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Abstract: Signal decimation aimed at optimal
spectral packing has a variety of applications in
areas ranging from array processing to image
processing. The authors propose and discuss a
new method for determining the decimation grid
and prefilter that best fit the spectral extension of
any 2-D signal defined on an arbitrary sampling
lattice. The method first quantifies the spectral
anisotropy through the determination of the
principal axes of the power spectrum, then it
selects among all possible decimation grids those
that are compatible with the spectral extension
shaped on the ‘inertia’ ellipse. Finally, for each of
them it geometrically constructs the ideal prefilter
whose convex passband best encircles this spectral
extension. A final selection is thus made among
the available sublattice/prefilter pairs according to
some specific criterion. The method, implemented
in a fully automatic computer procedure, has
been tested over several digital images to evaluate
its performance in terms of the impact of the
spectral truncation on the overall quality of the
reconstructed images.

1 Introduction

Sampling multidimensional analogue signals causes
their spectrum to replicate over a regular point struc-
ture whose density is inversely proportional to the sam-
pling density. The ‘degree of sparseness’ of the spectral
replicas can be thought of as a measure of the ‘ineffi-
ciency’ of the sampling process (spectral redundancy).
Minimising the gap among spectral replicas is known
to reduce information redundancy [1], which would
definitely be useful in a variety of applications that
range from from array processing [2, 3] (radar sonar
and seismic) to image processing [I, 4-6]. Spectral
packing through decimation is not an easy task as it
consists not just of a rational selection of data samples,
but it also needs a careful spectral truncation for avoid-
ing aliasing. To perform antialiasing prefiltering, know-
ing the area of the spectral extension (spectral
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occupancy), is not sufficient: we also need to consider
its shape.

To be able to reduce spectral redundancy through
decimation, the first problem encountered is that of
generating all possible sublattices of an assigned order
(density reduction ratio). Given a sampling lattice, the
number of possible distinct decimation grids of a given
order is finite, although it increases very rapidly with
the order. It should thus be clear that, to be able to
make an appropriate selection of the subgrid according
to the speciral properties of the signal, not only do we
need to define and estimate the spectral extension of
the signal but also we need some criteria for limiting
the search space of candidate sublattices by ruling out
those that do not meet some specific conditions on the
spectral extension.

Another nontrivial problem is that of deciding upon
a definition of spectral extension that could be fruit-
fully used, not just for the selection of the decimation
grid, but also for the design of the antialiasing filter.
Actually, the spectral energy of nonsynthetic 2-D sig-
nals usually occupies regions with a quite irregular and
complex shape [6], which makes the optimal design of a
prefilter very difficult. It is important to note, however,
that the spectral extension may be defined and esti-
mated according to the class of prefilters adopted for
decimation purposes. More specifically, if the class of
prefilters in which we are interested is restricted to
those that have convex passband we do not need a
detailed description of the spectral extension shape. In
fact only the direction around which the spectral
energy 1s maximally concentrated and a measure of the
energy dispersion about it needs to be determined. This
way of quantifying the anisotropy of the spectral distri-
bution corresponds to approxnnatmg the spectral
extension with an ellipse whose shape is decided by the
ratio between the inertia moments of the power spec-
trum, while it size is chosen according to the severity of
the spectral truncation that we are willing to apply.

Restricting the class of prefilters to those having a
convex passband region, that is, adopting a second-
order model for the spectral extension, seems quite a
reasonable choice since it allows us to detect the domi-
nant direction over which high frequency portions of
the 2-D signal are most concentrated, and to adopt
decimation grids that exhibit a higher density of sam-
ples in that specific direction. According to our experi-
ence, any further extension of the class of prefilters
used would only modestly improve the quality of the
signal reconstructed after decimation, and would not
justify the heavy complications that would arise
from it.
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A method for jointly and automatically determining
a decimation grid and prefilter for two-dimensional dis-
crete signals defined on arbitrary lattices is proposed
and tested. The first step consists of estimating the
principal axes of the power spectrum. From these the
maximum decimation order is computed as the ratio
karax between the area of one period of the spectrum
of the original signal and that of the spectral ellipse
(i.e. an ellipse whose axes are proportional to the iner-
tia axes). Among all possible decimation grids of order
k = kyrux (which can be automatically catalogued using
a Hermite-basis representation) we select those that are
compatible with the elliptical spectral extension. In
other words, only the decimation grids that do not give
rise to aliasing between elliptic truncations of the spec-
tral extension of the signal are kept. If there are no
compatible decimation grids of a certain order, then
the search among grids of lower order must be
repeated until some compatible grids are found. For
each compatible decimation grid an ideal prefilter is
generated by following a geometric approach, and the
best decimation grid is selected according to some spe-
cific criterion. For example, we may choose the sublat-
tice which is associated to the prefilter that has the
most uniformly distributed gap between the ellipse and
the border of the passband region.

