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Abstract: Signal decimation aimed at optimal 
spectral packing has a variety of applications in 
areas ranging from array processing to image 
processing. The authors propose and discuss a 
new method for determining the decimation grid 
and prefilter that best fit the spectral extension of 
any 2-D signal defined on an arbitrary sampling 
lattice. The method first quantifies the spectral 
anisotropy through the determination of the 
principal axes of the power spectrum, then it 
selects among all possible decimation grids those 
that are compatible with the spectral extension 
shaped on the ‘inertia’ ellipse. Finally, for each of 
them it geometrically constructs the ideal prefilter 
whose convex passband best encircles this spectral 
extension. A final selection is thus made among 
the available sublatticeiprefilter pairs according to 
some specific criterion. The method, implemented 
in a fully automatic computer procedure, has 
been tested over several digital images to evaluate 
its performance in terms of the impact of the 
spectral truncation on the overall quality of the 
reconstructed images. 

I Introduction 

Sampling multidimensional analogue signals causes 
their spectrum to replicate over a regular point struc- 
ture whose density is inversely proportional to the sam- 
pling density. The ‘degree of sparseness’ of the spectral 
replicas can be thought of as a measure of the ‘ineff- 
ciency’ of the sampling process (spectral vedundancy). 
Minimising the gap among spectral replicas is known 
to reduce information redundancy [I], which would 
definitely be useful in a variety of applications that 
range from from array processing [2, 31 (radar sonar 
and seismic) to image processing [l,  4-61, Spectral 
packing through decimation is not an easy task as it 
consists not just of a rational selection of data samples, 
but it also needs a careful spectral truncation for avoid- 
ing aliasing. To perform antialiasing prefiltering, know- 
ing the area of the spectral extension (spectral 
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occupancy), is not sufficient: we also need to consider 
its shape. 

To be able to reduce spectral redundancy through 
decimation, the first problem encountered is that of 
generating all possible sublattices of an assigned ovder 
(density reduction ratio). Given a sampling lattice, the 
number of possible distinct decimation grids of a given 
order is finite, although it increases very rapidly with 
the order. It should thus be clear that, to be able to 
make an appropriate selection of the subgrid according 
to the speciral properties of the signal, not only do we 
need to define and estimate the spectral extension of 
the signal but also we need some criteria for limiting 
the search space of candidate sublattices by ruling out 
those that do not meet some specific conditions on the 
spectral extension. 

Another nontrivial problem is that of deciding upon 
a definition of spectral extension that could be fruit- 
fully used, not just for the selection of the decimation 
grid, but also for the design of the antialiasing filter. 
Actually, the spectral energy of nonsynthetic 2-D sig- 
nals usually occupies regions with a quite irregular and 
complex shape [6],  which makes the optimal design of a 
prefilter very difficult. It is important to note, however, 
that the spectral extension may be defined and esti- 
mated according to the class of prefilters adopted for 
decimation purposes. More specifically, if the class of 
prefilters in which we are interested is restricted to 
those that have convex passband we do not need a 
detailed description of the spectral extension shape. In 
fact only the direction around which the spectral 
energy is maximally concentrated and a measure of the 
energy dispersion about it needs to be determined. This 
way of quantifying the anisotropy of the spectral distri- 
bution corresponds to approximating the spectral 
extension with an ellipse whose shape is decided by the 
ratio between the inertia moments of the power spec- 
trum, while it size is chosen according to the severity of 
the spectral truncation that we are willing to apply. 

Restricting the class of prefilters to those having a 
convex passband region, that is, adopting a second- 
order model for the spectral extension, seems quite a 
reasonable choice since it allows us to detect the domi- 
nant direction over which high frequency portions of 
the 2-D signal are most concentrated, and to adopt 
decimation grids that exhibit a higher density of sam- 
ples in that specific direction. According to our experi- 
ence, any further extension of the class of prefilters 
used would only modestly improve the quality of the 
signal reconstructed after decimation, and would not 
justify the heavy complications that would arise 
from it. 
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A method for jointly and automatically determining 
a decimation grid and prefilter for two-dimensional dis- 
crete signals defined on arbitrary lattices is proposed 
and tested. The first step consists of estimating the 
principal axes of the power spectrum. From these the 
maximum decimation order is computed as the ratio 
kMAx between the area of one period of the spectrum 
of the original signal and that of the spectral ellipse 
(i.e. an ellipse whose axes are proportional to the iner- 
tia axes). Among all possible decimation grids of order 
k s kMAX (which can be automatically catalogued using 
a Hermite-basis representation) we select those that are 
compatible with the elliptical spectral extension. In 
other words, only the decimation grids that do not give 
rise to aliasing between elliptic truncations of the spec- 
tral extension of the signal are kept. If there are no 
compatible decimation grids of a certain order, then 
the search among grids of lower order must be 
repeated until some compatible grids are found. For 
each compatible decimation grid an ideal prefilter is 
generated by following a geometric approach, and the 
best decimation grid is selected according to some spe- 
cific criterion. For example, we may choose the sublat- 
tice which is associated to the prefilter that has the 
most uniformly distributed gap between the ellipse and 
the border of the passband region. 

