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Abstract

In this article we present a general and robust approach to the problem of close-range 3D reconstruction of objects
from stereo correspondence of luminance patches. The method is largely independent on the camera geometry, and can
employ an arbitrary number of CCD cameras. The robustness of the approach is due to the physicality of the matching
process, which is performed in the 3D space. In fact, both 3D location and local orientation of the surface patches are
estimated, so that the geometric distortion can be accounted for. The method takes into account the viewer-dependent
radiometric distortion as well. The method has been implemented with a calibrated set of three standard TV-resolution
CCD cameras. Experiments on a variety of real scenes have been conducted with satisfactory results. Quantitative and
qualitative results are reported. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the past decades we witnessed a proliferation of methods and algorithms for extracting information on
the 3D structure of a scene from a sequence or an n-tuple of its views. The automatic estimation and storage
of 3D information on objects and structures are, in fact, becoming more and more crucial in a broad range of
applications. In the field of cultural heritage, for example, the automatic 3D reconstruction of works of art is
becoming of paramount importance for purposes of restoration simulation and planning, analysis of the
environmental impact through erosion’s monitoring, creation of 3D catalogs, etc. The automatic creation of
CAD models is gaining more and more importance for architectural applications or industrial problems of
reverse engineering. Other industrial applications are obstacle avoidance for autonomous vehicle guidance in
cluttered environments, monitoring and quality control for improving the efficiency of production plants.
A wide variety of applications can also be found in the areas of telecommunications and entertainment, like
3D television, animation, etc.
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The numerous approaches to 3D scene reconstruction can differ a great deal from each other, depending
on the application that they are designed for and the type of scene to be reconstructed. For example, in
real-time robotic applications great importance is attributed to computational efficiency, robustness and
speed, while the environment is usually characterized by a certain geometrical regularity. In applications to
cultural heritage, conversely, speed becomes less important but the scene can be much more complex.
Furthermore, the reconstruction procedure is usually required to be non-invasive, i.e. to interact as least as
possible with the object which is being analyzed.

Among the various available non-invasive approaches to the problem of automatic close-range measure-
ment and reconstruction of object surfaces, some of the most popular ones are based on stereometric
principles and make use of two or more cameras. All such methods share a common framework, according to
which homologous primitives, i.e. stereo-corresponding object features, are detected, matched and back-
projected onto the object space.

The image primitives that are used the most for 3D reconstruction are points (fiducial marks), edges and
luminance patches. These types of features tend to provide information of a different nature. For example,
image edges are particularly suitable for 3D reconstruction because of the intrinsic precision and reliability of
their localization on the image [1]. Edge matching, however, can only generate sparse sets of 3D edges, as
they are concentrated where the object surface is jagged or highly textured. Conversely, the match-
ing/backprojection of the luminance profile of small image regions tends to provide us with much denser sets
of 3D points but it is rather sensitive to the unavoidable viewer-dependent perspective/radiometric distor-
tions, therefore this approach tends to be less stable and reliable.

In this paper we present a general and robust solution to the problem of 3D reconstruction from stereo
correspondence of luminance patches. The method is largely independent on the camera geometry, and can
employ an arbitrary number of standard TV-resolution CCD cameras. With three or more cameras, however,
we have enough redundancy for removing possible matching ambiguities. The robustness of the approach can
be mainly attributed to the physicality of the matching process, which is actually performed in the object space
rather than on the image plane. In order to do so, besides the 3D location of the surface patches, it estimates
their local orientation in 3D space as well, so that the geometric distortion of the luminance patch can be
included in the model. Finally, the method adopts a non-Lambertian radiometric model in order to take the
viewer-dependent radiometric distortion into account. In conclusion, the technique we propose in this article
performs a first-order reconstruction in the sense that it provides information on the tangent bundle of the
object surface, i.e. on both 3D coordinates and local orientation of the surface patches.

In Section 2, we summarize some facts from projective geometry that are used throughout the article. In
particular, a projective model of the camera, a radiometric description of the object surface and some facts
from the geometry of multiple views are briefly discussed. Section 3 is devoted to the characterization of the
process of backprojection of a luminance profile onto the object surface and its re-projection onto another
view. This whole operation is here described, under appropriate conditions, as a single mapping from view to
view, and takes into account both geometric and radiometric model of the object surface. The 3D area
matching problem is approached in Section 4. A definition for the correlation between an actual and
a corresponding transferred image is here provided and used. In Section 5 we describe the implementative
aspects of the 3D reconstruction system that we used for testing the 3D reconstruction strategy of Section 4.
The results of the proposed 3D reconstruction method and of its accuracy are presented in Section 6 for
a variety of real images. Section 7 contains conclusive considerations and proposals on future developments.
A list of symbols adopted in this article is also included.

2. Preliminaries

The tools that are used in this article are basically all from projective geometry. In this section we will
briefly summarize some fact and results that will prove useful in the following sections. The readers who are
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already familiar with projective geometry, may skip this part, while those who would like to know more
about it may refer, for example, to [1,7,13,15].

2.1. Projective spaces

The projective space Pn of dimension n is defined as the quotient space of Rn`1!0
n`1

, with respect to the
equivalence relation

x&x@ Q &cO0 : x@"cx.