The technique proposed in this article has been
implemented in a fully automatic computer procedure
and applied to a variety of 2-D test signals. To make
the examples of application as intuitive and visual as
possible, the signals used are nonsynthetic images, each
having different spectral properties. It is important to
emphasise that although in the examples of application
considered the signals originally are defined on rectan-
gular grids, the proposed decimation technique works
equally well on signals defined on nonseparable lattices,
as no specific hypotheses on their structure are
required.

The following Section includes all the basic informa-
tion that is needed for the comprehension of the con-
cepts discussed thereafter. In particular, a brief
summary of the properties of sampling lattices and sub-
lattices is included together with a review of concepts
of Fourier analysis on lattice structures. Readers who
are already fainiliar with the theory of sampling lattices
may ignore this Section, while those who would like a
more complete introduction to lattice structures, may
refer to [2, 4, 5, 7, 8]. To facilitate reading, a glossary
of terms is provided in the Appendix (Section 7.1).

2 Mathematical preliminaries

To approach the decimation problem in a general way,
we need a class of regular point sets with sufficient
algebraic structure to be able to define the Fourier
transform and, thus, to perform spectral analysis. Such
sampling structures are called /lattices [2, 4, 7, 8], and
are characterised by the property of being invariant
with respect to the translation [7].

2.1 Lattices and sublattices
The M-dimensional lattice A generated by a nonsingu-
lar matrix A € RM is defined as

A=LAT(A) ={x€ RM|x = An,n € ZM}
which is the set of all possible linear combinations,

with integer coefficients of the M linearly independent
vectors (basis of the lattice) represented by the columns

IEE Proc.-Vis. Image Signal Process., Vol. 144, No. 2, April 1997

of A. Each basis generates a unique lattice, while a lat-
tice may have several bases.

Given a basis A, it is possible to derive all other
bases of the lattice A = LAT(A), by using the fact that
the generic basis A’ can always be written as A’ = AU,
where U € Z,, 1S a unimodular matrix, that is, an inte-
ger matrix whose determinant has absolute value equal
to one (see Appendix, Section 7.2). As a consequence,
all bases of a lattice must have the same modulus (abso-
lute value of its determinant). The modulus d(A) of a
lattice A has a meaningful geometric interpretation,
which is related to the definition of its fundamental cell.

A fundamental cell S of an M-dimensional lattice A
is a (nonnecessarily connected) closed region of RM
such that the collection S, {S + a, a € A} of all shifted
version of & on all points of the lattice tiles the whole
space RM without overlappings between distinct trans-
lations. It is not difficult to verify that there exist infi-
nite fundamental cells for a single lattice, but their
hypervolume is always the same. Since the hyperparal-
lelogram P corresponding to the vectors of the basis A
is a fundamental cell of the lattice A = LAT(A) and its
volume is equal to d(A), we conclude that d(A) is the
volume of all fundamental cells of A, therefore 1/d(A)
can be interpreted as a measure of the lattice density.
The fundamental cell is very important in problems of
multidimensional sampling and interpolation, and
some of its properties will be extensively used in the
following Section. Unfortunately, there exist no general
geometric classifications of all possible fundamental
cells of a given lattice. The only results that are availa-
ble in the literature concern convex cells [8] and are
particularly simple in the two-dimensional case, in
which case the only convex regions that tile R? are par-
allelograms and hexagons with central symmetry.

The concept of sublattice is particularly important for
the decimation problem. The decimation grids consid-
ered here are, in fact, sublattices of the original sam-
pling grid A, that is, subsets of A that have a lattice
structure. To be able to select a suitable sampling grid
for a given digital signal, it is of paramount importance
to be able to classify and generate all possible sublat-
tices of a given order, that is, those that have a preas-
signed decimation ratio.