The technique proposed in this article has been 
implemented in a fully automatic computer procedure 
and applied to a variety of 2-D test signals. To make 
the examples of application as intuitive and visual as 
possible, the signals used are nonsynthetic images, each 
having different spectral properties. It is important to 
emphasise that although in the examples of application 
considered the signals originally are defined on rectan- 
gular grids, the proposed decimation technique works 
equally well on signals defined on nonseparable lattices, 
as no specific hypotheses on their structure are 
required. 

The following Section includes all the basic informa- 
tion that is needed for the comprehension of the con- 
cepts discussed thereafter. In particular, a brief 
summary of the properties of sampling lattices and sub- 
lattices is included together with a review of concepts 
of Fourier analysis on lattice structures. Readers who 
are already fainiliar with the theory of sampling lattices 
may ignore this Section, while those who would like a 
more complete introduction to lattice structures, may 
refer to [2, 4, 5 ,  7, SI. To facilitate reading, a glossary 
of terms is provided in the Appendix (Section 7.1). 

2 Mathematical preliminaries 

To approach the decimation problem in a general way, 
we need a class of regular point sets with sufficient 
algebraic structure to be able to define the Fourier 
transform and, thus, to perform spectral analysis. Such 
sampling structures are called lattices [2, 4, 7 ,  SI, and 
are characterised by the property of being invariant 
with respect to the translation [7]. 

2. I Lattices and sublattices 
The M-dimensional lattice A generated by a nonsingu- 
lar matrix A E RM is defined as 

A = LAT(A) = {x E R”Ix = An, n E Z’} 
which is the set of all possible linear combinations, 
with integer coefficients of the M linearly independent 
vectors (basis of the lattice) represented by the columns 
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of A. Each basis generates a unique lattice, while a lat- 
tice may have several bases. 

Given a basis A, it is possible to derive all other 
bases of the lattice A = LAT(A), by using the fact that 
the generic basis A’ can always be written as A‘ = AU, 
where U E ZM is a unimodular matrix, that is, an inte- 
ger matrix whose determinant has absolute value equal 
to one (see Appendix, Section 7.2). As a consequence, 
all bases of a lattice must have the same modulus (abso- 
lute value of its determinant). The modulus d(A) of a 
lattice A has a meaningful geometric interpretation, 
which is related to the definition of its fundamental cell. 

A fundamental cell S of an M-dimensional lattice A 
is a (nonnecessarily connected) closed region of RM 
such that the collection SA {S + a, a E A} of all shifted 
version of S on all points of the lattice tiles the whole 
space RM without overlappings between distinct trans- 
lations. It is not difficult to verify that there exist infi- 
nite fundamental cells for a single lattice, but their 
hypervolume is always the same. Since the hyperparal- 
lelogram P corresponding to the vectors of the basis A 
is a fundamental cell of the lattice A = LAT(A) and its 
volume is equal to d(A), we conclude that d(A) is the 
volume of all fundamental cells of A, therefore l/d(A) 
can be interpreted as a measure of the lattice density. 
The fundamental cell is very important in problems of 
multidimensional sampling and interpolation, and 
some of its properties will be extensively used in the 
following Section. Unfortunately, there exist no general 
geometric classifications of all possible fundamental 
cells of a given lattice. The only results that are availa- 
ble in the literature concern convex cells [8] and are 
particularly simple in the two-dimensional case, in 
which case the only convex regions that tile R2 are par- 
allelograms and hexagons with central symmetry. 

The concept of sublattice is particularly important for 
the decimation problem. The decimation grids consid- 
ered here are, in fact, sublattices of the original sam- 
pling grid A, that is, subsets of A that have a lattice 
structure. To be able to select a suitable sampling grid 
for a given digital signal, it is of paramount importance 
to be able to classify and generate all possible sublat- 
tices of a given order, that is, those that have a preas- 
signed decimation ratio. 

