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Toward Nonlinear Wave Digital Filters
Augusto Sarti and Giovanni De Poli

Abstract—The wave digital filter (WDF) theory provides us
with a systematic methodology for building digital models of
analog filters through the discretization of their individual circuit
components. In some situations, WDF principles can also be suc-
cessfully used for modeling circuits in which a nonlinear circuit
element is present under mild conditions on its characteristic.

In this paper, we propose an extension of the classic WDF
principles, which allows us to considerably extend the class of
nonlinear elements that can be modeled in the wave digital
domain. The method we propose is based on a new class of
waves that can be chosen in such a way that incorporates the
intrinsic dynamics of a nonlinear element into a new class of
dynamic multiport adaptors. This family of junctions represents a
generalization of the concept of “mutator” in the analog nonlinear
circuit theory because it allows us to treat a nonlinear dynamic
element as if it were instantaneous (resistive).

I. INTRODUCTION

W AVE digital filters (WDF’s) [1]–[3] are well known
for possessing many desirable properties over other

digital filter implementations [4]. In fact, not only are WDF
structures designed after analog (classical) circuits, but they
tend to preserve most of the good properties of their analog
counterpart. For example, passivity and losslessness of analog
filters are preserved by their wave digital implementation [5].
Furthermore, the behavior of WDF’s is less sensitive to the
quantization of the coefficients; therefore, WDF’s exhibit mod-
est accuracy requirements without giving up good dynamic
range performance. The sensitivity properties of WDF’s also
guarantee stability under mild conditions, producing WDF
structures that exhibit neither limit cycles nor zero-input
parasitic oscillations [6].

The WDF theory for the synthesis of linear filters has
reached, over the past two decades, an advanced level of
maturity. In fact, a large variety of WDF-based techniques
has been developed for a wide range of applications [1]. More
recently, however, we witnessed renewed interest in WDF’s
as the research in musical acoustics started to turn toward
synthesis throughphysical modeling[7]–[10].

Over the past few years, a variety of applications aimed
at the physical modeling of musical instruments or acoustic
environments has been developed. Some of these solutions
are based on a model description that is based on scattering
parameters and wave variables. In particular, some of the
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physical models that are available in the literature consist of
an interconnection of the typical building blocks of WDF’s
and digital waveguides [10] (DWG’s). These latter elements
can be seen as thedistributed-parametercounterpart of the
(lumped) WDF blocks. DWG elements are particularly suitable
for modeling acoustic resonating structures that are fully
compatible with WDF’s.

Hybrid WDF/DWG structures represent a good solution to
the problem of sound synthesis by physical modeling because,
besides referring to an acoustic instrument, they are based on
a local (block-based) discretization of the physical elements
that constitute the analog model. In other words, there seems
to be potential for a flexible synthesis approach based on the
interconnection of predefined building blocks.

One major problem of sound synthesis techniques based on
physical modeling, however, is still the treatment of nonlin-
earities, which are predominant in musical acoustics. They,
in fact, are the main responsible of the timbral dynamics of
the instruments; therefore, they cannot be modeled through
simple linearization. In fact, while the WDF theory is a well-
established theory, the wave digital (WD) theory of nonlinear
circuits is still far from being formalized and developed in a
homogeneous way. As a matter of fact, the tools and methods
developed for the linear theory are often not sufficient for
covering most of the nonlinear cases, particularly when the
nonlinearity is described by a differential equation rather than
an algebraic equation, as in the resistive case.

Among the results on nonlinear WD structures that are avail-
able in the literature, it is important to mention Meerk¨otter’s
work [11] on WD circuits that contain a nonlinear resistor. In
that work, the transformation that defines pairs of waves
as a function of Kirchhoff pairs of variables (voltage and
current) is used for mapping the characteristic of a nonlinear
resistor onto the WD domain, i.e., for transforming a
curve into a curve. Such a WD characteristic can be
inserted into a WDF structure by connecting it to a reflection-
free (adapted) port of the circuit. This WD mapping approach,
however, requires the nonlinear element to be resistive. In
this situation, in fact, the element is described by an algebraic
relationship between voltage and current that is to be rewritten
as an explicit relationship in the WD domain (waveas a
function of wave ).

The nonlinear resistors represent only a subset of the so-
called “algebraic” nonlinearities [12]. Algebraic bipoles are
described by an equation between the two port variables

and , where denote time-
differentiation (if positive) or integration (if negative) ofand

Nonlinear devices that are not algebraic are calleddynamic
[12] elements. Examples of nonlinear algebraic bipoles are
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nonlinear resistors, capacitors, inductors, FNDR’s, supercapac-
itors, superinductors, memristors, etc.

Modeling nonresistive algebraic nonlinearities with classi-
cal WDF principles is known to give rise to problems of
computability because closed loops without delays cannot be
avoided in the resulting WD structure. An example of WD
implementation of a circuit containing a nonlinear reactance
can be found in [13]. The proposed approach consisted of
linearizing the bipole through an ideal transformer whose turns
ratio depends on the local terminal voltage. For example,
a nonlinear capacitance is modeled as a linear capacitance
connected to the output of a variable transformer. This solution
can be easily proven to preserve the losslessness of the
nonlinear capacitance. However, as we can expect, the fact
that the turns ratio depends on the port voltage gives rise to
a problem of computability of the resulting scheme. In fact,
the voltage that the turns ratio depends on can only be derived
numerically by solving a nonlinear implicit equation at every
time instance.

In similar situations, other authors [14] chose a more
rudimentary solution that consists of inserting a delay element
where the noncomputable connection (delay-free loop) is
found. This solution, however, could easily introduce unac-
ceptable discretization errors or instability problems.