Given an M-dimensional lattice A = LAT(A), the lat-
tice I' = LAT(B) is a sublattice of A if and only if there
exists a nonsingular integer matrix H such that B =
AH. This result [9] is particularly important as it pro-
vides us with a method for analytically generating all
sublattice bases. The integer number |det(H)| = |det(B)|/
Idet(A)| represents the ratio between the densities of A
and T, and is often referred to as the index of T' in A.
This number, which is also written as (A : I'), corre-
sponds to what we have already called the decimation
ratio from A to I'. Note, however, that a lattice may
have several bases, therefore the above result is not
enough for classification purposes. The problem of
automatically generating all kth order sublattices of a
given M-dimensional lattice A = LAT(A), however, has
already been solved [6] and corresponds to finding a
partition of the set W {W € R, : W AK, K € Z,, into
distinct classes W, each of which identifies a unique
sublattice. To do so, we can look for a partition of the
set Zy into distinct classes K; of right-equivalent
matrices. More specifically, we would like each class K;
to univocally determine a sublattice I'; = LAT(W)) of A
through the relationship W, = AK, K € K. According
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to the Hermite normal form theorem (see Appendix,
Section 7.2) each class of right-equivalent matrices of
Zyry contains one and only one matrix in Hermite
normal form. Consequently, all kth order sublattices of
A = LAT(A) will be given by I'; = LAT(W,), where W,
= AH; H; € H,,, where H,; is the set of integer
matrices in Hermite normal form whose determinant is
equal to k.

The number of distinct kth order sublattices of a
given lattice A corresponds to the number of distinct
matrices in Hermite normal form with determinant k,
that is, on the number of possible integer factorisations
of k. Such a number increases very rapidly with the
decimation index k (and the dimension of A). For
example, there exist 91 distinct sixth-order sublattices
of a 3-D lattice while, in the 2-D case, the number
drops down to 12.

2.2 Fourier transform

The Fourier transform pair is defined on a lattice A =
LAT(A) as

Uf) = > ulx)e 92

xEA

= Z u(An)e’j%fTAn,

nezM

MAM:\@MANLU@%MWA%m nezM (1)

fe RM

The Fourier transform U(f) is periodic and its periodic-
ity centres are given by the reciprocal lattice [4, 9]) A" =
LAT(A™) = {y € RM:. y'x € Z, x € A}. The Fourier
transform U(f) is thus completely specified by its values
in any fundamental cell P of A”.

2.3 Decimation and interpolation

In the multidimensional case several different subgrids
having the same decimation ratio are available. This
fact is a source of complications with respect to the
one-dimensional case, but it also offers greater freedom
in the decimation setup. Additional complications are
caused by the fact that for a single decimation grid
there exists a nonnumerable multitude of antialiasing
filters, which can always be chosen in such a way to
favour some spectral regions instead of others. To
understand the reason of this increased freedom, we
need operators that will be extensively used in the fol-
lowing Sections: the ideal interpolator and the decima-
tor.

The interpolation can be thought of as the cascade of
an elementary interpolator (zero interleaving) and a fil-
ter. More specifically, the elementary interpolation of a
signal s(x), from I'y = LAT(A,) to T, = LAT(A,), T
being a sublattice of Ty, is defined as w(x) = s(x) for x
€T, and w(x) = 0 for x € T, but x & I';. It is not dif-
ficult to verify [4] that W(f) = S(f), which means that
the ideal interpolation does not affect the Fourier
transform but just the periodicity lattice which is now
T,

Decimating u from Ty = LAT(A;) to T, = LAT(A,),
where I'; is now a sublattice of '} (l.e. I', C I'j, and
A" A, = M unimodular) returns the signal »(x) = #(x),
x € I,. In this case the relationship between Fourier
transforms [4] turns out to be

XKﬂ:ZE%ﬁJZ;U&+a) @)
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7 being any I',"-period of I,", and (I} : Ty) = |det(M)|
the decimation factor.

To be able to perfectly reconstruct a signal u defined
on Iy from its decimated version v on I's, that is, for
the decimation to be invertible, it is necessary for the
support of U(f) to be confined inside some fundamental
cell P, of T,". In this case the reconstruction can be
done by using the cascade of an ideal interpolator from
I, to I'; and an ideal filter with frequency response

o (Fltrg) ,fEPQ
1) = {§ P p, ©

As the impulse response of the filter is defined on Ty,
the frequency response H(f) will be a T'}*-periodic func-
tion of R?; therefore, it is sufficient to specify it in a
I',"-period P, of R

3 Decimation approach

According to the results summarised in Section 2, deci-
mating a signal on a kth order sublattice causes its
spectrum to replicate k£ — 1 times according to a geome-
try which is completely specified by the reciprocal lat-
tice of the decimation grid. Section 2 also showed what
the requirements for a region of the frequency plane to
become a fundamental cell of a specific lattice are, and
how to use this information for designing an ideal pre-
filter. What we need now is a strategy for approaching
signal decimation problem in its globality. More specif-
ically, as we are interested in reducing spectral redun-
dancy, not only do we need a systematic strategy for
modelling the spectral extension of a generic two-
dimensional digital signal, but also we need to be able
to interpret this information to make an optimal selec-
tion of the decimation grid and, at the same time, to
design the antialiasing filter that best fits the spectral
extension.