Given an M-dimensional lattice A = LAT(A), the lat- 
tice r = LAT(B) is a sublattice of A if and only if there 
exists a nonsingular integer matrix H such that B = 
AH. This result [9] is particularly important as it pro- 
vides us with a method for analytically generating all 
sublattice bases. The integer number Idet(H)/ = /det(B)// 
/det(A)I represents the ratio between the densities of A 
and r, and is often referred to as the index of r in A. 
This number, which is also written as (A : r), corre- 
sponds to what we have already called the decimation 
ratio from A to r. Note, however, that a lattice may 
have several bases, therefore the above result is not 
enough for classification purposes. The problem of 
automatically generating all kth order sublattices of a 
given M-dimensional lattice A = LAT(A), however, has 
already been solved [6] and corresponds to finding a 
partition of the set W {W E R, : W AK, K E Z , , <  into 
distinct classes W, each of which identifies a unique 
sublattice. To do so, we can look for a partition of the 
set ZM,k into distinct classes IC, of right-equivalent 
matrices. More specifically, we would like each class IC, 
to univocally determine a sublattice T, = LAT(W,) of A 
through the relationship W, = AK, K E IC,. According 
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to the Hermite normal form theorem (see Appendix, 
Section 7.2) each class of right-equivalent matrices of 
Z , , ,  contains one and only one matrix in Hermite 
normal form. Consequently, all kth order sublattices of 
A = LAT(A) will be given by rl = LAT(W,), where W, 
= AH,, H, E %H,,k, where %M,k is the set of integer 
matrices in Hermite normal form whose determinant is 
equal to k. 

The number of distinct kth order sublattices of a 
given lattice A corresponds to the number of distinct 
matrices in Hermite normal form with determinant k ,  
that is, on the number of possible integer factorisations 
of k. Such a number increases very rapidly with the 
decimation index k (and the dimension of A). For 
example, there exist 9 1 distinct sixth-order sublattices 
of a 3-D lattice while, in the 2-D case, the number 
drops down to 12. 

2.2 Fourier transform 
The Fourier transform pair is defined on a lattice A = 
LAT(A) as 

U(f) = u(x)e-J2XfTX 
x t A  

= U(An)epJ2.'rfTAn , f E R "  
nEZ" 

u(An) = 1 det(A)/ U(f)e32XfTAn d f ,  n E 2" (1) 

The Fourier transform U(f ,  is periodic andits periodic- 
ity centres are given by the reciprocal lattice [4, 91) A* = 
LAT(A-2) = {y E RM: y'x E 2, x E A}. The Fourier 
transform U(f> is thus completely specified by its values 
in any fundamental cell P of A*. 

b 

2.3 Decimation and interpolation 
In the multidimensional case several different subgrids 
having the same decimation ratio are available. This 
fact is a source of complications with respect to the 
one-dimensional case, but it also offers greater freedom 
in the decimation setup. Additional complications are 
caused by the fact that for a single decimation grid 
there exists a nonnumerable multitude of antialiasing 
filters, which can always be chosen in such a way to 
favour some spectral regions instead of others. To 
understand the reason of this increased freedom, we 
need operators that will be extensively used in the fol- 
lowing Sections: the ideal interpolator and the decima- 
tor. 

The interpolation can be thought of as the cascade of 
an elementary interpolator (zero interleaving) and a fil- 
ter. More specifically, the elementary interpolation of a 
signal s(x), from rl = LAT(A1) to r2 = LAT(A2), rl 
being a sublattice of r2, is defined as w(x) = s(x) for x 
E rl, and w(x) = 0 for x E r2 but x rl. It is not dif- 
ficult to verify [4] that W(f)  = S(f), which means that 
the ideal interpolation does not affect the Fourier 
transform but just the periodicity lattice which is now 

Decimating U from F1 = LAT(A1) to T2 = LAT(A2), 
where r2 is now a sublattice of rl (i.e. r2 C rl, and 
A,-' A2 = M unimodular) returns the signal v(x) = ~(x), 
x E lr2. In this case the relationship between Fourier 
transforms [4] turns out to be 

r2*. 

Z being any rl*-period of rq, and (r, : I?,) = (det(M)( 
the decimation factor. 

To be able to perfectly reconstruct a signal U defined 
on rl from its decimated version v on r2, that is, for 
the decimation to be invertible, it is necessary for the 
support of U(f)  to be con€ined inside some fundamental 
cell P2 of r;. In this case the reconstruction can be 
done by using the cascade of an ideal interpolator from 
r2 to rl and an ideal filter with frequency response 

As the impulse response of the filter is defined on rl, 
the frequency response H ( f )  will be a r,*-periodic func- 
tion of R2; therefore, it is sufficient to specify it in a 
rl*-period P2 of R2. 