Pn can thus be thought of as the set of all lines passing through the origin of Rn`1.
The coordinates of an object point can be given either in R3 or in P3. The projective (or homogeneous)

coordinates of a point of P3 are expressed as a quadruple of the form x"[x
1
, x

2
, x

3
, x

4
]T and, by definition,

can be arbitrarily scaled. As far as image points are concerned, they can be defined either on R2 or P2.
In general, when dealing with camera geometry, it is often convenient to work on P3 and P2 rather than

on R3 and R2, respectively. In fact, the camera models incorporates perspective projections, which are
conveniently modeled as projective transformations, i.e. transformations action on projective spaces.

A projective transformation acting on Pn is called a homography when it is linear (in projective coordi-
nates) and invertible. As a consequence, a homography is described by a non-singular matrix
H3R(n`1)C(n`1), that maps the point x onto the point x@"Hx. Homographies map any projective subspace
onto a projective subspace of the same dimension, and they form a transformation groupGL

n
, called general

linear group.
A point s3Pn can also define a hyperplane in Pn, which is given by all points x3Pn such that sTx"0.

Hyperplanes are subspaces of the projective space.

2.2. Projective cameras

The camera model adopted in this article is basically a pinhole to which a non-linear stretching of the
image plane is applied in order to take the geometric distortion of the optics into account. This camera model
can be completed with additional filtering, to account for the aperture of optics and CCD sensor. The model’s
bottleneck, however, is always the perspective projection, which will be the focus of this section.

A pinhole model performs a projection of the object point, through the optical center of the camera, onto
the retinal plane. The relationship between image and object coordinates is linear projective and is specified
by a rank-3 projection matrix P3R3C4,

u"Px, u3P2, x3P3. (1)

The projection matrix P can be easily derived from the geometry of the acquisition system. Let x3P3 and
x@3P3 be, respectively, the projective world coordinates and the projective camera coordinates of a point in
object space. Let O3R3 be the Euclidean world coordinates of the origin of the camera frame. The change of
reference frame from world coordinates to camera coordinates can be immediately written as

x@"T
8#

x, T
8#
"C

R !RO

0 0 0 1 D, (2)

R3SO(3) being the rotation matrix that describes the orientation of the camera frame in world coordinates.
Eq. (2) corresponds to the more familiar relationship X @"R(X!O), where X3R3 and X @3R3 are the
Euclidean coordinates of x and x@, respectively.
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Without loss of generality, the camera frame can be chosen in such a way that its origin O corresponds to
the optical center and that the x@

3
axis is perpendicular to the image plane. With this choice of camera

coordinates, the projection becomes purely perspective [15], therefore it can be performed by using the
matrix

T
13
"C

1 0 0 0

0 1 0 0

0 0 1/ f 0D ,
f being the focal length of the camera (distance between optical center and image plane).

In conclusion, the projection matrix P of Eq. (1) is given by

P"T
13

T
8#
"C

r
1

!r
1
O

r
2

!r
2
O

(1/f )r
3

!(1/f )r
3
OD , (3)

where r
1
, r

2
and r

3
are the rows of the rotation matrix R.

The projective image coordinates u"[u
1
, u

2
, u

3
]T can now be scaled in order to obtain the image

coordinates �"[u
1
/u

3
, u

2
/u

3
, 1]T, which are expressed, for example, in mm.

Notice that, in order to obtain pixel coordinates, we need to perform an extra 2D translation combined
with a scale change. This transformation can be chained to that of Eq. (3) as follows:

P
i
"T

i
P, T

i
"C

1/d
1

0 !t
1

0 1/d
2

!t
2

0 0 1 D ,
where the scale factors d

1
and d

2
represent the horizontal and vertical size of the pixel, respectively, while

t
1

and t
2

represent the offset of the principal point, i.e. of the intersection between image plane and optical
axis. The projective coordinates �M , obtained through normalization of uN "P

i
x, are in fact expressed in pixel.

In the above description, nothing is said about the geometrical distortions introduced by the optical
system. As a matter of fact, the predicted position of the projected point does not correspond to the actual
one because of lens distortion [2], which can be seen as non-linear stretching of the image plane. Image points
are, in fact, shifted from the perspective projection’s location depending on the position on the image plane.
Lens distortion is of crucial importance when dealing with applications of 3D measurement and reconstruc-
tion, and neglecting it may cause to serious reconstruction errors.

The shift introduced by lens distortion has a radial component and a tangential component with respect to
the principal point, which is the intersection between optical axis and image plane. In most cases, however,
the tangential component results as being negligible with respect to the radial one [12].

The magnitude of the shift due to radial distortion is quite a complex function of the position on the image
plane. The radial shift we need to apply to the image coordinates in order to obtain the undistorted
coordinates is most frequently expressed as a truncated power series of the form

r
6
"r

$
(1#k

3
r2
$
#k

5
r4
$
#2), (4)

where r
$

and r
6

are the distances from the principal point of the distorted and undistorted image points,
respectively. Usually, only the first one or two coefficients of Eq. (4) are considered, depending on the
application [29].
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Fig. 1. Projective camera model.

Fig. 2. Impact of the radial distortion on a square.

A global scheme of the adopted camera model is shown in Fig. 1.
Fig. 2 shows the impact of radial distortion on a square. Depending on the sign of the coefficients we

obtain a barrel or pin-cushion type of distortion.
In the following sections we will assume that the image coordinates that we work with are all undistorted,

which means that all image coordinates must be previously mapped onto undistorted ones through Eq. (4).
Clearly, the inverse mapping will be required as well. However, as Eq. (4) cannot be easily written in explicit
form with respect to r

$
, this inversion needs to be performed iteratively. If only the first coefficient of the

power series is considered, then Eq. (4) can be truncated to the third order and solved in closed-form by
means of the Cartan formula.
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Fig. 3. Epipolar constraint: the optical rays are bound to be coplanar. P is the epipolar plane while n
1

and n
2

are the retinal planes.