In order to overcome computability problems without hav-
ing to solve implicit equations, a different solution for a wave
implementation of circuits that contain reactive nonlinearities
was proposed in [15] and [16]. In this solution, new waves
are defined in order to be suitable for the direct modeling
of algebraic nonlinearities such as capacitors and inductors.
In fact, with respect to the new waves, the description of
the nonlinear element becomes purely algebraic so that the
results already formulated for nonlinear resistors [11] can
be applied. In order to adopt such new waves, a special
two-port element that performs the change of variables is
defined and implemented in a computable fashion. The reactive
nonlinear element is thus modeled in a new WD domain,
where its description becomes memoryless. Roughly speaking,
with respect to the new wave variables, the behavior of the
nonlinear bipole becomes resistor-like, and therefore, the two-
port junction that performs the change of wave variables plays
the role of a device that transform the reactance into a resistor.

The above idea of transforming reactances into nonlinear
resistors is not new in the theory of circuit design. In fact,
the literature on nonlinear circuits is rich with results that
allow the designer to model arbitrary nonlinear networks by
using just nonlinear resistors, operational amplifiers, and other
linear circuit elements [17]–[20]. By doing so, it is possible
to design arbitrary bipoles without ever using a nonlinear
inductor or a nonlinear capacitor, which are more difficult to
implement. This is possible by using special two-port analog
devices calledmutators[12], [18], [17], which are built using
only operational amplifiers and linear passive resistors and
capacitors. In general, mutators reduce the problem of realizing
a wide class of nonlinear bipoles with memory to that of
synthesizing a nonlinear resistor. The method proposed in [15]
and [16] is the digital counterpart of this analog approach to
the design of nonlinear circuits.

In this paper, we further extend the ideas introduced in [15]
and [16]. In particular, we propose a more general family of
digital waves that allow us to model a wider class of algebraic
and dynamic nonlinearities. The consequent generalization of
the WDF principles include dynamic multiport junctions and
adaptors, which synergetically combine ideas of nonlinear
circuit theory (mutators) and WDF theory (adaptors). We will
show that this generalization provides us with a certain degree
of freedom in the design of WD structures. In fact, not only can
we design a dynamic adaptor in such a way as to incorporate
the whole dynamics of a nonlinear element into it, but we
can also design a dynamic adaptor that will incorporate an
arbitrarily large portion of a linear circuit.

We will show that under mild conditions on their pa-
rameters, such dynamic multiport adaptors are nonenergic,
and therefore, the global stability of the reference circuit
is preserved by the wave digital implementation. For this
reason, such multiport junctions can be referred to as dynamic
adaptors.

In order for this paper to remain as self-contained as
possible, Section II is devoted to some of the basic concepts
of the WDF theory (Section II-B) and the treatment of in-
stantaneous nonlinearities in the WD domain (Section II-C).
The generalization of WDF theory is presented in Section III.
In particular, in Section III-A, a new general definition of
digital waves is introduced, and its impact on the structure of
scattering junctions is presented in Section III-B. A specific
class of elementary scattering junctions with memory that
represent the WD equivalent of mutators is then presented
in Section III-C, whereas the dynamic multiport junctions are
discussed in Section III-D. The problem of the passivity of
the dynamic multiport junctions is discussed in Section III-
E. Finally, some examples of applications are developed and
discussed in Section IV, where simulation results are presented
as well.

Throughout the paper, we will indicate with lowercase
letters the signals in the time domain, whereas the correspond-
ing capital letters will denote either their Laplace transform
(when they are a function of the complex variable) or
their transform (if they depend on the complex variable).
Whenever the context does not help in distinguishing between
them, it will be explicitly specified.

II. PRELIMINARIES

In this section, the basics of WDF theory and some results
on the treatment of nonlinear resistors are presented. Readers
who are already familiar with concepts and tools of WDF
theory may skip this part, whereas those who want to know
more about it may refer to the work by Fettweis [1], [2],
[4], [5] and Meerk̈otter [3], [6], [11]. For a more complete
bibliography on the matter, see [1].

A. The Issue of Local Discretization

Constructing a digital model of a given analog filter can
be quite easily performed by applying a bilinear mapping to
the complex variable of its transfer function. This approach to
the synthesis can be thought of as “global” as it considers the
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transfer function as a whole. Conversely, a “local” approach to
discretization consists of properly interconnecting individually
discretized portions of an analog filter. Although discretizing
smaller portions of an analog filter is generally simpler, this
way of proceeding may easily give rise to problems at the
interconnection of the building blocks.

Let us consider, for example, the interconnection of two
portions ( and ) of an analog linear circuit. Each one of
the two subcircuits can be seen as a set of linear differential
equations (local description). The two subcircuits interact
with each other through a port connection, which forces the
port variables and to satisfy some continuity constraints
(global constraints forced by the Kirchhoff equations). As a
consequence, connecting the two subcircuits through a port
means adding a set of “global” constraints to two “local”
descriptions. If we individually discretized and , we
would obtain two digital filters and that, in general,
cannot be directly connected together, as this would mean
ignoring the global constraints. Furthermore, the output of each
one of them would generally depend instantaneously on its
input, and therefore, the interconnection of and could
easily give rise to a delay-free loop (an implicit equation),
which cannot be implemented “as is.” Graphs that contain
delay-free loops are said to benoncomputable.

Computability problems can be avoided by eliminating the
instantaneous input–output connection in just one of the ports
involved in each delay-free loop. This, unfortunately, is not
possible when using Kirchhoff variables (voltage and current)
as they are all instantaneously dependent on each other. A
solution to this problem, which has been proposed by Fettweis
in the late 1960’s [2], consists of adopting a new set of
variables that can be obtained from the Kirchhoff variables
through a linear invertible transformation. The definition of
such variables resembles that of traveling waves in electrical
lines. Therefore, the concept ofadaptationcan be successfully
used to avoid instantaneous input/output dependencies (reflec-
tions) where needed and make the implementation scheme
computable. Such filters, known as WDF’s, represent a dis-
crete implementation of analog linear filters that are obtained
through the interconnection of individually discretized circuit
elements and all described by wave variables.