3 Decimation approach 

According to the results summarised in Section 2, deci- 
mating a signal on a kth order sublattice causes its 
spectrum to replicate k - 1 times according to a geome- 
try which is completely specified by the reciprocal lat- 
tice of the decimation grid. Section 2 also showed what 
the requirements for a region of the frequency plane to 
become a fundamental cell of a specific lattice are, and 
how to use this information for designing an ideal pre- 
filter. What we need now is a strategy for approaching 
signal decimation problem in its globality. More specif- 
ically, as we are interested in reducing spectral redun- 
dancy, not only do we need a systematic strategy for 
modelling the spectral extension of a generic two- 
dimensional digital signal, but also we need to be able 
to interpret this information to make an optimal selec- 
tion of the decimation grid and, at the same time, to 
design the antialiasing filter that best fits the spectral 
extension. 

It is important to note that sublattice selection and 
prefilter design cannot be considered as two separate 
and independent steps. In fact, the shape of a 
fundamental cell to be used for designing the prefilter 
depends on the lattice structure, while the choice of 
lattice depends on the shape of cell with which to 
encircle the spectral extension. Designing prefilter and 
sublattice jointly, however, is not a simple problem, as 
the two operations cannot be done simultaneously. The 
method proposed here solves the problem by using all 
the information held about the spectral extension for 
drastically reducing the number of candidate subgrids 
to be considered and geometrically constructing a 
prefilter for each one of them. A final selection is then 
made according to some specific criterion. 

The scheme of Fig. 1 summarises the approach we 
propose for decimating two-dimensional signals. The 
first step consists of estimating the second-order spec- 
tral extension of the signal through the evaluation of 
the inertia axes of its power spectrum. We can then 
determine an upper bound for the index of the sublat- 
tices to choose among from the spectral occupancy of 
the estimated spectral ellipse. The maximum decima- 
tion index ko is the order from which to start looking 
for suitable decimation grids. 

Given a decimation order k ,  all distinct kth order 
sublattices are generated and, among them, all those 
that are noncompatible with the spectral extension, that 
is, those that cause spectral ellipses to overlap, are 
ruled out. If no compatible candidate subgrids can be 
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Fig. 1 Global upprouch to the decimation problem 

This Section addresses all the above-mentioned prob- 
lems, proposing a solution for each one of them. The 
proposed method can be organised in an automatic 
computer procedure. 

3. I Spectral extension estimation 
We have already seen in Section 2.3 that decimating a 
signal defined on a lattice causes replication of the 
already periodic spectrum of the signal. The number of 
replicas is equal to the decimation ratio and the geome- 
try of the resulting replicas depends on the decimation 
grid. It should be quite clear that to decimate the signal 
with a minimum loss of information the spectral exten- 
sion of the signal to be decimated must be determined. 
In other words, we should estimate a spectral region 
that contains the most significant information on the 
original signal. Such a region will be used later on for 
the selection of a decimation grid and an antialiasing 
filter that do not cause overlapping between spectral 
replicas. 

In this Section a definition of spectral extension of a 
2-D digital signal is given and a parametric model that 
simplifies its estimation is proposed. Then, we show 
how to estimate the parameters of the spectral exten- 
sion model from the analysis of the 2-D signal. Finally, 
we show how to determine an upper limit to the deci- 
mation ratio from the analysis of the estimated spectral 
extension. 

3. I. I Spectral extension model: The spectral 
extension of a 2-D discrete signal u(x), x E A, can be 
simply defined as 

E, = {f E P : IU(f)I > s > O} (4) 
that is, the portion of one A"-period P of R2 where the 
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magnitude of the spectrum U(f> of u(x) exceeds an 
assigned threshold S. The bandwidth, or spectral occu- 
pancy of U can thus be defined as B = area(E), and its 
normalised value e = area(E)/area(P). 0 < e < 1, can be 
used as an index of the spectral efficiency. 

When dealing with nonsynthetic signals such as 2-D 
images, the definition (eqn. 4) of spectral extension 
usually produces sets E that are quite complex in shape. 
In fact, irregular or even scattered regions [6] are usu- 
ally obtained. In practice, it is extremely difficult to 
determine decimation grids and relative fundamental 
cells that best encircle spectral extensions such as those 
obtained through eqn. 4. The spectral energy of non- 
synthetic 2-D signals, however, is normally concen- 
trated near the origin and its distribution is often 
limited to a connected region of the frequency plane. 
These two facts suggest that it would be wise to make 
some simplifying assumptions on the structure of the 
prefilter that we wish to design. It is thus reasonable to 
restrict the class of prefilters in which we are interested 
to those that have a compact and convex passband 
region. In fact, as explained in Section 2.1, the only 
convex regions that tile R2 are parallelograms and hex- 
agons with central symmetry. Therefore, we no longer 
need information on the spectral extension shape which 
is as detailed as that provided by eqn. 4. We simply 
need to determine the direction around which the spec- 
tral energy is maximally concentrated (principal axis) 
and to measure of the energy dispersion about that 
axis. In other words a second-order model of the spec- 
tral energy distribution is sufficient. Quantifying the 
anisotropy of the spectral distribution through a sec- 
ond-order model corresponds to approximating the 
spectral extension with an ellipse whose shape is 
decided by the inertia moments of the power spectrum 
while its size is chosen according to the severity of the 
spectral truncation that we are willing to apply. 

