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Abstract 
In this paper we propose a method for estimating the 
egomotion of a calibrated multi-camera system from an 
analysis of the luminance edges. The method works 
entirely in the 3 0  space as all edges of each one set of 
views are previously localized, matched and back- 
projected onto the object space. In fact, it searches for  the 
rigid motion that best merges the sets of 3 0  contours 
extracted from each one of the multi-views. The method 
uses both straight and curved 3 0  contours. 

1. Introduction 
In the past few years, close-range photogrammetry has 
witnessed a proliferation of methods for the automatic 3D 
reconstruction of objects from multiple CCD camera 
images. Among the numerous approaches available today, 
those that are based on stereo matching seem to be 
particularly promising. Such methods, however, can 
usually provide a reconstruction of just a portion of the 
scene surfaces, while it would be desirable to reconstruct 
the surfaces of the whole scene. As a matter of fact, 
automatic 3D reconstruction systems based on stereo- 
matching can only reconstruct the visible portion of 
surface. Such systems, in fact, typically provide a 
description of just the front side of the imaged scene or, 
when the surface is too large to fit simultaneously in all 
views, of just a limited portion of it. In conclusion, in 
order to obtain a complete scene reconstruction through 
stereometry, it is necessary to observe the scene from 
several significant viewpoints and put together the final 
reconstruction like a patchwork of partial reconstructions. 

In order to be able ta merge 3D data coming from 
different reconstructions, we need to accurately estimate 
the rigid motion that the acquisition system undergoes 
between two partial reconstructions. In order to do so, one 
could employ high-precision mechanical devices for 
positioning the camera system (or the object) before 
acquiring a multi-view. This a-priori solution of the ego- 
motion problem, however, is usually quite expensive and 
not very flexible. In alternative, one can perform detection 
and tracking of some image features throughout the 
acquisition process, and use the location of such features 
for estimating the camera motion. This last approach 

becomes particularly interesting when the features to be 
extracted are part of the scene to be reconstructed rather 
than being artificially added to it. Adding special markers 
to the imaged scene is, in fact, common practice in 
photogrammetry but, besides making the egomotion 
retrieval more invasive, it requires a certain expertise and 
slows down the acquisition process. Conversely, natural 
point-like features that are already present in the scene are 
difficult to safely extract and accurately locate. Scene 
features that can be quite safely detected are, instead, 
luminance edges. These features are more likely to be 
naturally present in the scene and rather easy to detect, 
which makes them good candidate features for egomotion 
estimation. 

In this paper we present a method for estimating the 
egomotion of a multi-camera system from the analysis of 
3D contours in the imaged scene. Being the method based 
on a calibrated multi-ocular camera system [3,4], the 
estimation is performed entirely in the 3D space. In fact, 
all edges of each one of the multi-views are previously 
localiLed, matched and back-projected onto the object 
space [5] .  Roughly speaking, the method searches for the 
rigid motion that best merges the sets of 3D edges that are 
extractcd from cach one of the multiple views (see Fig. 1). 

Fig. 1 : egomotion estimation through line 
fusion: camera motion is determined as the one 
that best merges the 3D contours coming from 
different views multi-views 
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2. Partial Reconstruction 
The adopted camera model is basically a perspective 
projection onto an image plane, which is nonlinearly 
stretched in order to take the geometric distortion of the 
optics into account. 

In order to obtain a complete 3D reconstruction of an 
object we need to merge a series of partial 
reconstructions, which can be obtained through a variety 
of techniques. In this paper we consider partial 
reconstruction from edge matching, so that we can use the 
same type of features for egomotion retrieval as well. In 
fact, partial reconstruction is based on 2D edge matching 
(stereo correspondence on the image planes), while 
motion estimation is based on 3D contour matching (edge 
correspondence in object space). It is important to 
emphasize the fact that, in order to be able to use edges 
for accurate egomotion estimation, we need them to be 
detected with great accuracy. We do this by first using a 
traditional edge detector, we then retrieve the subpixel 
location of the edge points through an interpolation 
process which takes the luminance gradient into account. 
Finally, a rule-based contour tracking method is employed 
for determining the correct connection between edge 
points. 

The search for homologous edges on different views 
is performed along epipolar lines. Notice that using more 
than two cameras allows us to avoid problems of matching 
ambiguity. For example, with three cameras, not only can 
we always select the best pair of views for a specific 
stereo-correspondence (sharp intersection between edge 
and epipolar lines), but we can validate the matching 
through a check on the third view. In fact, the edge point 
must lie on the intersection of the two epipolar lines 
associated to the homologous edge points on the other 
views. Once the stereo correspondences are found, each 
set of corresponding contours is back-projected onto the 
3D scene space by looking for the point at minimum 
distance from the three homologous visual rays. 

3. Egomotion through Line Matching 
The egomotion estimation method that we propose in this 
paper is organized in two mains steps. After having 
partitioned the available 3D contours in lines and curves, 
we proceed as follows: 
1. rough egomotion estimation from straight contours: 

matching of straight contours 
motion estimation through minimization of 
the distance between homologous contours 

2. egomotion refinement using curved contours: 
0 matching of curved contours 

motion estimation through a minimization of 
the distance between homologous curved 
contours. 