It is important to note that sublattice selection and
prefilter design cannot be considered as two separate
and independent steps. In  fact, the shape of a
fundamental cell to be used for designing the prefilter
depends on the lattice structure, while the choice of
lattice depends on the shape of cell with which to
encircle the spectral extension. Designing prefilter and
sublattice jointly, however, is not a simple problem, as
the two operations cannot be done simultaneously. The
method proposed here solves the problem by using all
the information held about the spectral extension for
drastically reducing the number of candidate subgrids
to be considered and geometrically constructing a
prefilter for each one of them. A final selection is then
made according to some specific criterion.

The scheme of Fig. 1 summarises the approach we
propose for decimating two-dimensional signals. The
first step consists of estimating the second-order spec-
tral extension of the signal through the evaluation of
the Inertia axes of its power spectrum. We can then
determine an upper bound for the index of the sublat-
tices to choose among from the spectral occupancy of
the estimated spectral ellipse. The maximum decima-
tion index k; is the order from which to start looking
for suitable decimation grids.

Given a decimation order k, all distinct kth order
sublattices are generated and, among them, all those
that are noncompatible with the spectral extension, that
is, those that cause spectral ellipses to overlap, are
ruled out. If no compatible candidate subgrids can be
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found then the search will be repeated among sublat-
tices of an inferior order. For each compatible sublat-
tice, we geometrically generate the fundamental cell
that best fits the elliptical spectral extension. A selec-
tion of the best sublattice-cell pair call finally be per-
formed among the remaining candidates according to
some specific criterion.

estimate
spectral
extension

|

compute
decimation
order k=kg

generate all
compatible kth
order sublattices

l

generate a pretilter
for each compatible
subgrid

|

select the best
prefilter/grid pair

|

Fig.1 Gilobal approach to the decimation problem

This Section addresses all the above-mentioned prob-
lems, proposing a solution for each one of them. The
proposed method can be organised in an automatic
computer procedure.

3.1 Spectral extension estimation

We have already seen in Section 2.3 that decimating a
signal defined on a lattice causes replication of the
already periodic spectrum of the signal. The number of
replicas is equal to the decimation ratio and the geome-
try of the resulting replicas depends on the decimation
grid. It should be quite clear that to decimate the signal
with a minimum loss of information the spectral exten-
sion of the signal to be decimated must be determined.
In other words, we should estimate a spectral region
that contains the most significant information on the
original signal. Such a region will be used later on for
the selection of a decimation grid and an antialiasing
filter that do not cause overlapping between spectral
replicas.

In this Section a definition of spectral extension of a
2-D digital signal is given and a parametric model that
simplifies its estimation is proposed. Then, we show
how to estimate the parameters of the spectral exten-
sion model from the analysis of the 2-D signal. Finally,
we show how to determine an upper limit to the deci-
mation ratio from the analysis of the estimated spectral
extension.

3.1.1 Spectral extension model: The spectral
extension of a 2-D discrete signal u(x), x € A, can be
simply defined as

E.={feP: |UK)|>S>0} 4)
that is, the portion of one A*-period P of R? where the
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magnitude of the spectrum U(f) of u(x) exceeds an
assigned threshold S. The bandwidth, or spectral occu-
pancy of u can thus be defined as B = area(£), and its
normalised value e = area(&)/area(P), 0 < e < 1, can be
used as an index of the spectral efficiency.