3.1.2 Estimation of the spectral extension: Any 
nonsynthetic discrete 2-D signal u(x), x E A, has a lim- 
ited region of support Q C R2, therefore we may con- 
sider its Y-periodicised version uw(x), Y being some 
sublattice of A, so that the spectrum Uy(f)  of U,(:) 
results as being discrete over Y* and periodical over A . 
It should be quite clear that, if the Y-periodicisation is 
correct, then the frequency sampling associated to it 
does not cause any loss of information. It is thus possi- 
ble to derive all spectral information about the signal 
u(x) through DFT computation. 

To estimate the second-order spectral extension asso- 
ciated to the power spectrum S(f) = lU(f)I2, the energy 
distribution about its symmetry centre is computed the 
same way we would proceed with computing the mass 
distribution of a body. More specifically, we can think 
of the power spectrum samples as masses characterised 
by a certain location on the frequency plane. The sec- 
ond-order model provides an indication of how the 
energy is distributed on the frequency plane. Such a 
model is based on the determination of the principal 
inertia axes d1 and d2 and the relative radii of gyration 
pl and p2 of the power spectral samples. The axes d1 
and d2 are determined from the eigenvectors of the 
inertia matrix (matrix of the inertia moments), while 
the radii p1 = dI1lM and p2 = d121M depend on the 
principal inertia moments I1 and I2 (eigenvalues of the 
inertia matrix) and the total energy A4 of the 2-D 
signal. 
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With respect to the reference frame (d l ,  d2), the iner- 
tia ellipse is described by the equation p t  d? + p$ d j  = 
1 therefore the second-order model of the spectral 
extension is a set of the form 

where r is a scaling factor for the radii of gyration, to 
be chosen in order for the spectral ellipse (eqn. 5 )  to 
contain the most significant portion of the power 
spectrum (e.g. by selecting a threshold for the signal 
energy included in the ellipse). The spectral occupancy 
of the signal, that is, the area A = nplp2/r2 of the 
spectral ellipse, provides us with an upper bound for 
the index k of the sublattices that could be used for 
decimating the signal. In fact, we must have k s kO, 
where ko is the largest integer which is not greater than 
area(P)/A and P is any fundamental cell the reciprocal 
sampling lattice. 

3.2 Design of prefilter and decimation grid 
Now that the maximum decimation ratio ko is availa- 
ble, all kth order sublattices with k c: k0 are required to 
be determined. We have already seen in Section 2 that 
such a problem can be solved by generating all matri- 
ces in Hermite normal form that have determinant 
equal to k. In this Section we show how to use the 
spectral extension estimate for designing sublattice and 
prefilter according to the global scheme proposed at 
the beginning of Section 3. 

3.2. I Compatible sublattices: Given the elliptical 
spectral extension of a 2-D signal defined on the lattice 
A, a method for deciding whether a sublattice r is com- 
patible with it, that is, whether the spectral replicas 
generated by the r-decimation of the signal overlap, is 
required. 

The first step consists of determining the k points of 
the reciprocal lattice r* that fall inside one A*-period of 
R2. These points correspond to the centres of replica- 
tion of the original spectrum. In principle, the compati- 
bility check should test whether any two replicas of the 
spectral extension overlap. In practice, because of the 
algebraic properties of lattices, it is sufficient to check 
that the replica placed at the origin of the frequency 
plane overlaps with none of the others. This can be 
done by determining the limit-region for the replication 
centres beyond which no overlapping occurs and mak- 
ing sure that all points of the reciprocal lattice of the 
subgrid fall outside it. 

Since the spectral extension model is elliptical, the 
compatibility check is particularly simple. Given an 
ellipse, the curve described by the centres of all of its 
tangent replicas is itself an ellipse whose radii of gyra- 
tion are twice the ellipse's radii. Such a curve is also 
referred to as threshold ellipse E, and its equation is 
( 2 ~ ~ ) ~ d f  + ( 2 ~ ~ ) ~ d j  = r2. 

