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Abstract 
We propose a general and robust solution to the problem 
of close-range 3 0  reconstruction of objects from stereo 
correspondence of luminance profiles. The method does 
not require a particular camera geometry, and can be 
implemented with an arbitraly number of CCD cameras. 
Its robustness can be mainly attributed to the physicality 
of the matching process, which is pe$ormed in the 3 0  
space, while taking both geometric and radiometric 
distortions into account. Extensive tests have been 
performed over a variety of real scenes, using a 
calibrated trinocular camera system. 

Introduction 
A crucial problem of many stereometric methods for the 
automatic measurement and reconstruction of close-range 
objects is the robustness of the matching process between 
homologous features. 

The image features that are usually considered for 
stereo matching are luminance edges and luminance 
patches. These two types of features tend to provide 
information of a rather different nature. Edge matching is 
generally very accurate and reliable, but it usually 
generates a sparse set of 3D data. Conversely, the 
matchinghack-projection of the luminance profile of 
small image patches tends to provide much denser sets of 
3D points but it is rather sensitive to the unavoidable 
viewer-dependent perspective and radiometric distortions, 
therefore this approach tends to be less stable and reliable. 

The approach we propose in this paper represents a 
general and robust solution to the problem of 3D 
reconstruction from stereo correspondence of luminance 
patches. The method is largely independent on the camera 
geometry, and employs a calibrated [1,2] set of three or 
more standard TV-resolution CCD cameras, which 
provides enough redundancy for removing possible 
matching ambiguities. The robustness of the approach can 
be attributed to the physicality of the matching process, 
which is actually performed in the 3D space rather than on 

the image plane. In order to do so, besides the 3D location 
of the surface patches, it estimates their local orientation 
in 3D space as well, so that the geometric distortion of the 
luminance patch can be included in the model. Finally, the 
method takes into account the viewer-dependent 
radiometric distortion. 

Preliminaries 
In this paper the camera is modeled basically as a 

pure perspective projection onto an image plane to which 
a nonlinear stretching is applied in order to take the 
geometric distortion of the optics into account. The 
relationship u=Px between image coordinates UE c,? and 
object coordinates X E ~  is linear projective and is 
specified by a rank-3 projection matrix P of the form 

P = I  ra - r,O 

where rl, r2 and r3 are the rows of the rotation matrix R 
that describes the orientation of the camera frame in world 
coordinates. 

Two projective views of the same point in 3D space, 
are bound to comply with the so-called “epipolar” (or 
“essential”) constraint, according to which the two optical 
rays (lines that connect the object point with the optical 
centers of the two projective cameras) are coplanar. Let 

coordinates of a point XE@, as seen by two projective 
cameras, assuming that their projection matrices are PC1) 
and P(2), respectively. The essential constraint can be 
written as 

( U ( ~ ) ) ‘ E ~ ~ U ( ~ )  = 0 , 

u(’)=P(’)x~ & and u(~)=P(~)xE 9 be the projective 

where 
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is called essential matrix, R21 and T21 are the rotation 
matrix and the translation vector (in skew-symmetric 
matrix form) that describe the change of reference frame 
between camera 1 to camera 2. The essential constraint 
remains valid also when di) are scaled in such a way for 
its first two components to become image coordinates. 
When considering n views, the epipolar constraint can be 
applied pairwise to the image coordinates of homologous 
points U''), d2), . . ., dn) as follows 

( u ( i ) ) T ~ q U ( ~ )  = o , i, j=1, ..., n, i > j .  

This property can be used as a form of point-wise multi- 
ocular invariance, for checking on the correctness of a 
matching between image features. 

Area matching requires a comparison between the 
actual luminance profile of a patch with the one that we 
obtain by transferring luminance profiles of other views 
through a specific 3D surface model. Let S be a surface 
patch in object space, obtained by back-projecting a 
reference image patch of any of the views onto the plane 
sTx=O, and let 5') be its i-th view. The transfer of 
projective coordinates from the j-th view to the i-th view 
through the plane sTx=O, can be expressed as a 
homography (an invertible linear projective 
transformation) of the form 

U") = M,(s)u(" = 0 , 

where MO (s) is a 3 by 3 matrix which depends on the 
parameters of the plane over which the patch lies. This 
homography allows us to express the luminance transfer 
from the j-th view to the i-th view as 

zj i ) (u( i ) )  = g j i ) Z ( i ) ( M j i ( ~ ) ~ ( i ) )  + A':) 

where g(i)j is a correction factor (gain) that 
accounts for electrical differences in the camera 
sensors, while A(Qj is an additive radiometric 
correction (offset) which accounts for non- 
Lambertian effects of the surface reflectivity 
(reflection's migration with the viewpoint). Notice 
that the Lambertian component of the surface 
reflectivity does not appear in the above 
expression as it is the same for all views. 

Area Matching 
As the object surface is unknown, verifying whether two 
image regions are homologous can be a rather difficult 

task, which requires to take the geometry of the projective 
cameras into account, and to cope with possible matching 
ambiguities through proper invariance constraints. In 
order to be able to find homologous regions on the views 
of a multi-camera system with arbitrary geometry, we 
need to take the perspective distortion of the image region 
into account. In order to do so, we can perform area 
matching in object space rather than on the images. 

