal axes
and inertia moments of the power spectrum. This
choice corresponds to approximating the spectral
energy distribution with an ellipse, whose principal
axes correspond to the radn of gyration of the
spectrum, and allows us to considerably simplify
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e
e

(b) (c)

Fig. 8. 2D FIR prefilter for the test image train, constructed through frequency transformation. Frequency response (a) and corresponding
iso-level curves {b). Fourier transform (c) of the impulse response, after decimation over A.

the structure of the prefilter. As a consequence, the We have implemented out decimation technique
procedure for jointly designing subgrid and prefilter into a fully-automated computer procedure which,
becomes purely geometrical and of immediate after having analyzed the spectral content of a

application. discrete 2D signal, generates all sublattices that are
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Fig. 9. Prefiltered version of the test image train. (a) Corresponding zoomed-in details in the original (b) and prefiltered (c) images.

compatible with its spectral extension, finds the
corresponding fundamental cells, and selects the
prefilter/subgrid pair that best fits the estimated
spectral extension. In addition, the procedure
synthesizes a 2D zero-phase FIR filter that corres-
ponds to the previously determined ideal prefilter,
by means of a special application of the frequency
transformation method. This last methods is entirely

geometrical and uses all geometrical information
about subgrid/prefilter for constructing a proper
transformation mask.

The proposed method has been proven to be
quite effective for reducing the spectral redundancy
of a 2D signal. In fact, after having applied it on
a series of test images with various spectral con-
tent, we have shown that we can typically reach
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(©

19

Fig. 10. Geometric characterization of prefilter and decimation grid for the test image Lenna. (a) Original image, (b) spectrum and

spectral ellipse, (c) hexagonal passband, (d) tiled prefiltered spectrum.

decimation ratios that range from ten to twenty
with an acceptable loss of quality after reconstruc-
tion. It should be quite clear, however, that the 2D
signals that are appropriate the most for the
proposed decimation technique are those whose
spectral extension is well described by a second-
order model. Signals with more complex spectral
content might give rise to a more modest results in
the reconstruction quality. For example, the method
might not perform at its best with signals having
a non-compact spectrum. The ideas presented in
this article, however, could be adapted to different
spectral geometries by modifying the spectral

extension model and the geometrical procedure for
synthesizing the relative prefilter.

We are currently investigating the possibility of
estimating the spectral extension through the anal-
ysis of the signal rather than its DFT. In particular,
we are investigating the possibility of using the
projection-slice theorem for estimating the spectral
extension along a limited number of properly chosen
1D FFTs.

A final consideration concerns the fact that only
uniform decimation grids are considered. In fact,
the proposed method analyzes the signal as if it
were stationary, an assumption that is generally not
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(b)

(©)

Fig. 11. 2D FIR prefilter for the test image Lenna, constructed through frequency transformation. (a) Frequency response,
(b) corresponding iso-level curves, (¢) Fourier transform of the impulse response, after decimation over A.

correct for images, in which case it would be better
to assume region-wise stationarity. As a matter of
fact, it is reasonable to expect a region-wise adaptive
implementation of the algorithm to outperform the
proposed one. The derivation of a region-wise
implementation, however, would involve a number

of problems, such as those that filtering operations
would cause in the proximity of region borders,
or those connected with the estimation of the
spectral extension parameters in irregular regions
of small size.
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Fig. 12. Prefiltered version of the test image Lenna (a); corresponding zoomed-in details in the original (b) and prefiltered (¢) images.

Appendix A. Glossary A (i, /))th element of the matrix A4
A "=(A4"Y"  transposed of the inverse of the
Z,0,R sets of integer, rational and real matrix 4
elements, respectively AV {AeZy, |det(d) = n}
Zu, Qus Ry M x M matrices with integer, ra- H Mo set of matrices of Z,, , in Hermite

tional and real elements, respectively normal form.
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Appendix B. Hermite normal form

A non-singular matrix A€ Z,, is said to be uni-
modular if A~ '€ Z,,. Necessary and sufficient con-
dition for 4 to be unimodular is |det(4)| = 1. Two
matrices A, Be Z,, are said to be right-equivalent if
there exists a unimodular matrix Ve Z,, such that
B = AV. Left-equivalence is similarly defined. Two
matrices A, Be Z,, are said to be equivalent if there
exist two unimodular matrices U, ¥'e Z,, such that
B =UAV.

Two equivalent (or just right/left-equivalent) ma-
trices always have the same modulus (absolute value
of their determinant). As a consequence, given
a positive integer n, it is always possible to uniquely
subdivide the set Zy, , = {A € Zyy, |det(4)| = n} into
equivalence classes. The set of equivalence classes
represents a partition of Zy, .

Definition B.1. A matrix A€ Zy, is said to be in
hermite normal form [27] if:

(1) A is upper triangular;

(2) 4;20;

(3) Aj<Awpl<i<js<M,ifa; #0

4 Aij =0ifA;=0.

The number of distinct matrices of Zy, in
Hermite normal form, is thus given by the sum of
all possible distinct integer factorizations of n.

Theorem B.2 (Hermite normal form theorem).
Every non-singular matrix of Z, is the right-equiva-
lent of one and only one matrix in Hermite normal
form.

Such result [19] is of fundamental importance as
it implies that each class of right-equivalents in
Zy » contains a unique matrix in Hermite normal
form.
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