A sublattice r is compatible with the spectral exten- 
sion of  a 2-D digital signal if none of the replicas over- 
lap with the original extension, that is, if all points of 
I?*, lie outside the threshold ellipse. Letting (a,  b) be the 
coordinates of the generic point of I?*, referred to the 
principal axes of the ellipse (see Fig. 2), the compatibil- 
ity check becomes 

The compatibility check explained above allows us to 
determine a restricted set of candidates for the decima- 
tion as follows: 

( 2 ~ 1 ) ~ ~ ~  + (2p2)'b2 > r 2  (6) 
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(i) Let k = ko 
(ii) Find all kth order sublattices of A and their recipro- 
cal lattices as follows: 

a find all distinct matrices H, E 3-12,k 
b compute the bases of all kth order sublattices as B, 
= AH, 
c compute the reciprocal bases 5,* = (5,)-T. 

(iii) For each basis B;, check the condition (eqn. 6) for 
the eight points that are closest to the origin. 
(iv) If there are no compatible sublattices then k - 
k ~ 1 and go back to step (ii), else stop. 

Fig.2 Construction of the pre$lter 
The hexagon is given by the intersection between the two triangles {P,, P3, P s }  
and {P2, P4, Ps} built on the six closest points of the lattice. The threshold 
ellipse 5 for checking the compatibility is also shown 

3.2.2 Prefilter geometry: All compatible subgrids 
are already good candidates for decimation, although 
we need a criterion for deciding between them. Since 
the choice of decimation grid is strongly influenced by 
the shape of the passband region of the prefilter (fun- 
damental cell of the reciprocal of the sublattice), to be 
able to decide among the compatible subgrids a fast 
method for generating a fundamental cell that 'well fits' 
the spectral extension, for each compatible sublattice, is 
required. More specifically, the compact and convex 
fundamental cells that we seek must enclose the ellipti- 
cal spectral extension entirely, and the principal direc- 
tions of the prefiltered spectrum must be as close as 
possible to those of the original spectrum. 

In general, there exists a nonnumerable multitude of 
fundamental cells for a sublattice, and the arbitrariness 
of their shape is sufficient to make the search extremely 
difficult. Restricting the class of fundamental cells to 
the convex class, however, greatly simplifies the situa- 
tion. According to Section 2, all convex fundamental 
cells of a two-dimensional lattice are hexagons with 
central symmetry. A method for determining a hexago- 
nal fundamental cell of a given compatible sublattice, 
which entirely encircles the elliptical spectral extension, 
is described in Fig. 2. The method consists of determin- 
ing the six points of r* that lie the closest to the thresh- 
old ellipse and building two triangles by using two 
triplets of alternate points. as shown in Fig. 2. The 
desired hexagon will be the intersection of such two tri- 
angles. 

The fundamental cell obtained can be used for con- 
structing both the antialiasing and the reconstruction 
filters. Both will have a passband region that resembles 
the fundamental cell determined above. The shape of 
the resulting fundamental cells tends to capture the 
spectral anisotropy in a natural fashion as the compati- 
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ble sublattices are selected using all the information we 
have on the spectral extension. 

Note that, for the above geometric procedure to be 
applicable, we shall assume that the threshold ellipse is 
entirely included in the fundamental cell of A*. This 
limitation however, is not very restrictive for the 2-D 
signals of interest. The proposed decimation procedure 
is worthwhile applying, only to signals that are not 
very efficiently sampled. 

3.2.3 Final selection of the decimation setup: 
The final step of the decimation procedure consists of 
choosing the best decimation setup among the compat- 
ible subgrid/prefilter pairs. Note that all the available 

must be made according to some criterion of optimality 
that takes into account, for example, some measure of 
the fitness between fundamental cell and spectral exten- 
sion. One must bear in mind, however, that the compu- 
tational complexity of the prefilter should be kept 
reasonably modest, and this can be done by making the 
transition band as uniform as possible. Of course such 
a criterion is rather arbitrary as the spectral extension 
is estimated through a second-order model. Thus, we 
do not have very precise information about its shape. 
Yet, different choices of compatible sublattices often 
give rise to cells that are quite different from each 
other. Therefore, such a criterion is well-justified. 

An operative way of proceeding with the application 
of the above criterion consists of selecting the sublattice 

axis of the power spectral distribution. More precisely, 
we can choose the prefilter that minimises the angle 
between the principal axis of the nonprefiltered spec- 
trum and that of the prefiltered spectrum. 
The proposed criterion, however, is not the only one 
possible. For example, a choice could be made accord- 
ing to some other criterion that takes into account 
computational load and memory requirements of the 
resulting filter implementation. For example, choosing 
hexagons that have one side of negligible length would 
simplify the implementation. 

candidates are good, therefore the choice Fig.4 Po 

whose prefilter has minimum impact On the principal Fig.5 Estimated spectral extension andprefilter for test image 1 