When dealing with nonsynthetic signals such as 2-D
images, the definition (eqn. 4) of spectral extension
usually produces sets £ that are quite complex in shape.
In fact, irregular or even scattered regions [6] are usu-
ally obtained. In practice, it is extremely difficult to
determine decimation grids and relative fundamental
cells that best encircle spectral extensions such as those
obtained through eqn. 4. The spectral energy of non-
synthetic 2-D signals, however, is normally concen-
trated near the origin and its distribution is often
limited to a connected region of the frequency plane.
These two facts suggest that it would be wise to make
some simplifying assumptions on the structure of the
prefilter that we wish to design. It is thus reasonable to
restrict the class of prefilters in which we are interested
to those that have a compact and convex passband
region. In fact, as explained in Section 2.1, the only
convex regions that tile R* are parallelograms and hex-
agons with central symmetry. Therefore, we no longer
need information on the spectral extension shape which
is as detailed as that provided by eqn. 4. We simply
need to determine the direction around which the spec-
tral energy is maximally concentrated (principal axis)
and to measure of the energy dispersion about that
axis. In other words a second-order model of the spec-
tral energy distribution is sufficient. Quantifying the
anisotropy of the spectral distribution through a sec-
ond-order model corresponds to approximating the
spectral extension with an ellipse whose shape is
decided by the inertia moments of the power spectrum
while its size is chosen according to the severity of the
spectral truncation that we are willing to apply.

3.1.2 Estimation of the spectral extension: Any
nonsynthetic discrete 2-D signal u(x), x € A, has a lim-
ited region of support Q C R, therefore we may con-
sider its W-periodicised version wuy(x), ¥ being some
sublattice of A, so that the spectrum Ug(f) of wuy(x)
results as being discrete over W and periodical over A”.
It should be quite clear that, if the W-periodicisation is
correct, then the frequency sampling associated to it
does not cause any loss of information. It is thus possi-
ble to derive all spectral information about the signal
u(x) through DFT computation.

To estimate the second-order spectral extension asso-
ciated to the power spectrum S(f) = |U(f)]?, the energy
distribution about its symmetry centre is computed the
same way we would proceed with computing the mass
distribution of a body. More specifically, we can think
of the power spectrum samples as masses characterised
by a certain location on the frequency plane. The sec-
ond-order model provides an indication of how the
energy is distributed on the frequency plane. Such a
model is based on the determination of the principal
inertia axes d; and d, and the relative radii of gyration
p; and p, of the power spectral samples. The axes d,
and d, are determined from the eigenvectors of the
inertia matrix (matrix of the inertia moments), while
the radii p; = VI,/M and p, = VI,/M depend on the
principal inertia moments I; and I, (eigenvalues of the
inertia matrix) and the total energy M of the 2-D
signal.
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With respect to the reference frame (d;, d,), the iner-
tia ellipse is described by the equation pf d? + p#d} =
1 therefore the second-order model of the spectral
extension is a set of the form

AE+RB<e @
where r is a scaling factor for the radii of gyration, to
be chosen in order for the spectral ellipse (eqn. 5) to
contain the most significant portion of the power
spectrum (e.g. by selecting a threshold for the signal
energy included in the ellipse). The spectral occupancy
of the signal, that is, the area A = mp,p,/r* of the
spectral ellipse, provides us with an upper bound for
the index & of the sublattices that could be used for
decimating the signal. In fact, we must have &k =< k,
where k is the largest integer which is not greater than
area(P)/A and P is any fundamental cell the reciprocal
sampling lattice.

3.2 Design of prefilter and decimation grid
Now that the maximum decimation ratio % is availa-
ble, all kth order sublattices with k = kq are required to
be determined. We have already seen in Section 2 that
such a problem can be solved by generating all matri-
ces in Hermite normal form that have determinant
equal to k. In this Section we show how to use the
spectral extension estimate for designing sublattice and
prefilter according to the global scheme proposed at
the beginning of Section 3.

3.2.1 Compatible sublattices: Given the elliptical
spectral extension of a 2-D signal defined on the lattice
A, a method for deciding whether a sublattice I' is com-
patible with it, that is, whether the spectral replicas
generated by the I'-decimation of the signal overlap, is
required.

The first step consists of determining the £ points of
the reciprocal lattice I' that fall inside one A*-period of
R?. These points correspond to the centres of replica-
tion of the original spectrum. In principle, the compati-
bility check should test whether any two replicas of the
spectral extension overlap. In practice, because of the
algebraic properties of lattices, it is sufficient to check
that the replica placed at the origin of the frequency
plane overlaps with none of the others. This can be
done by determining the limit-region for the replication
centres beyond which no overlapping occurs and mak-
mg sure that all points of the reciprocal lattice of the
subgrid fall outside it.