2.3. Some facts from epipolar geometry

Two projective views of a point in object space, are bound to comply with the so-called “epipolar” (or
“essential”) constraint, according to which the two lines that connect the object point with the optical centers
of the two projective cameras are coplanar (Fig. 3). The plane identified by the object point and the two
optical centers is called epipolar plane. The intersection between the epipolar plane and an image plane is
called epipolar line, and represents the projective view of the other optical ray. The intersection between an
image plane and the line that connects the two optical centers is called epipole: all epipolar lines meet at that
point, as all epipolar planes have the line that connects the optical centers in common.

Let X(1)3R3 and X(2)3R3 be the Cartesian coordinates of a point X3R3, referred to the coordinate frames
of two different projective cameras. Let R

21
and T

21
be, respectively, the rotation matrix and the translation

vector that describe the change of reference frame from camera 1 to camera 2. We thus have

X (2)"R
21

X (1)#T
21

.

The coplanarity of the two lines that connect the object point with the optical centers of the cameras can be
expressed in terms of the orthogonality between X(2) and the normal to the plane formed by T

21
and X(1). In

matrix notation we have

(X (2))TE
21

X (1)"0,

where E
21
"T

21
R
21
"(t

21
])R

21
3R3C3 is called essential matrix.

Let u(1)"P (1)x3P2 and u(2)"P (2)x3P2 be the projective coordinates of a point x3P3, as seen by the
two projective cameras, assuming that their projection matrices are P (1) and P (2), respectively. As these
projective coordinates are, up to a scale factor, equal to X (1) and X (2), respectively, the essential constraint can
be rewritten in P2 as follows:

(u(2))TE
21

u(1)"0. (5)

The epipolar constraint (5) can be easily rewritten in image coordinates. For example, if the camera frames
are chosen in such a way for the projections to result as perspective, then Eq. (5) becomes

(�(2))TE
21
�(1)"0, (6)
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where

�(1)"C
u(1)
1

u(1)
3

,
u(1)
1

u(1)
3

,1D
T

and �(2)"C
u(2)
1

u(2)
3

,
u(2)
2

u(2)
3

,1D
T
.

If the cameras are not perspective [15], then it is always possible to make them perspective through
appropriate homographies H(1)3R3C3 and H(2)3R3C3,

(�(2))TQ
21
�(1)"0, Q

21
"(H(2))TE

21
H(1). (7)

Notice that Eq. (7) provides us with a closed-form equation for the epipolar line on either one of the two
cameras, associated to a point on the other camera. For example, by letting w"Q

21
�(1), Eq. (7) becomes

wT�(2)"0, (8)

which is the equation of the epipolar line on camera 2, corresponding to the image point �(1).

2.4. Multi-ocular invariance

The epipolar constraint provides us with a tool for checking the correctness of a matching between
homologous features in three or more views.

Given a point x in the object space, its image coordinates �(1), �(2),2, �(n) on the n available views are
bound to satisfy the epipolar constraint pairwise,

(�(i))TQ
ij
�(j)"0, Q

ij
"(H (i))TE

ij
H (j), i, j"1,2, n, i'j. (9)

If, conversely, we are considering the image coordinates of a point in each one of the available images, one
can check for the correctness of the matching by checking whether the epipolar constraint is satisfied for all
pairs of views. This operation corresponds to checking whether each image point lies on the intersection of
the epipolar lines corresponding to the considered points on the other views, as shown in Fig. 4. Notice that
three is the minimum number of views that allows us to check for this type of invariance. More than three
views certainly provide us with more information but the problem becomes overconstrained (intersection of
more than two epipolar lines), therefore we need to use least square techniques.

The above property can be seen as a form of point-wise multi-occular invariance. Other types of invariance
properties for checking on the correctness of a match between image features can be found. For example, the
equivalent of Eq. (9) for the case of lines is derived and described in [9].

Fig. 4. Visualization of the point-wise multiocular invariance constraint in the case of three cameras: a point in each view must lie on the
intersection of the epipolar lines associated to the homologous points in the other views.
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2.5. Radiometric models

The luminance information associated to a camera view depends, in general, on the physical and
geometrical properties of the object surface and of the illumination conditions. Several radiometric models
are available for describing the viewing process of surfaces [4,16,28]. The most popular one is the Lambertian
model, according to which surface reflectivity depends on the direction of illumination but not on the viewing
direction. As a matter of fact, Lambertian surfaces are not very common, as specular reflections are very often
present. Nonetheless matt surfaces are very well rendered through this type of models. Non-Lambertian
reflectivity models are characterized by the fact that, besides a viewer-independent reflection lobe, they
exhibit a viewer-dependent (specular) reflection lobe.