Fig.6 
decimation basis vI = (5 OIT, v, = ( 2  3IT 

Spectrum of test image I after decimation with the 15th order 

4 Examples of application 

As already mentioned in Section 1, the search for a 
decimation grid and the generation of a prefilter 
according to the method proposed in this article has 
been implemented into a completely automatic compu- 
ter procedure and tested over a series of real images. 
Considering that the 2-D test signals selected are 
images, a few remarks on the quality of the reconstruc- 

Fig.3 Original test image 1 tion are in order. 
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The ideal prefilter obtained with the proposed 
method is characterised by sharp transitions at the bor- 
der of the passband region. Abrupt spectral truncation, 
however, may give rise to undesired ‘ringing’ effect 
which is highly visible as it results in artifacts that are 
parallel to the image edges. (It is well-known that our 
visual system is sensitive to noise and disturbance in a 
highly anisotropic way [lo]. For example, a disturbance 
that is parallel to edges is much more visible than one 
that is perpendicular to it.) In principle, a prefilter 
should be designed taking into account the impulse 
response as well as the frequency response [1 1, 121. In 
practice, for the extent of this article, it is sufficient to 
smooth the transitions of the hexagonal prefilter in 
their implementation. 

A first example of application is represented by test 
image 1, ‘Lenna’, shown in Fig. 3. The spectrum of this 
image, reported in Fig. 4, exhibits a certain anisotropy, 
which is made quite visible by the elliptical spectral 
extension of Fig. 5, and can mainly be attributed to the 
prevalence of detail introduced by the brim of the hat. 
The principal axes of the elliptical spectral extension 
have been chosen to be 3.5 times the inertia axes of the 
power spectrum samples. The maximum order of deci- 
mation in which some compatible sublattices can be 
found is k = 15. Among the hexagonal fundamental 
cells (built by using the method of Section 3.2.2) that 
are associated to all compatible 15th order sublattices, 
the one whose principal axes are closest to those of the 
elliptical spectral extension is chosen to define the pass- 
band region of the image prefilter (see Fig. 5), while the 
relative sublattice, whose basis is given by 

H =  [i i ] ,  Idet(H)1=15 

is the corresponding decimation grid. 
At this point the image can be prefiltered through 

spectral windowing by using a smoothened version of 
the ideal prefiltered obtained above. Decimating the 
image over the selected subgrid causes the truncated 
power spectrum to replicate like in Fig. 6 where it is 
quite apparent how the elongation of the power spec- 
trum due to the prevalence of some edges aligned along 
a specific direction, causes subgrid and prefilter to pre- 
serve the spectrum in that direction. 

Fig.7 Reconstructed test image 1 
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a 

b 

Fig.8 
mation basis v ~ (5 0JT, v2 = &3JT 
a Zoomed-in ddtail of original image 
b Zoomed-in detall of reconstructed image 

Reconstruction results or test image I with the 15th order deci- 

The same filter used for avoiding aliasing is here used 
for reconstructing the original image from the deci- 
mated one. The reconstruction results of test image 1 
are reported in Fig. 7. A comparison between corre- 
sponding zoomed-in details of original and recon- 
structed images are shown in Fig. 8a and b. As we can 
see, the blurring due to the low-pass antialiasing filter- 
ing is still acceptable, considering the reduction of 15 
times in the amount of samples that are actually being 
used for describing the image itself. Another recon- 
struction example is shown in figs. 9-12 and Figs. 13 
and 14a, b. In this case the spectral extension exhibits a 
different orientation in the spectral anisotropy. 
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Fig. 9 Original test image 2 

f2 t 

Fig. 10 Power spectrum of original test image 2 (log scale) 

f z  t 

Fig. 11 Estimated spectral extension and prefilter for test image 2 

5 Conclusions 

This paper has presented a new technique for decimat- 
ing discrete 2-D signals, which is capable of considera- 
bly reducing the spectral redundancy while suppressing 
the least amount of spectral energy. Spectral character- 
istics of the signal, such as spectral extension shape and 
spectral occupancy, are taken into account for deter- 
mining both decimation grid and antialiasing filter. In 
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Fig.72 
decimation bash v, = (3  O l T ,  v, = [ I  4IT 

Spectrum of test image 2 after decimation with the 12th order 

particular, the spectral extension has been modelled as 
a second-order energy distribution through its principal 
axes and inertia moments of the power spectrum. This 
choice corresponds to approximating the spectral 
energy distribution with an ellipse, whose principal axes 
correspond to the radii of gyration of the spectrum, 
and allows us to considerably simplify the structure of 
the prefilter. As a consequence, the procedure for 
jointly designing subgrid and prefilter becomes purely 
geometrical and of immediate application. 