Since the spectral extension model is elliptical, the
compatibility check is particularly simple. Given an
ellipse, the curve described by the centres of all of its
tangent replicas is itself an ellipse whose radii of gyra-
tion are twice the ellipse’s radii. Such a curve is also
referred to as threshold ellipse &, and its equation is
Qppdt + Q2py)*ds =1

A sublattice T' is compatible with the spectral exten-
sion of a 2-D digital signal if none of the replicas over-
lap with the original extension, that is, if all points of
I'", lie outside the threshold ellipse. Letting (a, b) be the
coordinates of the generic point of T”, referred to the
principal axes of the ellipse (see Fig. 2), the compatibil-
ity check becomes

(201)%a® + (2p2)*0° > r? (6)
The compatibility check explained above allows us to

determine a restricted set of candidates for the decima-
tion as follows:
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(1) Let k = k.
(i1) Find all kth order sublattices of A and their recipro-
cal lattices as follows:

a find all distinct matrices H; € Hy

b compute the bases of all kth order sublattices as B;
= AH;

¢ compute the reciprocal bases B," = (B)™.

(iii) For each basis B;", check the condition (eqn. 6) for
the eight points that are closest to the origin.

(iv) If there are no compatible sublattices then k& <
k — 1 and go back to step (ii), else stop.

Fig.2 Construction of the prefilter

The hexagon is given by the intersection between the two triangles {P,, P3, Ps}
and {P,, P4, Pg} built on the six closest points of the lattice. The threshold
ellipse & for checking the compatibility is also shown

3.2.2 Prefilter geometry: All compatible subgrids
are already good candidates for decimation, although
we need a criterion for deciding between them. Since
the choice of decimation grid is strongly influenced by
the shape of the passband region of the prefilter (fun-
damental cell of the reciprocal of the sublattice), to be
able to decide among the compatible subgrids a fast
method for generating a fundamental cell that ‘well fits’
the spectral extension, for each compatible sublattice, is
required. More specifically, the compact and convex
fundamental cells that we seek must enclose the ellipti-
cal spectral extension entirely, and the principal direc-
tions of the prefiltered spectrum must be as close as
possible to those of the original spectrum.

In general, there exists a nonnumerable multitude of
fundamental cells for a sublattice, and the arbitrariness
of their shape is sufficient to make the search extremely
difficult. Restricting the class of fundamental cells to
the convex class, however, greatly simplifies the situa-
tion. According to Section 2, all convex fundamental
cells of a two-dimensional lattice are hexagons with
central symmetry. A method for determining a hexago-
nal fundamental cell of a given compatible sublattice,
which entirely encircles the elliptical spectral extension,
is described in Fig. 2. The method consists of determin-
ing the six points of T that lie the closest to the thresh-
old ellipse and building two triangles by using two
triplets of alternate points. as shown in Fig. 2. The
desired hexagon will be the intersection of such two tri-
angles.

The fundamental cell obtained can be used for con-
structing both the antialiasing and the reconstruction
filters. Both will have a passband region that resembles
the fundamental cell determined above. The shape of
the resulting fundamental cells tends to capture the
spectral anisotropy in a natural fashion as the compati-
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ble sublattices are selected using all the information we
have on the spectral extension.

Note that, for the above geometric procedure to be
applicable, we shall assume that the threshold ellipse is
entirely included in the fundamental cell of A”. This
limitation however, is not very restrictive for the 2-D
signals of interest. The proposed decimation procedure
is worthwhile applying, only to signals that are not
very efficiently sampled.

3.2.3 Final selection of the decimation setup:
The final step of the decimation procedure consists of
choosing the best decimation setup among the compat-
ible subgrid/prefilter pairs. Note that all the available
candidates are acceptably good, therefore the choice
must be made according to some criterion of optimality
that takes into account, for example, some measure of
the fimess between fundamental cell and spectral exten-
sion. One must bear in mind, however, that the compu-
tational complexity of the prefilter should be kept
reasonably modest, and this can be done by making the
transition band as uniform as possible. Of course such
a criterion is rather arbitrary as the spectral extension
is estimated through a second-order model. Thus, we
do not have very precise information about its shape.
Yet, different choices of compatible sublattices often
give rise to cells that are quite different from each
other. Therefore, such a criterion is well-justified.

An operative way of proceeding with the application

of the above criterion consists of selecting the sublattice
whose prefilter has minimum impact on the principal
axis of the power spectral distribution. More precisely,
we can choose the prefilter that minimises the angle
between the principal axis of the nonprefiltered spec-
trum and that of the prefiltered spectrum.
The proposed criterion, however, is not the only one
possible. For example, a choice could be made accord-
ing to some other criterion that takes into account
computational load and memory requirements of the
resulting filter implementation. For example, choosing
hexagons that have one side of negligible length would
simplify the implementation.