B. Some Notes on Classical WDF Theory

Let us consider two Kirchhoff variables and that char-
acterize any port of a linear circuit. Such variables can be
mapped onto a new pair of variablesand by means of a
linear transformation of the form

(1)

parametrized by areference resistance The variables and
can be thought of aswavesthat travel in opposite directions

through an infinitesimal transmission line of characteristic
impedance If , then the above linear transformation
is invertible; therefore, there is no loss of information in using
wave variables for describing a Kirchhoff pair As a
circuit port is electrically characterized by a Kirchhoff pair,

its waverepresentation will be given in terms of the waves
(input) and (output).

A linear resistor can be described in the WD domain
by a relationship of the form , where

By choosing (adaptation), thereflection
coefficient becomes zero, and so does the “reflected” (output)
wave, no matter what the “incident” (input) wave is. The
parameter can thus be chosen in such a way to eliminate
the instantaneous input/output dependency.

When the bipole is an ideal capacitor, the relationship
between Kirchhoff variables is a differential equation of the
form , which becomes algebraic in the domain of
the Laplace transform By using (1) and the
bilinear transformation [1], this relationship takes the form

, where

is an all-passreflection filter, where is the sampling interval,
and is a time constant. Once again, the parameter
can be chosen in such a way to eliminate the instantaneous
input/output dependency. In fact, by letting , we
have

The case of the linear inductor is similar to that of the linear
capacitor. In fact, its WD description is an allpass filter whose
transfer function, except for a sign change, is the same as that
of the capacitors, with The condition is thus given
by , in which case, we have

In order to obtain a WD implementation of a circuit, not
only do we need a wave description of the individual elements,
but we need to specify the topology of their interconnection.
Circuit topology is given in terms of the Kirchhoff equations
at all circuit nodes and loops and is implemented by means of
multiport junctions calledadaptors.

The two fundamental types of interconnection (parallel
and series) are sufficient for specifying the circuit topology.
Their wave equivalents, i.e., parallel and series adaptors, by
implementing the corresponding Kirchhoff laws, act as an
interface between wave pairs that are referred to different
reference resistances.

For example, a parallel connection of ports with port
conductances to is characterized
by the Kirchhoff equations and

The th output wave can
be written as a function of all input waves
as , where and

are the reflection coefficients.
Notice that ; therefore, the degrees of freedom
of an -port parallel junction are down to , which makes
one of the ports dependant on the others. In particular, we
may choose the reference conductances in such a way that, for
example, This happens when ,
in which case, becomes independent of , and port
becomes reflection free.

A multiport junction whose port resistances are chosen
so that the reflection coefficient of one port is zero is
called a reflection-free adaptor, and the port that exhibits
no input/output connection is called anadaptedport. In all
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other cases, the adaptor is said to beunconstrained. The series
adaptor can be derived in a similar way.

By exploiting the adaptation conditions at junctions and
bipoles, it is possible to build a computable WD structure
for modeling any linear circuit.

It is important to emphasize the fact that multiport adaptors
are nonenergic [1] as the steady-state pseudo-power absorbed
by them is always zero.

For a detailed summary of all standard WDF multiport
junctions, see [3] and [4].

C. Nonlinear Resistors

A nonlinear resistor is generally defined as an algebraic
relationship of the form in the Kirchhoff variables

and The Kirchhoff characteristic of the resistor can be
transformed into awavecharacteristic of the form
through the following mapping:

The conditions that allow us to write the reflected waveas
an explicit function of wave are provided by the
implicit function theorem. In fact, if the characteristic function

of the resistor is continuous with its derivatives and if
the point lies on the characteristic of the resistor [i.e.,
if , then the condition

guarantees the existence of a function such that
in a neighborhood of

For example, the nonlinear characteristic
of a current-controlled nonlinear resistor is mapped

onto the wave characteristic

Therefore, we have

where
In conclusion, thelocal invertibility of the characteristic

, i.e., the possibility of rewriting it in the form
, is guaranteed by the condition

A similar procedure can be followed for a voltage-control
resistor with characteristic In this case, the
local invertibility condition is given by

The above results can be extended to the case in which
the nonlinear characteristic of the resistor is only continuous
piecewise linear [11]. For example, the invertibility of the
characteristic of a voltage-controlled resistor is
guaranteed by

or

If such invertibility conditions are satisfied, a nonlinear resis-
tance can be implemented in the wave domain as a nonlinear
map of the form

(2)

to be connected to anadaptedport of the WDF structure in
order to avoid computability problems.

III. GENERALIZATION

As previously stated in the introduction, the nonlinear
elements that are most often encountered in nonlinear cir-
cuit theory are those that belong to the class of “algebraic”
nonlinearities [12]. In the one-port case, such elements are
characterized by an algebraic relationship between two port
variables and , where denote
time-differentiation (if positive) or integration (if negative)
of and A multiport algebraic element is defined as an
algebraic relationship between two such variables for each
port. All nonlinear devices that are not algebraic are called
dynamic [12] elements.

Modeling an algebraic bipole directly in terms of the waves
(1) can only be done when it is defined as an algebraic rela-
tionship between voltage and current at the port of connection
(resistive bipole). When the nonlinearity involves derivatives
and/or integrals of such variables (e.g., nonlinear inductors
and capacitors), any modeling attempt based on classical WD
principles fails because of computability problems. In this
case, the implicit equation corresponding to the closed loop
needs to be solved at every time instance.

In order to overcome this difficulty, new types of waves
have been proposed in the literature [15], [16]. Through such
new waves, a nonlinear reactance can be treated as if it were
resistive. This solution is inspired by a method that is widely
used in nonlinear circuit theory for implementing a wide
class of nonlinear bipoles with memory, including nonlinear
capacitors and inductors. The method is based on special two-
port analog elements [12], [17], [18] calledmutators, which
are built with only operational amplifiers and linear passive
resistors and capacitors. Such devices are used, for example,
to “mutate” a nonlinear resistor into a nonlinear inductor
while preserving its nonlinear characteristic in the transformed
Kirchhoff domain.