The radiometric model we refer to in this article is based on that of Torrance and Sparrow [28], with
minor variations. In short, we assume that the environment’s lighting is composed of a dominant illuminator
at infinite distance and a certain amount of diffused light. Furthermore, surfaces are assumed as being only
partially matt and never totally specular. These two assumptions amount to a reflectivity function r of the
following form:

r"a cos0
i
#k

e~a2@2p2

cos0
r

#d, (10)

where a is the local albedo map, which depends on the surface point and completely characterizes the surface
texture,

0
i
"arccosA

iTn
EiEEnEB

is the angle between surface normal n and the direction i of the dominant incident light,

0
r
"arccosA

rTn
ErEEnEB

is the angle between surface normal n and the viewing direction r (third column of the rotation matrix that
maps world coordinates onto camera coordinates), finally

a"arccosA
(r]i)]n
Er]iEEnEB

is the angle between the surface normal n and the plane corresponding to the incident light i and viewing
direction r. The first term of Eq. (10) represents the viewer-independent (Lambertian) component, the second
term is the specular (non-Lambertian) reflection lobe and the third one is a constant term that accounts for
the diffused light. Size and shape of the specular reflection lobe associated to the surface material decided by
k and p, respectively.

The above radiometric model is suitable for realistically describing a wide variety of surfaces and
illumination conditions.

2.6. Surface patches

In this article, a surface patch S is intended as a smooth (or at least C2) open and compact portion of
a two-dimensional manifold M (object surface), embedded in P3. If we are viewing M through a projective
camera that sees the whole surface patchS, then we know that there is a one-to-one correspondence between
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SLM and its projectionS@LP2 on the image plane. In other words, the projection defines a map between
P2 and S

l: P2PM

�3S@ Â x"l(�)3S,
(11)

which is called depth map. Eq. (11) describes the surface patch S in parametric form and induces a smooth
local parametrization on M. If we have enough projective views to cover the whole object surface M, then
the set of all parametrizations can be used for constructing an atlas on M.

The tangent plane ¹M of M at any point x3S is the vector space generated by the vectors

m
1
"Ll/Lv

1
, m

2
"Ll/Lv

2
,

therefore any tangent vector m3¹M can be expressed as a linear combination of the form

m"am
1
#bm

2
,

while the normal to ¹M, and therefore to M, is given by

n"
m

1
]m

2
Em

1
]m

2
E
.

When two different projective cameras see the whole surface patch S, the fact that M is a manifold
guarantees the existence of a diffeomorphism (invertible map) between the views S(1) and S(2) of S. The
determination of this map is the focus of the next section.

3. Luminance transfer

Performing area matching requires comparing actual luminance profiles with those that we would obtain
by transferring luminance profiles of other views, through a specific 3D surface model. How to perform this
luminance transfer, given the object surface, will be discussed in this section.

Before doing so, let us consider the case in which no information is available about the surface patch S,
and two projective cameras view this patch under the conditions described in Section 2.6. The relationship
between the Cartesian coordinates X (1)3R3 and X (2)3R3 of points on the two views can be immediately
derived from the fact that

X (1)"R(1)(X!O(1)),

X (2)"R(2)(X!O(2)),
(12)

where X, O(1) and O(2) are the Cartesian world coordinates of the object point and the optical centers and
R(2) and R(2) are the orientation of the camera frames in world coordinates. From Eq. (12) we derive the
relationship between X (1) and X (2) as

X(2)"R
21

X(1)#D
21

,

X(1)"R
12

X(2)#D
12

,
(13)

where

R
21
"R(2)(R(1))T"RT

12
,

D
21
"R(2)(O(1)!O(2)),

D
12
"R(1)(O(2)!O(1)).
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The transformation (13) acts on Cartesian coordinates and, because of the translational terms D
21

and D
12

, is
not scalable, therefore it cannot be seen as a transformation between points of P2. This fact should not
surprise as, without any information on the object surface, the transfer between image coordinates cannot be
determined. Conversely, when the 3D surface is known, then it is possible to determine the transfer between
image coordinates in closed form.

3.1. Mapping between projective views

As already mentioned above, in order to characterize the transfer between points in different views, we
need to know the geometry of the object surface. A general description of the object surface could be given
through an implicit equation of the form g(x)"0. This type of description, however, does not easily allow us
to derive a map between image coordinates in different views, unless linearity is assumed (planar surface). We
will see later that this type of description can be sufficient for most of the cases of interest. In fact, when the
surface is a C2 manifold, being locally flat, it can be well-described by its tangent bundle.

Let us assume the patch S to be planar, i.e. lying on a plane of equation sTx"0, where s"[s
1

s
2

s
3

1]T,
n"[s

1
s
2

s
3
]T being the normal to the patch. Let us assume, without loss of generality, that s

3
O0. In this

case the equation of the plane can be rewritten in the form x
3
"!(1/s

3
)(s

1
x
1
#s

2
x
2
#1), and the projective

coordinates

u(m)"K (m)[R(m) !R(m)O(m)]x, K(m)"C
1 0 0

0 1 0

0 0 1/f (m)D
of the mth view of the surface point x can be rewritten in such a way to eliminate x

3
,

u(m)"M(m)(s)C
x
1

x
2

1 D ,
where

M(m)(s)"C
r(m)
11

!1
s3
r(m)
13

s
1

r(m)
12

!1
s3
r(m)
13

s
2

!(1
s3
r(m)
13

#r(m)
1

O(m))

r(m)
21

!1
s3
r(m)
23

s
1

r(m)
22

!1
s3
r(m)
23

s
2

!(1
s3
r(m)
23

#r(m)
2

O(m))

1
f(m)(r(m)

31
!1

s3
r(m)
33

s
1
) 1

f(m)(r(m)
32

!1
s3
r(m)
33

s
2
) ! 1

f(m)(1s3
r(m)
33

#r(m)
3

O(m))D , (14)

which depends on the position and the orientation of the planar patch.
If we assume that all points of S are visible from the ith and jth projective cameras, i.e. that the planar

patch lies on a plane that does not contain any one of their two optical centers, then both matrices M(i)(s) and
M(j)(s) result as being invertible. As a consequence, the mapping between views can be expressed as

u(j)"M
ji
(s)u(i), u(i)"M

ij
(s)u(i), (15)

where

M
ji
(s)"M(j)(s)(M(i)(s))~1"(M

ij
(s))~1. (16)

In conclusion, the exact knowledge of the planar surface allows us to specify the mapping between views as
a homography.
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Notice that in the case of a non-planar patch the relationship between projective coordinates on the two
image planes is no longer linear.

