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Abstract 
A common limitation of many techniques for 3 0  
reconstruction from multiple perspective views is the poor 
quality of the results near the object boundaries. The 
interpolation process applied to “unstructured” 30 data 
(“clouds” of non-connected 30  points) plays a crucial 
role in the global quality of the 30  reconstruction. In this 
paper we present a method for interpolating unstructured 
3 0  data, which is able to perform a segmentation of such 
data into different data sets that correspond to different 
objects. The algorithm is also able to perform an accurate 
localization of the boundaries of the objects. The method 
is based on an iterative optimization algorithm. As a first 
step, a set of surfaces and boundary curves are generated 
for the various objects. Then, the edges of the original 
images are used for refining such boundaries as best as 
possible. Experimental results with real data are 
presented for proving the efectiveness of the proposed 
algorithm. 

1. Introduction 

An important class of techniques for the automatic 3D 
reconstruction of scenes is that based on feature 
correspondences. Such methods recover the 3D 
coordinates of some feature by detecting, matching and 
back-projecting homologous image features on two or 
more perspective views taken from different viewpoints. 
Such techniques, quite clearly, are only able to reconstruct 
those portions of the surface that are visible from all (or, 
at least, from two) viewpoints. In the presence of 
occlusions or self-occlusions, the surfaces that can be 
reconstructed through feature matching will exhibit 
discontinuities even if global 3D surface is continuous. 
The surface topology, however, will be simple enough to 
admit a 2%-0 representation, which means that it can be 
represented by a “depth map”. 

A depth map is a function that takes values on a 2-D 
domain, which is normally a plane parallel to the image 

plane of one of the cameras. With a proper choice of this 
plane, the depth map assumes the meaning of “distance 
from the viewpoint”. A depth map exhibits discontinuities 
in the proximity of surface occlusions, which normally 
take place at the boundaries between different objects. 
While the depth map is expected to be discontinuous at 
the object’s boundaries, the 3D data provided by 3D 
reconstruction techniques based on stereo- 
correspondences usually fail to provide accurate 
information in the vicinity of such boundaries. In fact, in 
such areas the 3D data is very sparse and often affected by 
significant errors and aatifacts. These problems are 
caused by either lack of data (due to the fact that the 
perspective projection is performed from different 
viewpoints), or to model failures (correspondences fail in 
the proximity of horizon contours), or excessive texture 
deformation where one of the optical rays is tangent to the 
surface. The poor characterization of 3D data near the 
object’s boundaries causes the interpolation of the depth 
map to perform poorly in such areas, where the accuracy 
is important the most. In fact, it is worth noticing that, 
even if the boundaries represent only a small fraction of 
the total scene, their importance is crucial, as they carry 
the most significant information on the object’s shape. 
This is why the interpolation process, when applied to 
unstructured 3D data, plays a crucial role in the global 
quality of the 3D reconstruction. 

Among the methods d’eveloped for the interpolation of 
sparse 3D data, it is imiportant to mention the work of 
Mallet [ 11, which is a modification of the thin plate spline 
algorithm. Through this method it is possible to insert 
“cutting curves” and “folding curves’’ in the membrane. 
Surface cuts will model depth discontinuities (object 
boundaries), while a foldiing models a discontinuity in the 
first derivative of the depth map (edges and sharp rims). 
Terzopoulos [2,3] proposed a method for determining 
both the best surface interpolation and the location of such 
curves. This method, however, is based on the 
minimization of a functiolnal which requires a rather heavy 
computational load. Furthermore, when the 3D data is 
extracted from strongly converging perspective views, the 
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quality of the 3D information near the object’s boundaries 
is quite poor, therefore this method does not have enough 
information to reconstruct the object’s silhouette with 
sufficient accuracy. 

In this paper we present a method for the interpolation 
of unstructured 3D data, which is able to perform a 
segmentation of such data into different data sets that 
correspond to different objects. The algorithm is also able 
to perform an accurate localization of the boundaries of 
the objects. 

The process begins an iterative optimization algorithm 
that minimizes a functional similar to that of Terzopoulos 
[2] and provides a set of surfaces that describe the objects 
and their boundaries. A segmentation algorithm is then 
applied to the perspective projection of the resulting 
surfaces. This algorithm partitions such surfaces and, for 
each object, it determines a close curves that encircles it. 
The last step of the procedure uses the luminance edges 
for refining the position of the boundaries. In order to do 
so, it applies a deformation force to such curves in order 
to “pull” them toward the projection of the object’s 
silhouettes. 

Experimental results on the application of the proposed 
algorithm on real sequences are presented. The algorithm 
has, in fact, been tested on sequences acquired with a 
trinocular camera system. 

1 

2. The algorithm 

1 I continuous I continuous 

As already said above, the 3D point-set generated from 
one multi-view is inherently suitable for a 2%-D 
representation, therefore the surface to be interpolated can 
be thought of as a function (depth map) of two parameters. 
The depth map is usually defined as a simple 2D function 
whose values are the distances from a reference plane 
(normally parallel to the reference camera). This map is 
obtained through a parallel projection onto the reference 
plane. However, in order to make sure that the scene 
description will be consistent with one of the viewpoints 
(reference camera), the depth map is here defined through 
a perspective projection, so that “depth” will take on the 
meaning of distance from the optical center of the 
reference camera (i.e. “length” of the optical ray). This re- 
definition of the depth map as a perspective map plays a 
crucial role in the performance of the interpolator, as it 
guarantees a consistency between the visible object’s 
contours in one view (taken as reference view) and the 
corresponding depth discontinuities. 