Fig.3 Original test image 1
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Fig.4 Power specirum of original test image 1 (log scale)

Fig.5 Estimated spectral extension and prefilter for test image I

Fig.6 Spectrum of test image ] aﬁer deumatlon with the 15th order
decimation basis v, = [5 0], vy = [23]T

4 Examples of application

As already mentioned in Section 1, the search for a
decimation grid and the generation of a prefilter
according to the method proposed in this article has
been implemented into a completely automatic compu-
ter procedure and tested over a series of real images.
Considering that the 2-D test signals sclected are
images, a few remarks on the quality of the reconstruc-
tion are in order.
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The ideal prefilter obtained with the proposed
method is characterised by sharp transitions at the bor-
der of the passband region. Abrupt spectral truncation,
however, may give rise to undesired ‘ringing’ effect
which is highly visible as it results in artifacts that are
parallel to the image edges. (It is well-known that our
visual system is sensitive to noise and disturbance in a
highly anisotropic way [10]. For example, a disturbance
that is parallel to edges is much more visible than one
that is perpendicular to it.) In principle, a prefilter
should be designed taking into account the impulse
response as well as the frequency response [11, 12]. In
practice, for the extent of this article, it is sufficient to
smooth the transitions of the hexagonal prefilter in
their implementation.

A first example of application is represented by test
image 1, ‘Lenna’, shown in Fig. 3. The spectrum of this
image, reported in Fig. 4, exhibits a certain anisotropy,
which is made quite visible by the elliptical spectral
extension of Fig. 5, and can mainly be attributed to the
prevalence of detail introduced by the brim of the hat.
The principal axes of the elliptical spectral extension
have been chosen to be 3.5 times the inertia axes of the
power spectrum samples. The maximum order of deci-
mation in which some compatible sublattices can be
found is &k = 15. Among the hexagonal fundamental
cells (built by using the method of Section 3.2.2) that
are associated to all compatible 15th order sublattices,
the one whose principal axes are closest to those of the
elliptical spectral extension is chosen to define the pass-
band region of the image prefilter (see Fig. 5), while the
relative sublattice, whose basis is given by

5 2
H=|g 5|, |det(H) =15
is the corresponding decimation grid.

At this point the image can be prefiltered through
spectral windowing by using a smoothened version of
the ideal prefiltered obtained above. Decimating the
image over the selected subgrid causes the truncated
power spectrum to replicate like in Fig. 6 where it is
quite apparent how the elongation of the power spec-
trum due to the prevalence of some edges aligned along
a specific direction, causes subgrid and prefilter to pre-
serve the spectrum in that direction.

Fig.7 Reconstructed test image 1
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Fig.8 Reconstruction results for test image 1 with the 15th order deci-
mation basis v, = [50]7, v, = [2 3]7

a Zoomed-in detail of original image

b Zoomed-in detail of reconstructed image

The same filter used for avoiding aliasing is here used
for reconstructing the original image from the deci-
mated one. The reconstruction results of test image 1
are reported in Fig. 7. A comparison between corre-
sponding zoomed-in details of original and recon-
structed images are shown in Fig. 8¢ and b. As we can
see, the blurring due to the low-pass antialiasing filter-
ing is still acceptable, considering the reduction of 15
times in the amount of samples that are actually being
used for describing the image itself. Another recon-
struction example is shown in figs. 9-12 and Figs. 13
and 14a, b. In this case the spectral extension exhibits a
different orientation in the spectral anisotropy.
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Fig.10  Power spectrum of original test image 2 (log scale)

Fig.11  Estimated spectral extension and prefilter for test image 2

5 Conclusions

This paper has presented a new technique for decimat-
ing discrete 2-D signals, which is capable of considera-
bly reducing the spectral redundancy while suppressing
the least amount of spectral energy. Spectral character-
istics of the signal, such as spectral extension shape and
spectral occupancy, are taken into account for deter-
mining both decimation grid and antialiasing filter. In

IEE Proc.-Vis. Image Signal Process., Vol. 144, No. 2, April 1997

Fig.12  Spectrum of test image 2 after decimation with the 12th order
decimation basis v, = [3 0]7, v, = [1 4]7

particular, the spectral extension has been modelled as
a second-order energy distribution through its principal
axes and inertia moments of the power spectrum. This
choice corresponds to approximating the spectral
energy distribution with an ellipse, whose principal axes
correspond to the radii of gyration of the spectrum,
and allows us to considerably simplify the structure of
the prefilter. As a consequence, the procedure for
jointly designing subgrid and prefilter becomes purely
geometrical and of immediate application.