3.2. Luminance transfer

Let S be a patch in object space, obtained by backprojecting a reference patch of any of the views on the
surface sTx"0, and let S(i) be its ith view. As already seen in Section 3.1, the transfer of projective
coordinates from the jth view to the ith view through the plane sTx"0 is described by a homography of the
form

u(i)"M
ij
(s)u(j),

where M
ij
(s) is given by Eq. (16).

Let I(i) and I(j) be the luminance profiles of the views i and j, respectively. With reference to Eq. (10), the
luminance I(i)(u(i)) associated to the projective image coordinates u(i), can be written as

I(i)(u(i))"a(u(i))g(s, i)#h(u(i), s, i, k, p)#d, (17)

whose first term is the Lambertian (viewer-independent) component, in which a(u(i)) is the albedo map,

g(s, i)"
iTn

EiEEnE
, n"C

s
1

s
2

s
3
D , (18)

and i is the direction of illumination. The term h(u(i), s, i, k, p) represents the specular (viewer-dependent)
component (see Eq. (10)) and d is the diffuse lobe.

The luminance transfer from image j to image i, through the surface sTx"0, can be derived from Eq. (17),
by taking into account that a(�(i))"a(�(j)) (texture transfer). We obtain

I(i)
j
(u(i), s, i, k,p)"I(j)(M

ji
(s)u(i))#D(i)

j
(u(i), s, i, k, p), (19)

where

D(i)
j
(u(i), s, i, k,p)"h(u(i), s, i, k,p)!h(M

ji
(s)u(i), s, i, k,p) (20)

is the corrective term that compensates for the variations of the viewer-dependent portion of the luminance
(migration of reflexes with viewpoint changes). Notice that the term (18) does not appear in Eq. (19) because
it is not viewer dependent.

4. 3D area matching principles

In general, we can look at correlation-based 3D reconstruction methods as those that determine a 3D
surface and its reflectivity properties whose projective views result as close as possible to the actual views.
More precisely, this inverse problem can be thought of as that of determining the parameters of a geometric
and radiometric model of the surface, which maximize a similarity measure (such as the correlation) between
actual views and transferred versions of the other views. A global optimization approach, however, is
definitely not feasible because of size of the search space and the fact that such a non-linear search would
almost certainly converge to a local minimum rather than the global minimum.

In order to limit the search space and reduce the risk of converging to a relative minimum, it is customary
to proceed with a local approach, under specific stereometric constraints. Acting locally means describing the
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whole surface as a patchwork of smaller surfaces, each one of which determined though a matching of
luminance profiles of homologous image regions in different views. Two image regions in different views are
considered as homologous when they are projective views of the same 3D surface patch. When the object
surface is unknown, verifying whether two image regions are homologous can be a rather difficult task, which
requires to take the geometry of the projective cameras into account, and to cope with possible matching
ambiguities through proper invariance constraints.

In order to be able to find homologous regions on the views of a multi-camera system with arbitrary
geometry, we need to take the perspective distortion of the image region into account. In order to do so, we
can perform area matching in object space rather than on the images.

Let us consider a patch in object space, which lies on a parametric surface. This patch is a good
approximation of the object surface when there is a match between the back-projection of all the correspond-
ing image regions onto the 3D patch. Notice that the match needs to be found through texture comparison,
therefore back-projecting an image region onto a 3D patch must be intended as painting the albedo map on
the surface patch. In conclusion, area matching consists of looking for the parameters of the parametric
surface where the patch lies and those of the radiometric model, which maximize the correlation between the
back-projected corresponding image regions.

The correlation can be computed indifferently on the planar surface in the 3D space, or on either one of the
retinal planes. In this last case we need to characterize the luminance transfer from view to view. As already seen
in Section 3.1, the transfer between points in different views, can be easily modeled only when the patch is
planar. On the other hand, as the surface is assumed as being C2, it can be well-described by its tangent bundle.
As a consequence, if the surface patch is small enough, we can choose the parametric surface that it lies upon to
be planar and characterize the luminance transfer as done in Section 3.2. We will thus look simultaneously for
position and orientation of a locally planar 3D patch that originated in the corresponding image areas.

Let us assume that the portion of the object surface M that we want to reconstruct is being imaged by a set
of projective cameras that satisfy the hypotheses of Section 2.6. In order to determine the tangent bundle of
the imaged portion of M, we need to find a way of scanning its surface. Under the hypothesis of Section 2.6,
such an operation can be easily performed with reference to any of the available views. In fact, scanning the
image with an image patch of pre-determined shape and size corresponds to scanning the visible portion of
the manifold M.