The interpolation process determines depths and 
cutting curves on a rectangular grid that covers the whole 
image field of the reference camera. As we are using 
perspective depths, the grid can be arbitrarily chosen. In 
fact, it may correspond to the image’s sampling lattice 

(provided that the lens’ radial distortion is either neglected 
or compensated for). The interpolation process starts with 
the minimization of a discrete functional that accounts for 
local surface continuity and rigidity as a function of the 
depths and location of the cuts: 

(1) +[ l -z (X,Y)] (u:  +u: j}..Y 

+ 2 C l ( u ( x i , Y i ) - d , ) + D ( w )  
x,  ,I, 

By minimizing the first term of the functional we tend 
to preserve surface continuity and rigidity (absence of 
folding), while the second term tends to preserve just the 
surface continuity. As we can see in Table 1, the binary 
weight function z(x,y) is equal to zero in correspondence 
of a fold of u, and is set to one otherwise. For this reason, 
u can be thought of as a map of the folds. Similarly, both 
terms in the integral are weighed by the map of the cuts 
p(x ,y ) ,  which describes the cutting curves by assuming the 
value zero in correspondence of a cut and the value one 
anywhere else. 

Through the second term of the eq. (l), we try to keep 
the surface as close as possible to the given 3D data. 
Finally, D(w) is proportional to the length of the cutting 
curve. The last term tends to promote longer 
discontinuities, therefore it is aimed at preventing the 
minimization process from producing a set of degenerate 
(small) surfaces in the neighborhood of each 3D point. 

1 0 1 -  I not continuous I 

and surface properties 
Table 1. Correspondence between functions p and z 

From a computational point of view, non-convex 
functionals like (1) are quite difficult to optimize. 
Convergence to the actual minimum could be guaranteed 
with an optimization technique such as the simulated 
annealing, but the computational load of such a solution 
would be unacceptable. 

In order to overcome the problems of a global 
optimization of u, we proceed with a local approach. Each 
iteration of the minimization process is, in fact, split into 
two steps: First, the optimization of u is performed 
separately for each one of the connected regions (Le. a 
region with p = ~ = l  everywhere). In such sub-domain, the 
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functional becomes convex and can therefore be 
optimized, for example, with a relaxation method. After 
then, an optimization strategy is applied to the folding and 
cutting curves (described by p and 7). This is done by 
calculating a new set of cutting curves, according to the 
last computation of u, and then by substituting the new 
curves if they make D(w) decrease with respect to the 
previous configuration. The cutting curves should be 
placed where the surface needs to be cut the most, i.e. 
where the most significant changes of depth take place. 
The problem of the best detection of a cutting curve in a 
depth map is therefore equivalent to the classical edge 
detection problem in a luminance map [4,5]. The cutting 
lines are, in fact, detected at each iteration by using a 
modified version of the Canny [6] edge detection 
algorithm, applied to the last estimated depth function u. 
The convergence of this iterative process is reached when 
both the interpolated surfaces and the cutting lines are no 
longer modified by the new iteration. 

In order to improve the characteristics of smoothness 
of the cutting curves, the above procdure is based on a 
multi-resolution approach. The estimate at a certain 
resolution level is, in fact, used for initializing the next 
iteration that will produce a higher resolution estimate. 

As the aim is to generate smooth cutting curves that 
encircle the objects, the output of the first optimization 
process needs to be processed by a 
segmentatiodclustering algorithm, whose task is to split 
those surfaces that are weakly connected while merging 
and shifting the cutting curves, in order to generate closed 
contours only’. 

Once the cutting curves are closed and encircle the 
interpolated surfaces that represent each object, they are 
passed to the last processing block, whose aim is to refine 
their shape in order to exactly fit the object’s contour, 
which are extracted from the reference image. As already 
explained above, the 3D information in the proximity of 
the cutting curves is not very reliable. As a consequence, 
in order to refine the shape of the cutting curves, we the 
silhouettes need to be determined from a joint analysis of 
the depth and of the abrupt changes of pictorial 
information in the image of the reference view. The 
cutting curves are, in fact, “pulled” toward the closest 
color edge that lies in proximity of a region with high 
depth gradient and that exhibits the same local orientation 
as the surface cut, if present. This deformation is 
moreover performed in such a way as to increase the local 
smoothness of the line. 

Color edges are detected in the same way as luminance 
edges, but exploiting also the color information of the 

’ Also lines that begin and end at the image’s border are to 
consider closed. 

original images. The coilor gradient is computed as a 
combination of the three gradients extracted from 
luminance and chrominance. Experimental results on 
different scenes have confirmed an overall improvement 
in the localization of the objects’ boundaries, when 
compared to the performance obtained with the sole 
luminance. 

3. Experimental results 

We tested the proposed technique on a typical video- 
conference sequence acquired with a trinocular camera 
system. Figure 1 shows the image triplet at one time 
instance. The cloud of unstructured 3D points extracted 
from such images is shown in Figure 2. Such data was 
computed by means of a ?ID area-matching algorithm. The 
interpolationkegmentation procedure recognized the most 
significant sub-surfaces that exhibit continuous depth, as 
shown in Figure 3. This imap is the starting point for the 
cutting-curves refinement algorithm, which deforms the 
discontinuities until they fit the silhouettes. Figure 4 
shows the final result. The reference viewpoint 
corresponds to that of the: middle camera. As we can see 
on figure 4, the cutting curve ended up fitting the actual 
object’s silhouette, as expected. 
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left camera 

center camera 

right camera 
Figure 1 : Original triplet of views. 

Figure 3 : Sub-surfaces generated 
through segmentation after interpolation. 

Fig. 4: Final surface segmentation. 

Figure 2: 3D points extracted from the images of Figure 1. 
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