We have implemented our decimation technique into 
a fully-automated computer procedure which, after 
having analysed the spectral content of a discrete 2-D 
signal, generates all sublattices that are compatible with 
its spectral extension, finds the corresponding funda- 
mental cells, and selects the prefilterhbgrid pair that 
best fits the estimated spectral extension. 

The proposed method has been shown to be quite 
effective for reducing the spectral redundancy of a 2-D 
signal. After having applied it on a series of test images 
with various spectral content, we have shown that we 
can typically reach decimation ratios that range from 
10 to 20 with an acceptable loss of quality after recon- 
struction. It should be quite clear, however, that the 2- 
D signals that are appropriate the most for the pro- 
posed decimation technique are those whose spectral 
extension is well-described by a second-order model. 
Signals with more complex spectral content might give 
rise to a more modest results in the reconstruction 
quality. For example, the method might not perform at 
its best with signals having a noncompact spectrum. 
Nevertheless, the ideas presented in this article might 
be adapted to different spectral geometries by modify- 
ing the spectral extension model and the geometrical 
procedure for synthesising the relative prefilter. 

To estimate the second-order spectral extension asso- 
ciated to a 2-D signal the technique proposed in this 
article needs to perform the computation of a two- 
dimensional FFT. The computational load associated 
to this operation is quite heavy: therefore, it would be 
worth investigating the possibility of estimating the 
spectral extension through the analysis of the signal 
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Fig. 13 Reconstructed test image 2 

a 

b 
Fig. 14 
mation basis v i  =, (3 O]T,,v2 E [I 4IT 
a Zoomed-in detail of original image 
b Zoomed-in detail of reconstructed image 
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Reconstruction resultsfor test image 2 with the 12th order deci- 

rather than that of its Fourier transform. One solution 
that we are currently investigating uses the projection- 
slice theorem for estimating the spectrum extension 
model through a limited number of 1D FFTs. We are 
also working on the implementation of the hexagonal 
filters as the cascade of three properly rotated one- 
dimensional low-pass filters. 

Note that the proposed method analyses the signal in 
whole, as if it were stationary. Only uniform decima- 
tion grids are, in fact, considered. The assumption of  
stationariety, however, is generally not correct for 
images, for which it would be better to assume region- 
wise stationariety. Indeed, it is reasonable to expect a 
region-wise adaptive implementation of the algorithm 
to outperform the proposed one. The derivation of a 
region-wise implementation, however, would involve a 
number of problems, such as those that filtering opera- 
tions would cause in the proximity of region borders, 
or those connected with the estimation of the spectral 
extension parameters in irregular regions of small size. 
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7 Appendix 

7.1 Glossary 
2, Q, R = sets of integer, rational and real ele- 

ZM, QM, RM = M x M matrices with integer, rational 

Ai,j 

A-T = = transposed of the inverse of 

z , n  

%f,n = set of matrices of  Z , ,  in Hermite 

ments, respectively 

and real elements, respectively 
= (i, j)th element of the matrix A 

the matrix A 
= {A E Z M ,  Idet(A)I = n }  

normal form 
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7.2 Hermite normal form 
A nonsingular matrix A E ZM is said to be unimodular 
if A-' E 2,. The necessary aud sufficient condition for 
A to be unimodular is Jdet(A)J = 1. Two matrices A, B 
E 2, are said to be right-equivalent if there exists a 
unimodular matrix V E 2, such that B = AV. Left- 
equivalence is similarly defined. Two matrices A, B E 
ZM arc said to be equivalent if there exist two unimod- 
ular matrices U, V E 2, such that B = UAV. 

Two equivalent (or just right/left-equivalent) matrices 
always have the same modulus (absolute value of their 
determinant). As a consequence, given a positive inte- 
ger n, it is always possible to uniquely subdivide the set 
Z , ,  = {A E Z,, Idet(A)/ = n }  into equivalence classes. 
The set of equivalence classes represents a partition of 

Definition I :  A matrix A E Z , ,  is said to be in Her- 
mite normal form [13] if 
(i) A is upper triangular 
(ii) A ,  2 0 
(iii) A y  < Aii, 1 5 i < j s M ,  if Aii # 0 
(iv) Aii = 0 if A ,  = 0. 

The number of distinct matrices of Z , , ,  in Hermite 
normal form is thus given by the sum of all possible 
distinct integer factorisations of n. 
Theorem 1 (Hermite normal form theorem): Every 
nonsingular matrix of ZM is the right-equivalent of one 
and only one matrix in Hermite normal form. 

Such result [13] is of fundamental importance as it 
implies that each class of right-equivilents in Z , ,  
contains a unique matrix in Hermite normal form. 