Let S be a patch in object space, obtained by backprojecting a reference patch of any of the views on the
surface sTx"0, and let S(i) be its ith view. As already seen in Section 3, the luminance transfer from the jth
view to the ith view through the plane sTx"0 is given by

I(i)
j
(u(i))"I(j)(M

ji
(s)u(i))#D(i)

j
(u(i), s, i, k,p), (21)

where the radiometric correction

D(i)
j
(u(i), s, i, k,p)"h(u(i), s, i, k,p)!h(M

ji
(s)u(i), s, i, k,p)

is the luminance offset that accounts for reflex migration with viewpoint. Eq. (21) allows us to define
a similarity function between original and transferred luminance profiles, to be maximized for 3D reconstruc-
tion.

In alternative, we can define an MSE-like cost function of the form

C(i)
j
(s, i, k, p)"PS(i)

DI(i)(u(i))!I(i)
j
(u(i))D2du(i), (22)

to be minimized with respect to s, i, k and p, in order to determine geometric and radiometric properties of an
image patch. Notice that neither the diffused light component d nor the albedo map a appear in the cost
function (22).
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Fig. 5. Search for homologous image patches through minimization of a binocular cost function. Notice that, due to the perspective
projection, the luminance transfer results in a distortion in the local texture and in the patch shape.

The above-described binocular area matching process is summarized in Fig. 5 where the distortion of
local texture and patch shape due to perspective projection are emphasized.

In general, in order to make sure that the information extracted through the above optimization approach
is correct, two images are not enough, as they do not allow us to apply the multi-ocular invariance property
(see Section 2.4). The invariance property can be included into the optimization procedure by defining a cost
function that incorporates the cost (22) computed on all pairs of views

C(s, i, k, p)"+
i

+
j;i

C(i)
j
(s, i, k, p). (23)

For example, with three views we have

C(s, i, k, p)"C(1)
2

(s, i, k, p)#C(1)
3

(s, i, k, p)#C(2)
3

(s, i, k, p), (24)

which can be maximized with respect to s, i, k and p.
The implementation of an area matching method based on the minimization of the cost function (24), with

respect to position and orientation of the 3D surface patch and of the radiometric parameters, depends on the
available a priori information on the shape of the objects to be reconstructed. For example, when there is
a fair amount of information on the object, which consists of a rough approximation of its surface, it is
possible to adopt an iterative optimization process such as the steepest descent algorithm [27], or the
downhill simplex method [17], or the Levemberg—Marquardt method [27].

When the a priori information is poor, the optimization process will have to be combined with some
method for sampling the parameter space in order to make the search simpler and safer. This case will be
discussed in the next section.

5. Implementation

An assumption that is often made for area matching is that the distance between cameras is much smaller
than the distance of the object from the acquisition system. Furthermore, the cameras are often assumed to
have parallel or almost parallel optical axes. These two hypotheses allow us to ignore the geometric
distortion that the texture within the image patch undergoes during the transfer from image to image. An
immediate consequence of this fact is that the image patch preserves its shape when mapped onto the other
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image, therefore the matching procedure can be implemented like a block-based correlation algorithm
[30].

The above approach can be extended to the case in which the optical axes are not parallel, though the
distance from the object is still assumed as being much greater than the distance between cameras. In this
case it is possible to apply a homography to the projective image coordinates, which returns the image
coordinates that we would have if we used parallel retinal planes. This image warping process is called image
rectification [6,11].

Notice that, in both the above solutions, the assumption that the distance between cameras is much
smaller than the distance of the object from the acquisition system is responsible for the fact that the
orientation of the surface patch in object space cannot be retrieved from the images, and all that can be
estimated is depth. In practice, the traditional area matching solutions can be thought of as order-zero 3D
reconstruction methods, in the sense that only 3D coordinates are retrieved. What we propose, on the other
hand, can be seen as an order-one approach as it provides us with the tangent bundle of the object surface.
A first consequence of this fact is that a sparser set of matches can be retrieved without giving up
reconstruction accuracy. In principle, it could be possible to work on order-k methods, with k'1. In order to
do so, however, we would have to deal with a nonlinear transfer between projective image coordinates, which
would enormously complicate the problem.

The area matching approach presented in Section 4 is valid for an arbitrary camera geometry and for
a generic number of cameras. In this section we will illustrate the specific solutions we adopted for
implementing and testing the method.

5.1. Calibrated acquisition system

The acquisition system we adopted for our experiments is a calibrated trinocular camera system. We used
a set of three standard TV-resolution CCD cameras (2/3@@ CCD sensor, 16mm lenses) mounted on a rigid
frame in a triangular configuration (non-collinear optical centers), as shown in Fig. 6. In all our experiments,
the distance from the object is kept comparable with the sides of the triangle (close-range reconstruction) and,
as a consequence, the optical axes are strongly convergent in order to have the cameras pointing toward the
object.

The frame-grabber used for digitalizing the analog signal generated by the cameras is synchronized with
the camera pixel-clock in order to make sure that the pixel size of the images corresponds to the actual pixel

Fig. 6. Trinocular camera system used for the experiments.
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size on the CCD sensor. Before beginning the acquisition process, camera calibration is performed by using
an improved version of Tsai’s calibration method [18,19,25,26], which includes fifth-order radial distortion
and principal point estimation.