Our approach to 3D area matching consists of 
modeling the object's surface as a patchwork of smaller 
surfaces, each of which is determined through a matching 
of luminance profiles of homologous image regions in 
different views. The determination of the position and the 
orientation of a 3D patch is done in such a way to 
maximize a similarity measure (correlation) between the 
actual view within the image patch and a transferred 
version of the other views through the 3D patch. 

Let us consider a patch S in object space, which lies 
on a certain parametric surface. This patch is a good 
approximation of the object surface when the the back- 
projection of the luminance profiles onto the 3D patch are 
maximally similar. 

The similarity function can be either computed on the 
planar surface in 3D space, or on one of the retinal planes. 
In this last case we need to characterize the luminance 
transfer from view to view. As already seen in the 
previous Section, the transfer between points in different 
views, can be easily modeled when the patch is planar. 
This choice is reasonable as the surface can be assumed as 
being smooth enough to be well-described by its tangent 
bundle. Therefore, if the surface patch is small enough, 
we can choose the parametric surface that it lies upon to 
be planar and we can characterize the luminance transfer 
as done in the previous Section. We will thus look 
simultaneously for position and orientation of a locally 
planar 3D patch that originated the corresponding image 
areas. 

Let us assume that the portion of the object surface 
d that we want to reconstruct is being imaged by a set of 
projective cameras that actually see the whole surface 
without occlusions. In order to determine the tangent 
bundle of the imaged portion of M we need to find a way 
of scanning its surface. Such an operation can be easily 
performed with reference to any of the available views. In 
fact, scanning the image with an image patch of pre- 
determined shape and size corresponds to scanning the 
visible portion of the manifold M. 

In order to determine the local surface patch that 
maximizes the similarity between actual image and its 
transferred version from the other views we minimize a 
MSE-like cost function of the form 

C(S, p) = 7, y, cy (s)  
i j>i 

where 
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mean square error associated to the transfer from cameraj 
top camera i, s is the vector that characterizes the plane 
that the patch lies on, and p is a vector of parameters that 
includes gains and offsets (radiometric corrections) that 
appear in the expression of the luminance transfer. 
Minimizing this cost function corresponds to looking for 
the solution that best satisfies (intrinsically) the 
multiocular invariance constraint of the previous Section, 
provided that a minimum number of three cameras is 
being employed. This justifies the fact that a trinocular 
camera systems largely outperforms a binocular system in 
terms of matching correctness [3,4]. 

As a general rule, we need to make sure that the 
maximum size of the patch is small enough to guarantee a 
limited error on the texture distortion. This choice, 
however, depends on the degree of smoothness of the 
surface to be reconstructed. 

The above area matching process is based on the 
minimization of a highly nonlinear cost function, therefore 
we can expect the process to be rather incline to terminate 
in correspondence to relative minima. In order to avoid 
this problem, we can adopt several strategies, depending 
on the type of surface to be reconstructed. 
The simplest strategy consists of starting from an initial 
guess of the surface shape, which helps the minimization 
process converge to a global minimum and dramatically 
speeds up the matching process thanks to a drastic 
reduction of the size of the search space. 

When no initial information on the 3D structure of 
the surface is available at all, we can adopt a blind 
strategy whose robustness is paid for by a reduction of 
computational efficiency. The method consists of 
performing area matching many times (with narrow 
thresholds), every time starting from a different one of 
many parallel planes that regularly slice the whole 
object's volume. At the end of the process we can merge 
all the estimates and perform surface interpolation. 

In some cases the surface geometry is such that a 
multi-resolution approach can be adopted for 3D 
reconstruction without any initial information on the 
object surface. In these cases, we can perform an initial 
area matching with relatively large surface patches. After 
locating the surface patches in object space, we can 
perform surface interpolation [5]  and obtain a first rough 
approximation of the object surface. At this point the area 
matching process can start over with a smaller patch size 
and a reduced search space. 

Examples of Application 
Some experiments of 3D scene reconstruction have been 
carried out on several test scenes. The first test we 
performed was for measuring the accuracy of the 
reconstruction of a flat textured object, placed at about 1.2 
m of distance from the camera system. The surface 
reconstruction resulted to be flat with 0.1 mm of standard 
deviation. 

Another reconstruction experiment concerned a stone 
of the Roman Amphitheater of Aosta, Italy. Also in this 
case, a quantitative evaluation of the quality of the results 
has been possible: we found that our reconstruction results 
agreed with the measurements taken with classical photo- 
rammetric methods. In Fig. 2 one of the original views of 
the object is shown. In Fig. 3 the points extracted through 
area matching are seen from a different viewpoint. In Fig. 
4 a virtual view of the object after surface interpolation 
and texture mapping has been obtained. 

Fig. 1 : Trinocular acquisition system. 

Fig. 2: one of the views of a stone of the Roman 
Amphitheater of Aosta (fiducial marks added for 
photogrammetric comparison) 
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Fig. 3: a perspective view of the 3D points 
extracted through area-matching 

Conclusions 
In this article we proposed and illustrated a general and 
robust approach to the problem of close-range 3D 
reconstruction of objects from stereo-correspondence of 
luminance profiles. The method is independent on the 
geometry of the acquisition system which could be a set of 
n cameras with strongly converging optical axes. The 
robustness of the approach can be mainly attributed to the 
physicality of the matching process, which is virtually 
performed in the 3D space. In fact, both 3D location and 
local orientation of the surface patches are estimated, so 
that the geometric distortion can be accounted for. The 
method takes into account the viewer-dependent 
radiometric distortion as well. 
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