Notice that, as a first approximation of the egomotion 
is already available, the matching of curved contours is a 
rather simple operation compared with the matching of 
straight lines. 

3.1 Egomotion from Straight Lines 

Line matching in 3D space Is performed through a 
hypothesize-and-test type of procedure [2]. The first step 
of this method consists of formulating hypotheses on the 
possible couplings by selecting all those that do not 
violate some rules of congruence based on a set of 
geometrical constraints. By doing so, we drastically 
reduce the search space over which to test for matching 
correctness. At this point we can proceed with an 
exhaustive search through the above reduced set of 
hypotheses and select the match that maximizes an 
appropriate measurement of the matching quality. 

Once the matching process is complete, the 
egomotion estimation can be performed rather easily by 
searching for the rigid motion that minimizes an 
appropriate merging cost function between two sets of 3D 
lines that pertain two different partial reconstructions. 
Notice 3D contours are generally reconstructed as chains 
of segments whose length and fragmentation may vary 
quite drastically from multi-view to multi-view. We thus 
proceed by first determining the 3D line portions that best 
fit (through linear regression) the chains of fragments of 
edges that have been recognized as straight. Then instead 
of measuring the distances between extremal points of two 
segments, we measure the distance between the extremal 
points of one segment and the line that the other segment 
lies upon (see Fig. 2). Such distances are used for defining 
the merging cost as follows 

c, = 5 [ ( d b j 2  +(4q2] 
i=l 

In fact, the orientation of edges is usually less sensitive to 
fragmentation problems than their location in the 3D 
space [ 1,2]. 

3.2 Egomotion Refinment from Curved Contours 

As already said above, curved contours are used for 
improving the accuracy of the egomotion’s estimate. 
Although a matching process is required in this case too, 
this step is now simplified by the knowledge of a first 
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Fig. 2: evaluation of the merging cost of two 
straight 3D contours 
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approximation of the camera motion, determined from 
straight edges. In fact, by applying the pre-determined 
rigid motion to the set of curved edges, we can decide 
whether two curved edges are matched, depending on 
their global distance, which can be measured, with 
reference to Fig. 3, as 

1 - -(d( C,  C ) + d(  C , C)) d ,  - 3 
L. 

where 
1 

d ( C ,  C )  = - C d ( E , ,  C )  
N i  

The global cost function for motion refinement is of the 
form C=C,+kC,, where C, and C, are the merging costs 
associated to straight and curved contours, respectively, 
and k is weight for balancing the two contributes. 

4. Examples of Application 
The method has been extensively tested against 
convergence problems and has been applied to a series of 
trinocular acquisitions of real images in order to evaluate 
qualitatively and quantitatively the accuracy of the results 
and the speed of convergence. Furthermore, the 
performance of the proposed method has been compared 
with that of a previously studied method [6,7] based on 
point correspondences between artificially added markers. 
Quantitative results have been obtained by measuring the 
maximum thickness of the bundles of edges when 
superimposing different sets of them with the estimated 
motion parameters. The performance of the proposed 
method has been proven to be equal to or better than that 
of the point-based approach, resulting in a maximum 
bundle size of about 100 ppm in all tests (after merging all 
3D edges coming from 20 multi-views). 

In Figs. 3 and 4, results on 3D data merging are 
reported for two different objects in both cases of 
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Fig. 3: 3D curve matching: evaluation of the 
distance between two polylines 

egomotion estimated through point and line 
correspondences. In the first case the cost function is a 
rigidity constraint based on the distance between 
reconstructed 3D points of different 3D data sets. Such 
points are markers that have been artificially added to the 
scene (white dots placed on the object’s support). In the 
second case the egomotion is computed with the method 
proposed in this paper. Even though no artificially added 
markers have been used for the estimation, the accuracy of 
the estimate is comparable with that obtained through 
point-matching. 

5. Conclusions 

In this paper we proposed a method for estimating the 
motion of a calibrated multiocular camera system from the 
multi-views of the scene to be reconstructed. The method 
is based on the analysis of luminance edges for 
performing both partial reconstruction and egomotion 
retrieval. Motion estimation is performed in such a way to 
best fuse the 3D data extracted from the available multi- 
views. In particular, straight 3D lines are used for 
determining a first approximation of the egomotion, which 
is then refined by using curved 3D contours. The method 
has been tested over a variety of real scenes, proving its 
performance comparable with what can be done with 3D 
point-matching on artificially added markers. 
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Fig. 4: From top to bottom: view of the original 
object; fusion of all 3D edge sets through point 
correspondence; fusion of all 3D edge sets 
through 3D contour matching. 

Fig. 5: From top to bottom: view of the original 
object; fusion of all 3D edge sets through point 
correspondence; fusion of all 3D edge sets 
through 3D contour matching. 
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