5.2. Implementation of the matching strategy

In order to speed up the computation of the optimization strategy described in Section 4, instead of
minimizing the MSE-like cost function (24), we minimize a cost function of the form

D(s,k
'
,D(i)

j
)"D(1)

2
(s, k

'
,D(i)
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I(i)
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(u(i))"k

'
I(j)(M
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(s)u(i))#D(i)

j
, (25)

D(i)
j

being the radiometric correction of Eq. (20), which is here assumed constant in the whole patch. An
additional gain factor k

'
is included to account for inhomogeneity in the CCD sensor’s sensitivity.

By choosing a luminance transfer function of the form (25), we give up on the radiometric parameters i, k
and p, in order to retrieve only the shape of the object surface.

As a general rule, we need to make sure that the maximum size of the patch is small enough to guarantee
a limited error on the texture distortion. This choice, however, depends on the degree of smoothness of the
surface to be reconstructed.

5.2.1. Relative minima
The above area matching process is based on the minimization of a highly non-linear cost function.

Therefore we can expect the process to be quite sensitive to the presence of relative minima. In order to avoid
such a problem, several strategies can be adopted, the choice of which depends on the type of object surface to
be reconstructed.

1. Initialization through rough surface estimation: the fastest and safest solution to the problem of relative
minima consists of using an initial guess of the surface shape, which helps the minimization process
converge to a global minimum and dramatically speeds up the matching process thanks to a dramatic
reduction of the size of the search space. In principle, any method can be used for obtaining a first guess of
the surface shape. For example, we could use an edge-based approach [5,21—23], whose reliability is
guaranteed by the accuracy of the camera model and the calibration procedure. In this case the result is
usually a sparse, though accurate, set of 3D points which, in order to obtain a first guess of the surface to
be reconstructed, needs to be interpolated. Other initial surfaces could be extracted, for example, through
the analysis of rims at occlusion boundaries [24,31], or through shape-from-shading methods [10,20] or,
when more views are available, through volumetric intersection [8].

2. Progressive-scan initialization: when no initial information on the 3D structure of the surface is available at
all, we can adopt a blind strategy whose robustness is paid by an increase of computational efficiency. The
object space is scanned by a sequence of n parallel planes whose distance from each other is D. The area
matching is first performed by taking as an initial surface the plane which is the closest to the camera
system. If a 3D patch is estimated and its distance from the plane is not greater than a certain threshold
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(which depends on D), then the match is used for modifying the shape of the next plane. Roughly speaking,
the result of the first estimate will be used for bulging the next surface. The area matching process is then
iterated, each time using a progressively more bulged version of the plane as an initial guess of the object
surface. We can also proceed in a more parallel fashion by repeating the area matching process (with
narrow thresholds) each time with a different one of the parallel planes, each time estimating a different set
of 3D points/normals. At the end we can merge all the estimates and perform surface interpolation only
once.

3. Multi-scale refinement: in some cases the surface geometry is such that a multi-resolution approach can be
adopted for 3D reconstruction without any initial information on the object surface. In these cases, we can
perform an initial area matching with relatively large surface patches. After locating the surface patches in
object space, we can perform surface interpolation and obtain a first rough approximation of the object
surface. At this point the area matching process can start over with a smaller patch size and a reduced
search space.

5.2.2. Surface interpolation
As already mentioned earlier, the interpolation of estimated 3D points in object space is an important step

in the reconstruction process [3]. This operation, in principle, could be done through standard interpolation
of sparse data with non-uniform density, by taking any of the camera frame as a reference frame. This type of
representation, however, may cause some problems of inconsistency, particularly with non-parallel optical
axes. An alternative solution which overcomes such problems consists of directly generating a 3D surface
which passes through all estimated 3D points.

The object surface may exhibit depth discontinuity about its boundaries while its normal may exhibit
discontinuity about surface ridges. The depth function can thus be assumed as being smooth almost
everywhere. In order to be able to interpolate surfaces with such characteristics, we need an interpolation
algorithm that generates surfaces that are smooth everywhere except for some special locations that
correspond to object ridges and boundaries (which can often be recognized through edges analysis). This type
of interpolator, introduced by Mallet [14], it is known as Discrete Smooth Interpolation (DSI), and is based
on a modification of the thin-plate spline algorithm. Its capability of preserving discontinuities is obtained
through the specification of both local and global surface roughness parameters, which account for the
presence of discontinuities in the neighborhood. An optimized version of this interpolator has been
implemented and employed for surface interpolation.

6. Examples of application

Some experiments of 3D scene reconstruction have been made on a variety of test scenes. The first test
concerned a measurement of the accuracy of the area matching method proposed in this article. The object to
be reconstructed was a newspaper’s page glued to a flat glass surface and viewed from tilted viewpoints.
Fig. 7 shows the original views that we started with. The object was at about 1m of distance from the camera
system, and the camera baseline was about 0.5m. Area matching was performed in one pass using image
patches of 8]8 pixel. The reconstructed surface resulted as being flat within 0.15mm of standard deviation
(see Fig. 8). Considering patches of larger size it is possible to further increase this precision.

Another reconstruction experiment was performed on a large stone of the ruins of the Roman Amphi-
theater of Aosta, Italy. The acquisition was done in rather difficult conditions (camera frame mounted on
a scaffold) and in non-controlled illumination conditions. In Fig. 9 one of the original views of the stone is
shown. The object was at 1m of distance from the camera system, whose baseline was 0.5m. No initial guess
for the surface was available, and a multi-scale refinement was performed for surface reconstruction.
The retrieved points and the 3D reconstruction after texture mapping are shown in Figs. 10 and 11.
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Fig. 7. Triplet of views (top, left and right) of a flat newspaper’s page.