In this section, we will show that a wider class of digital
waves can be defined, and a general family of WD muta-
tors can be introduced and adopted for modeling nonlinear
algebraic devices and some dynamic nonlinearities.

A. Wave Variables with Memory

Let us consider the analog Kirchhoff variables and
that characterize a circuit port. The Laplace transformation,
followed by bilinear transformation, will provide us with the

-transform of the discretized versions of such signals. Now,
instead of defining a pair of waves through the usual definition
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(1), which refers to an arbitrary port resistance, we define
a new pair of wave variables in the-domain, with reference
to an arbitrary port “impedance” (transfer function) , as

(3)

The port impedance will be referred to as areference
transfer function(RTF). In order to explain the consequences
of the above definition, we will now derive the description
of generic linear and nonlinear bipoles in the extended WD
domain.

1) Linear Bipoles: In order to clarify how the above def-
inition of waves can be used for extending the validity of
WD principles to a wider class of nonlinear elements, let us
first consider the case of a linear time-invariant macro-bipole,
characterized by a relationship of the form ,
in the domain of the Laplace transform. A linear bipole of this
type can, in fact, be a whole linear circuit as seen from any of
its ports. By adopting the new pair of waves (3) and using the
bilinear transformation, the WD version of this bipole assumes
the form , where

takes on the meaning of a reflection filter with transfer function
, which must be guaranteed to be causal and stable

through a proper choice of the RTF
When the RTF matches the transfer function of the linear

bipole , the reflected wave becomes zero
, and the dynamics of the linear bipole is now

embodied into the wave pair This condition of total
adaptation , however, is a very strong one.
Since the main problem to avoid is that of the delay-free
loops in the interconnection of wave elements, what will
actually be required in most cases is the elimination of just
the instantaneousportion of the reflected wave (instantaneous
adaptation). In order to prevent the wave representation of the
linear bipole from instantaneously “reflecting” the “incident”
wave, we need the reflection filter to exhibit no instan-
taneous input/output connection, i.e., , with

causal and stable. When the RTF and the bipole transfer
function are rational functions of of the form

(4)

then the absence of an instantaneous reflection at the bipole
port is guaranteed by the condition (instanta-
neous adaptation). However, manyintermediateconditions of
adaptation are possible (partial adaptation), depending on how

simple we would like the result of the reflection filter to
be. In conclusion, the RTF can be chosen in quite an arbitrary
fashion, provided that the stability condition on is satisfied.
The only constraint that could be required for avoiding delay-
free loops is on the leading terms and of the transfer
functions.

2) Filtered Algebraic Nonlinearities:Let us now consider
a nonlinear bipole characterized by the equation ,
where is a filtered version of More precisely, and
are bound to satisfy a differential equation that, after Laplace
transformation, assumes the form Notice
that when is a constant, the nonlinear element becomes
a nonlinear resistor (see Section II-C). More generally, when

, with integer and constant, then the bipole
becomes algebraic; otherwise, the bipole is dynamic.

As is a function of , the nonlinear element cannot
be considered as instantaneous with respect toand , but
it can still be considered as memoryless with respect to the
Kirchhoff pair , which means that we can use the results
of Section II-C on nonlinear resistors [11], provided that we
define a wave pair of the form
being a constant reference parameter. With this choice, the
wave characteristic of the nonlinear element becomes

which, under proper conditions of the type specified in
Section II-C, can be expressed in explicit form.

Let be the result of the discretization of
obtained through bilinear transformation. The new pair of
digital waves can thus be defined as

where Such waves correspond to (3), with
, and they are chosen in such a way as to incorporate

the dynamics of the nonlinear bipole so that the nonlinearity
can be treated as memoryless.

Notice that, although voltage and charge can be directly
computed from such waves as

the current can only be derived through filtering as

This means that depending on which RTF is being considered,
the above waves can be attributed different interpretations.

A more general class of dynamic nonlinearities is repre-
sented by bipoles whose characteristic is of the form
, where and are filtered versions of and , respectively.

Let and , where is
the voltage filterand the current filter. Nonlinear resistors
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are obtained with filters with constant frequency response.
All algebraic bipoles are modeled by letting

with and constants and and integers.
In all other cases, such nonlinearities are dynamic. As we can
see, this class of nonlinearities is wider than the previous one
as, besides including all algebraic bipoles, it covers all those
nonlinear devices that can be represented as a cascade of two
filters with an instantanous nonlinear element in between.

Like in the previous case, the nonlinearity results as being
memoryless with respect to pair of waves

being, once again, a reference parameter. Let
be the result of the discretization of obtained through
bilinear transformation. The new pair of digital waves can be
defined as

(5)

Notice that this time, both Kirchhoff variablesand must
be derived from the waves and through the filtering of

However, and can be directly computed from the above
waves as and As a
consequence, under proper invertibility conditions, the wave
characteristic of the nonlinear bipole

can be expressed in the form

B. Scattering

We now consider the problem of how to perform a trans-
formation between two different pairs of digital waves of the
types defined in the previous section. This operation, in fact,
can be helpful for understanding the structure of multiport
junctions, which are the basic elements for building wave
digital structures. We will first examine the digital waves of
(3), which will be referred to assingle-filter waves. These
results will then be extended to the more general waves of
(5), which we will refer to asdouble-filter waves.

Single-Filter Waves:A scattering junction is a two-port
element whose aim is that of transforming the wave pair

, which is referred to the RTF , into the wave
pair , which is referred to Let

where and are the waves that enter the junction,
and and the corresponding reflected waves. The
scattering junction is then characterized by the continuity
constraints and

(a)

(b)

Fig. 1. Direct implementation (a) and one-filter implementation (b) of the
scattering junction.

The output waves can be easily expressed as a function of
the input waves as

(6)

where

is the transfer function of thereflection filterthat characterizes
the scattering junction with memory, which is expected to be
causal and stable. Properties of passivity and losslessness will
be discussed at the end of this section.