We have implemented our decimation technique into
a fully-automated computer procedure which, after
having analysed the spectral content of a discrete 2-D
signal, generates all sublattices that are compatible with
its spectral extension, finds the corresponding funda-
mental cells, and selects the prefilter/subgrid pair that
best fits the estimated spectral extension.

The proposed method has been shown to be quite
effective for reducing the spectral redundancy of a 2-D
signal. After having applied it on a series of test images
with various spectral content, we have shown that we
can typically reach decimation ratios that range from
10 to 20 with an acceptable loss of quality after recon-
struction. It should be quite clear, however, that the 2-
D signals that are appropriate the most for the pro-
posed decimation technique are those whose spectral
extension is well-described by a second-order model.
Signals with more complex spectral content might give
rise to a more modest results in the reconstruction
quality. For example, the method might not perform at
its best with signals having a noncompact spectrum.
Nevertheless, the ideas presented in this article might
be adapted to different spectral geometries by modify-
ing the spectral extension model and the geometrical
procedure for synthesising the relative prefilter.

To estimate the second-order spectral extension asso-
ciated to a 2-D signal the technique proposed in this
article needs to perform the computation of a two-
dimensional FFT. The computational load associated
to this operation is quite heavy: therefore, it would be
worth investigating the possibility of estimating the
spectral extension through the analysis of the signal
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Fig.14  Reconstruction results for test image 2 with the 12th order deci-
mation basis v, = [3 0]7, v, = [T 4]7

a Zoomed-in detail of original image

b Zoomed-in detail of reconstructed image
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rather than that of its Fourier transform. One solution
that we are currently investigating uses the projection-
slice theorem for estimating the spectrum extension
model through a limited number of 1D FFTs. We are
also working on the implementation of the hexagonal
filters as the cascade of three properly rotated one-
dimensional low-pass filters.

Note that the proposed method analyses the signal in
whole, as if it were stationary. Only uniform decima-
tion grids are, in fact, considered. The assumption of
stationariety, however, is generally not correct for
images, for which it would be better to assume region-
wise stationariety. Indeed, it is reasonable to expect a
region-wise adaptive implementation of the algorithm
to outperform the proposed one. The derivation of a
region-wise implementation, however, would involve a
number of problems, such as those that filtering opera-
tions would cause in the proximity of region borders,
or those connected with the estimation of the spectral
extension parameters in irregular regions of small size.
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7 Appendix

7.1 Glossary

Z, 0, R = sets of integer, rational and real ele-
ments, respectively

Zr, Ous Ry = M x M matrices with integer, rational
and real elements, respectively

A;; = (i, )th element of the matrix A

AT = (A )T = transposed of the inverse of
the matrix A

Zyrn = {A € Zy,, |det(A)| = n}

Harn = set of matrices of Z,,, in Hermite

normal form

IEE Proc.-Vis. Image Signal Process., Vol. 144, No. 2, April 1997



7.2 Hermite normal form

A nonsingular matrix A € Z,, is said to be unimodular
if A™! € Z,,. The necessary aud sufficient condition for
A to be unimodular is |det(A)) = 1. Two matrices A, B
€ Z,r are said to be right-equivalent if there exists a
unimodular matrix V € Z,, such that B = AV. Left-
equivalence is similarly defined. Two matrices A, B €
Z,s arc said to be equivalent if there exist two unimod-
ular matrices U, V € Z,, such that B = UAV.

Two equivalent (or just right/left-equivalent) matrices
always have the same modulus (absolute value of their
determinant). As a consequence, given a positive inte-
ger n, it is always possible to uniquely subdivide the set
Zyn = {A € Zy, |det(A)] = n} into equivalence classes.
The set of equivalence classes represents a partition of
Zyrne

Definition I: A matrix A € Z,,, is said to be in Her-
mite normal form [13] if
(i) A is upper triangular
(i) 4,20
(i) Ay < Ay 1=i<jsM,if A;=0
(iv) 4;=0if 4; = 0.
The number of distinct matrices of Z,;,, in Hermite

normal form is thus given by the sum of all possible
distinct integer factorisations of x.
Theorem 1 (Hermite normal form theorem):. Every
nonsingular matrix of Z,, is the right-equivalent of one
and only one matrix in Hermite normal form.

Such result [13] is of fundamental importance as it
implies that each class of right-equivilents in Z,,,
contains a unique matrix in Hermite normal form.