Fig. 8. Oblique view of a set of 3D points of the newspaper’s page, retrieved through area matching. The standard deviation from
planarity is 0.1mm.

A quantitative evaluation of the quality of the results has been possible through photogrammetric tech-
niques. The markers that are visible in Fig. 9 have in fact been placed for photogrammetric measurements.
We found that our reconstruction results agreed with the measurements taken with classical photogrammet-
ric methods with a maximum error of 1mm. Notice, however, that part of the difference between or
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Fig. 9. One of the original views (left) of a stone of the Roman Amphitheater of Aosta, Italy.

Fig. 10. A stone of the Roman Amphitheater of Aosta, Italy: 3D points extracted through area matching.

88 F. Pedersini et al. / Signal Processing: Image Communication 14 (1998) 71—94



Fig. 11. A stone of the Roman Amphitheater of Aosta, Italy: 3D reconstruction after texture mapping.

Fig. 12. Original view of the terra-cotta vase used for a 3D reconstruction experiment.

measurements and the photogrammetric data is to be attributed to the fact that the later consists of a sparser
set of points, which required additional interpolation. Moreover, the precision of the available photogram-
metric data not far from 1mm either.

A third experiment was performed on the terra-cotta vase of Fig. 12, placed at about 1m from the camera
system, whose baseline was about 0.5m. An initial rough estimate of the object surface was previously made
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Fig. 13. 3D points extracted through area matching and 3D reconstruction with texture mapping of the terra-cotta vase.

through edge-matching [5,21] and boundary reconstruction at object rims [24,31]. The reconstruction
results are shown in Fig. 13.

Finally, an experiment of 3D reconstruction of a speaker behind a desk in a tele-conferencing environment
was performed. The acquisition was made with a trinocular camera system at CCETT, France, within the
ACTS ‘‘PANORAMA’’ Project (see Fig. 14). No initial reconstruction was used for area matching. Instead,
progressive-scan initialization was performed. The results of the area matching procedure are visible in
Figs. 15 and 16. As we can from Fig. 15 the quality of the reconstruction greatly benefits from the fact that
the geometric distortion is included in the model.

7. Conclusions

In this article we proposed and illustrated a general and robust approach to the problem of close-range 3D
reconstruction of objects from stereo-correspondence of luminance profiles. The method is independent on
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Fig. 14. Original views (top, left and right) of a speaker in a teleconferencing environment.

Fig. 15. Speaker in a teleconferencing environment: 3D points extracted through area matching.
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Fig. 16. Speaker in a teleconferencing environment: 3D reconstruction after texture mapping. The reconstruction errors in correspond-
ence to the arms are due to lack of information caused by object occlusion.

the geometry of the acquisition system which could be a set of n cameras with strongly converging optical
axes.

The robustness of the approach can be mainly attributed to the physicality of the matching process, which
is virtually performed in the 3D space. In fact, both 3D location and local orientation of the surface patches
are estimated, so that the geometric distortion can be accounted for. The method takes into account the
viewer-dependent radiometric distortion as well.

The method has been implemented by using a calibrated set of three standard TV-resolution CCD
cameras system, and thoroughly tested on a variety of real scenes with satisfactory results.

The experiments conducted shown that in some conditions it is possible to adopt a multi-resolution
approach to area matching, and some of the best reconstruction results have been obtained that way. We are
currently working on a robust multi-resolution version of the method proposed in this article. We are also
working on the integration of the proposed area matching method with egomotion techniques for full-3D
reconstruction of objects.

Notations

GL
n

(general linear group): set of all non-singular n]n matrices
H3GL

n
homography matrix (H3RnCn such that det HO0)

I
n
3Rn identity matrix

I(i)(u(i)) luminance profile on the ith view, corresponding to the projective image coordi-
nates u(i)

I(i)
j
(u(i)) luminance profile on the ith view at u(i), as transferred from the jth view

M3RnCn n]n matrix

M3SE
n`1 rigid motion matrix, i.e. M"C

R T

0 0 0 1 D , with R3SO
n
and T3Rn

Pn projective space of dimension n
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P2 projective plane (image space)
P3 projective space (object space)
P3RnC(n`1) projection matrix from Pn`1 to Pn (rank-n matrix)
Rn Euclidean space of dimension n
RnCn Euclidean space of dimension n
R3SO

n
rotation matrix (R3RnCn such that RTR"I

n
, det R"1)

SO
n

(special orthogonal group): set of all n]n rotation matrices
SE

n`1
(special Euclidean group) set of all rigid motions in Pn

S surface patch in object space
S(i) ith view of the surface patch S in object space

T]S"(T])S vector product in matrix form, T"C
t
1
t
2
t
3
D, T]"C

0 !t
3

t
2

t
3

0 !t
1

!t
2

t
1

0 D
u3P2 point in image space
u(i)3P2 projective coordinates of an image point of the ith camera
�(i)3P2 normalized projective coordinates of an image point of the ith camera (the first two

coordinates are image coordinates)
x3Rn vector with n elements
x3Pn point in projective space (vector with n#1 elements)
x3P3 point in object space
0
n
3Rn vector with zero components

n image or retinal plane

In general, lowercase bold letters are used for vectors and uppercase bold letters are used for matrices.
When it is not obvious to understand which reference frame a vector is referred to, a superscript between
parentheses is used to specify it. Matrix transposition is denote by a superscript T. The superscript !T is
used for combined inversion and transposition.
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