A direct implementation of (6) is shown in Fig. 1(a), which
can also be implemented with just one scattering filter, as
shown in Fig. 1(b). From Fig. 1, we notice that the wave

that enters port 1 is partially reflected through the filter
and partially transmitted to port 2 through the filter

, whereas the wave entering port 2 is partially
reflected through the filter and partially transmitted
through the filter

Notice that the above two-port junction is suitable for
modeling the scattering between all types ofdimensionally
homogeneousone-filter waves, i.e., not just waves of voltage
dimension but any type of wave pairs of the same dimension.

When considering the digital implementation of a scattering
junction, it is of crucial importance to derive the conditions
under which any of its ports do not exhibit any instantaneous
reflection, as its interconnection with other circuit ports might
give rise to delay-free loops. In order to avoid instantaneous
reflection of the waves entering the two ports of a digital
scattering junction, it is necessary and sufficient for to
exhibit no instantaneous input/output connection, i.e.,

, with causal and stable.
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When the two reference impedances are rational functions
of

(7)

the condition of instantaneous adaptation is the same as that
of linear bipoles (see Section III-A.1), i.e.,
Total adaptation is also possible and represents
the case in which the scattering junction becomes a direct
connection between the two ports. Finally, partial adaptation
is a condition that lies anywhere in between instantaneous and
total adaptation, depending on how simple we would like the
reflection filter to result. In conclusion, the RTF’s can be
chosen in quite an arbitrary way, provided thatis causal and
stable. The only constraint that could be required for avoiding
delay-free loops is on the leading terms and of
the two RTF’s.

Double-Filter Waves:We now want to model the scattering
between waves of the form (5), i.e., waves that are dimension-
ally nonhomogeneous. In order to do so, let us consider the
two pairs of digital waves and given by

(8)

where, without loss of generality, we dropped the free param-
eter and apply the continuity constraints

and in order to express the
“reflected” waves and as a function of the
“incident” waves and In fact, by defining a
reflection filter of the form

(9)

we find two alternative sets of scattering equations, which lead
to two different implementations. The first one is given by

(10)

and can be implemented as shown in Fig. 2(a), whereas the
second one is given by

(11)

and can be implemented as shown in Fig. 2(b).

(a)

(b)

Fig. 2. Scattering two-port cell. Two equivalent implementations.

Notice that one of the two above structures might be
preferable to the other one, depending on which one of
the two filters and is the
simplest. In fact, it often happens that either
or results as being memoryless, in which case,
a one-filter scattering junction can be employed. In addition,
notice that it is possible to reverse the order in which the two
two-port elements in dashed boxes of Figs. 2(a) and (b) are
cascaded.

Notice that with reference to Fig. 2(a), (a) and (b) can be
interpreted as one-filter waves of the form

where , and
, which need to be interfaced with

other compatible one-filter waves of the form

where and
In conclusion, the left dashed box

of Fig. 2(a) acts as afrequency-selective transformerwhose
aim is to make the waves dimensionally homogeneous.

In addition, in this case, we can derive the conditions
under which a port does not exhibit instantaneous reflection.
Again, there is a certain freedom in the adaptation conditions.
For example, we may require the reflection filter of
(9) to become identically zero by letting

This condition oftotal adaptationis a rather
restrictive one, but it can be relaxed by requiring just to
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exhibit no instantaneous input/output connection, i.e., to be of
the form , with causal and stable.

Let us assume the four causal filters
and to be described

by rational functions of the form of (7). A necessary and
sufficient condition for avoiding instantaneous reflections at
both ports of the scattering junction is

(12)

where and are the leading terms
of the numerators of and
respectively. In addition to the above adaptation condition,
we need to make sure that corresponds to a causal and
stable filter.

C. Elementary Scattering Junctions: Mutators

A particular case of wave scattering junctions with memory
is represented by the wave digital mutators [15], which are
intimately related to a class of two-port analog elements [12],
[17], [18] called mutators, which are built using only oper-
ational amplifiers and linear passive resistors and capacitors.
Mutators can be used, for example, to transform a nonlinear
inductor into a nonlinear resistor while preserving the nonlin-
ear characteristic in the transformed Kirchhoff domain. This
property can be quite useful as, for example, synthesizing a
nonlinear inductor with a prescribed characteristic is
generally much more difficult than implementing a nonlinear
resistor with the same characteristic in the plane. In this
case, an mutator can be used to map the plane
onto the plane. In general, mutators reduce the problem
of realizing nonlinear algebraic bipoles to that of synthesizing
a nonlinear resistor.

The scattering junction with memory of the type defined
in this section represents a direct extension of the concept of
mutator because it is suitable for modeling a wide class of
dynamic nonlinear elements (filtered algebraic nonlinearities),
as explained in Section III-A2.

In this section, we consider the wave equivalents of the
mutators that are used for modeling the simplest types of
nonlinear elements with memory.

1) Nonlinear Capacitors— Mutator: The wave
mutator is simply a scattering junction between a capac-

itive RTF and resistive one. With reference to the results
of Section III-B, this situation can be dealt with by letting

and After bilinear
transformation, the scattering filter

of Fig. 1 becomes a first-order causal allpass filter

which is stable when , i.e., when The same
result can also be derived by letting

Fig. 3. Structure of theR�C mutator. Notice that when port 2 is connected
to a nonlinear capacitor, the wave variablesa2 and b2 becomeb and a,
respectively.

and and choosing
the structure of Fig. 2(b).

Notice that we may eliminate the instantaneous reflections
at both ports by letting , in which case, we have

This last result is quite interesting as the junction
between a capacitive RTF and resistive one is performed by the
scattering junction of Fig. 1(b), whose reflection coefficient is
a delay element and whose second port is left unconnected. As
a consequence, the whole scattering junction may be replaced
with just one delay element, as predicted by the classical WDF
theory [1] (see Section II-B).

The wave mutator can be used to extend the results
on nonlinear resistors [11] to the case of nonlinear capacitors
by following the method explained in Section III-A1. In fact,
the waves at port 2 of the of the mutator are

(13)

where is associated with the electrical charge
As a nonlinear capacitor can be described by an algebraic

relationship of the form between the electrical
charge and the voltage, we can use the results of Section II-
C by letting play the role of “reference capacitance” in the
linear transformation that maps the Kirchhoff characteristic of
the nonlinear capacitor onto the wave domain. In conclusion,
in order to implement the nonlinear capacitor in the wave
domain, we only need to implement a nonlinear map of the
form and connect it with the capacitive port of the

mutator of Fig. 3, through the relationships and
This operation is possible if the invertibility conditions

of the nonlinear characteristic of the capacitor are satisfied.
Examples of application of this solution are reported in [15]
for the anharmonic oscillator and in [16] for the inverted
pendulum.

2) Nonlinear Inductors— Mutator: The mu-
tator is a scattering junction between an inductive RTF and a
resistive one; therefore, it can be implemented as in Fig. 1(b).
With reference to the results of Section III-B, let
and The corresponding scattering digital
filter

(14)
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is a first-order causal allpass filter whose stability is guaranteed
by the condition , which requires the reference
resistance to be positive. Instantaneous reflections can be
eliminated at both ports of the scattering junction by letting

, in which case, we have , as
expected from the classical WDF theory [1].

The above wave mutator can be employed for im-
plementing nonlinear reactive elements of the form

This definition does not correspond exactly
to that of a nonlinear inductor, but it has a meaningful
interpretation for mechanical systems. In fact, its characteristic
represents a nonlinear relationship between force (voltage-like
variable) and acceleration (derivative of the velocity, which is
the current-like variable). In this case, we may proceed exactly
as seen for nonlinear capacitors by defining the wave pair

where is the -transform of the discretized version of
, and is a constant parameter that plays the role of

a “reference inductance.” The corresponding mutator
results as being a dynamic scattering junction, whose reflection
filter is just a delay element with sign change.

More interesting is the case in which the nonlinear inductor
is defined as an algebraic relationship of the form
between the flux linkage and the current
Nonlinear inductors with a magnetic core are usually described
this way. In this case, we can use the results of Section III-A2
with the pair of wave variables

which correspond to (8) when
and

From (9) we derive the reflection filter, which results as in
(14), as expected.

As already seen in Section III-A2, we may choose between
two alternative structures for the scattering junction (
mutator), which are specified by (10) and (11). The structure
of Fig. 2(b), however, is preferable to the one of Fig. 2(a),
as is just a scale factor, which
can be easily embedded into the nonlinear characteristic of the
inductor. The final implementation of the nonlinear inductor is
thus represented by the mutator of Fig. 4, whose port 2
is closed on a nonlinear element, provided that the conditions
of invertibility of the nonlinear characteristic of the inductor
are satisfied.

Fig. 4. Structure of theR�L mutator. Notice that when port 2 is connected
to a nonlinear inductor, the wave variablesa2 and b2 becomeb and a,
respectively. Notice also that the two multipliers are to be moved from the
resistiveport to theinductiveport and then embedded into the nonlinearity.

D. Multiport Junctions with Memory

The approach proposed above for deriving scattering junc-
tions with memory can be readily extended to parallel or series
multiport junctions.

When only the current is filtered (of the Kirchhoff variables
to which the waves are referred), the multiport junctions
turn out to be structured like those derived by Fettweis [1],
provided that reflection coefficients are replaced by reflection
filters. For example, a series connection ofports with RTF’s

to is characterized by the Kirchhoff equations
and The -

transforms of the th output wave can
thus be written as a function of all input waves

as ,
where

are the reflection filters, which are assumed to be causal
and stable. The multiport junction is thus characterized by

reflection filters , which are bound to
satisfy the constraint

(15)

Therefore, as in the linear case, the number of “independent”
ports is The fact that the reflection filters are bound
to satisfy (15) can be used to simplify the structure of the
junction. For example, by letting

, we obtain with the result that
By doing so, we make theth port reflection free.

The above condition oftotal adaptationis a very strong one,
whereas computability is, in fact, guaranteed by a condition of
instantaneous adaptation. It is not difficult to verify that when
the port RTF’s are rational functions of the form
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then the instantaneous adaptation is guaranteed by the condi-
tion

Similarly, we have the case of parallel multiport junctions
with memory. In this case, the instantaneous adaptation con-
dition is expressed as

Notice that when the bipole connected to theth port has
a transfer function that matches the port’s RTF, the bipole
reflection filter becomes zero, and the corresponding junction
port is left unconnected. As there is no need to implement the
reflection filter of an unconnected port, total adaptation can be
used as an effective way of simplifying the implementation
structure, and this fact will be made clearer in Section IV.

In general, we can always decide to use single-filter waves
throughout the circuit, except where the wave characteristic
of a nonlinear element is given in terms of waves of different
nature. This choice allows us to maximize the compatibility
of wave digital structures with the traditional WDF structures.
For the sake of generality, however, it is instructive to show
how to derive multiport junctions with memory corresponding
to double-filter waves.

As seen in Section III-B, double-filter waves can be trans-
formed into single-filter waves through a two-port element
such as that in the left dashed box of Fig. 2(a). This fact
suggests to us that we could implement a multiport junction for
filtered waves by adding such devices at the ports of a voltage-
wave junction. This solution, however, may not be very
efficient because of the number of filters to be implemented.

Let us consider an -port series junction for filtered waves.
By applying the continuity constraint
and , we obtain

where

The condition of instantaneous adaptation at portis thus
given by

where the filter’s coefficients are obviously defined. Similarly,
the condition of instantaneous adaptation in the case of the
parallel multiport junction is given by

Notice that when all ports are referred to the same types of
filtered waves, i.e., when , then the
voltage filter can be eliminated from the junction

where

E. Passivity of Multiport Junctions

An important problem that needs to be carefully addressed
is that of thepassivityof the multiport junctions with memory
defined in the previous sections.

In classical wave digital filters, in order to characterize
properties such as passivity, nonenergicicity, or losslessness,
a pseudo-power[1], [22] function is defined. Through this
function, it is not difficult to show that all adaptors (parallel,
series, and lattice), ideal transformers, gyrators, and circulators
are nonenergic; reactances (capacitors and inductors), unit
elements, and QUARL’s are pseudolossless; resistances are
pseudopassive. The definition of pseudopower provided in [1]
and [22], however, does not help us characterize the passivity
of the wave mutators introduced before. In fact, the two-
port scattering junctions with memory seen above cannot be
easily represented as full-synchronic1 wave digital two-ports
[1], [22], as the delay elements used for implementing the
reflection filter cannot be assigned a meaningful value of port
resistance. In order to characterize the passivity of the wave
mutators, it is thus necessary to introduce the concept oftotal
complex powerentering the junction.

Let us consider an -port scattering junction with memory
characterized by the single-filter digital waves

and the corresponding RTF’s
The total complex pseudopower entering theports of the
junction is defined as

where and the asterisk between parentheses
denotes paraconjugation, i.e., (which is
the only analytical continuation of the complex conjugation
on the unit circle of the -transform plane). Notice that the
above definition is consistent with that of thesteady-state
pseudopowerprovided in [1] and [23] as well as that of the
total complex power provided in [24]. The above expression
of the pseudopower can be easily rewritten in matrix form as

1Most conventional WD filters are full-synchronic, i.e., all arithmetic
operations can be performed simultaneously at every periodically recurring
instants.
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where, in the matrix case, the asterisk between parentheses
denotestransposedparaconjugation, and

are the wave vectors, which are related to
each other through the scattering matrix as
is a diagonal matrix whose diagonal elements are

, and

where is the identity matrix. From the above expression
of the complex pseudopower, it is not difficult to show
that if the port admittance matrix converges on the
unit circle, then both parallel and series multiport junctions
are nonenergic. For example, the total complex pseudopower
entering a parallel -port junction, whose equations are

where and can be easily proven
to be identically zero. In fact, since

and , we have

provided that the port RTF’s are stable. The same conclusions
can be drawn with series multiport junctions with memory as
well as mutators.

In conclusion, a parallel or series multiport junction is
nonenergic, like the memoryless junctions seen, for example,
in [1], provided that the RTF’s are stable. Parallel and series
dynamic multiport junctions can thus be rightfully called
dynamic adaptors.

Similar conclusions can be drawn for dynamic multiport
junctions that correspond to double-filter digital waves. In
fact, when using waves of the form and

, we have and
As a consequence, the definition of the

total pseudopower entering the junction is the same as before,
provided that

F. Final Remarks

The generalized wave digital structures resulting from the
above definitions of digital waves resemble those of classical
WDF’s, especially when using single-filter waves. However,
because of the newly added filters involved in multiport
junctions and bipoles, a few considerations are in order.

First of all, we are now confronted with an increased
freedom in the construction of the wave digital structures, as
the choice of the waves that can be adopted for a circuit port
is much wider than with classical WDF’s. The choice of such

waves, in fact, depends on the “degree of adaptation” between
the RTF’s of junction ports and bipoles, which decides how
much of the “dynamics” of the system will be incorporated
into the adaptors. This increased freedom, however, must be
carefully dealt with as there are some constraints that need to
be taken into account.

First of all, we need to make sure that the passivity
properties of the individual elements of the reference analog
circuit are preserved by their WD counterpart. This, how-
ever, is automatically guaranteed by an appropriate choice of
the analog-to-digital mapping (e.g., bilinear transformation),
provided that some precautions be taken in the numerization
process. Furthermore, we need to guarantee that the stability
properties of the whole analog reference circuit are preserved
by its WD counterpart.

As far as this last point is concerned, we have already
verified that parallel and series multiport junctions are intrin-
sically nonenergic, provided that the port RTF’s are stable.
A computable interconnection through nonenergic junction of
elements having the same passivity properties as the reference
ones will preserve the stability properties of the reference
analog circuit. However, we need to make sure that the quan-
tization of the filter coefficients will not affect the continuity
constraints on the junctions.

Another fact that needs to be stressed is that the conditions
of computability expressed in this section are only local
because they only guarantee that a port is reflection-free, but
they do not tell us whether the whole circuit will be, in fact,
computable. In order to make sure that a nonlinearity can
actually be connected to a port, not only do we need to make
the port reflection-free, but we also need to make sure that
no other delay-free directed loop via an outer feedback path
exists. This problem could arise from the presence of a second
nonlinearity in the circuit.

In general, a classical WDF implementation of a linear
circuit gives us only one degree of freedom in the global
choice of the reference resistances. This degree of freedom
is exploited whenever a resistive nonlinearity is included in
the circuit, as we need to adapt the port where the element is
connected. Something similar happens when modeling filtered
algebraic nonlinearities in the WD domain, as a minimal
condition of instantaneous adaptation, must be satisfied at
the port of insertion of the nonlinearity. As a consequence,
when two or more nonlinearities are present in the circuit,
we cannot guarantee that they can all be incorporated in the
WD structure through the approach devised in Section III.
A case in which this can, in fact, be done is when the
nonlinear elements belong to portions of the circuit that are
“instantaneously decoupled” from each other through a delay
element. This situation is not at all infrequent in musical acous-
tics, where resonating or reverberating structures are often
modeled by means of digitalwaveguides(networks of delay
lines interconnected through WDF-like multiport junctions).
Such multiport elements, which can be seen as the distributed-
parameter counterpart of WDF’s, have a “decoupling” effect
on wave digital structures.

When no decoupling multipoles are present in the WD
circuit, we need to identify a minimal portion of the circuit
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that contains all nonlinear elements and to proceed with its
global discretization.

IV. EXAMPLES OF APPLICATIONS

In this section, we present some simple examples of scat-
tering junctions and elements that cannot be modeled with
classical WDF principles. We will consider just three cases:

• Memristor: We use double-filter waves, but the two-port
junction that connects a memristor to a standard WDF
port has no actual scattering. Its structure is, in fact, made
only of the left dashed block of Fig. 2, whose purpose is
just to make the waves dimensionally homogeneous with
each other.

• Frequency-Dependent Negative Resistor: Its implementa-
tion requires one-filter waves.

• Varactor Oscillator: This is the simulation of a circuit
with chaotic behavior in critical conditions.

A. Memristor

The memristor [19] is a bipole characterized by an algebraic
relationship of the form , where , and
Its name is a contraction ofmemory resistorbecause it behaves
like a resistor whose resistance (conductance) depends on the
complete past history of its current (voltage).

Although the memristor is realized only in the form of an
active circuit, such a two-port circuit element is considered
a to be as basic as resistors, capacitors, and inductors. The
peculiar behavior of the memristor makes it particularly useful
in applications to device modeling and signal processing [19].

A physical example of a memristor [12] characteristic is
given by This relationship implies that

, which confirms the fact that the conductance
depends on the past history of the voltage.

Let us consider the problem of connecting the wave equiv-
alent of such a nonlinear element with a standard WDF
port, which is characterized by the wave variables

, where and

A natural way of choosing the wave variables, in order for
the memristor to be implemented as an instantaneous element,
is

where and , which is to be
mapped onto the domain of the Z-transform through bilinear
transformation.

With reference to the results of Section III-B on the dynamic
adaptors, it is not difficult to realize that the scattering filter
is, in fact, simply a reflection coefficient of the form

The condition of instantaneous adaptation
leads to , which makes the junction totally

reflection free.

Fig. 5. Scattering junction for connecting the wave characteristic of the
memristor to a standard WDF port. Notice thata2 and b2 will become the
output and the input, respectively, of the instantaneous wave-equivalent of
the memristor.

As far as the wave filters (i.e., those that appear in the left
dashed box of Fig. 2) are concerned, we have

as expected. In conclusion, the scattering junction that is
required for connecting the wave equivalent of the memristor
to a standard WDF port is as shown in Fig. 5.

Notice that the presence of poles on the unit circle could
give rise to problems of stability, thus impairing the nonener-
gicity condition. In order to avoid this, we can adopt different
discretization mappings from the bilinear one.

The condition of invertibility of the nonlinear characteristic
of the memristor can be readily derived with

reference to the case of the voltage-controlled resistor. In fact,
we have Global invertibility is guaranteed
by the condition

B. Frequency-Dependent Negative Resistor

A frequency-dependent negative resistor (FDNR) [12], [25]
is defined by a relationship of the form Its
analog transfer function is, thus, of the form ,
where is the complex variable of the Laplace transform,
which is to be remapped onto the-plane through bilinear
transformation. Although the FDNR is a linear device, it
cannot be implemented in the wave digital domain by using
classical WDF adaptors. In fact, if we adopt the wave pair

, which is referred to as the resistance, we obtain a
wave relationship of the form , where

(16)

This reflection filter is not stable as its poles lie on the
imaginary axis of the plane. As the bilinear transformation
preserves stability properties, the wave digital reflection filter
will not be stable either. In fact, the filter we obtain, after
choosing for instantaneous adaptation, is of
the form , whose poles are on the
unit circle, as expected. Likewise, it is not possible to find a
stable implementation of an mutator, as its reflection
filter would, once again, be given by (16).

On the other hand, we can always model the FDNR with
waves of the form and , where
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Fig. 6. Electrical circuit of the anharmonic oscillator.

, and plays the role of a “reference capacitance.”
With reference to such waves, the FNDR becomes a simple
delay element, provided that the adaptation condition

is satisfied.

C. Varactor Oscillator

Examples of simulation of chaotic circuits in the wave
digital domain are already available in the literature [11],
[13]. In particular, Meerk̈otter [11] showed that as all chaotic
circuits belonging to Chua’s family [26] are characterized by
the presence of a nonlinear resistance (which can be usually
modeled with a piecewise linear characteristic), they can be
easily implemented in the wave domain by means of the
method of Section II-C.

Chaotic behavior in electrical circuits is due, in most cases,
to a nonlinear resistance. There are, however, several examples
of circuits that contain a nonlinear reactance and exhibit, in
certain conditions, chaotic dynamics or particularly interesting
phenomena such as subharmonic oscillation (period doubling).
Examples of such circuits can be found in [27]–[31], and the
accuracy of their computer simulation is usually quite sensitive
to the errors caused by discretization.

An example of circuits of the type described above, whose
simulation in the wave digital domain was studied in depth
by Felderhoff [13], is represented by the anharmonic oscilla-
tor [29] of Fig. 6. This simple RLC circuit is characterized
by a nonlinear voltage-controlled capacitance, whose
characteristic

is shown in Fig. 7. The parameters used for the simulation of
such a circuit are V, H, and

pF, and the voltage supplied by the ideal generator
is

When , the nonlinear element is replaced by a
resistive source In any case, the
chaotic behavior of the varactor occurs in the region
of its characteristic.

In order to implement the varactor oscillator in the wave
digital domain, Felderhoff [13] proposed a solution that em-
ploys classical WDF elements, including a transformer whose
transform ratio results as being a function of the
nonlinear capacitor voltage As depends on both port
waves, we cannot obtain its value directly from the wave
variables at the capacitor; otherwise, the implementation would
be noncomputable. In order to overcome this problem,
should be derived by solving an implicit equation per sample
with a consequent increment of complexity.

Fig. 7. Nonlinear characteristic of the capacitor of the anharmonic oscillator
in the Kirchoof domain.

Fig. 8. Nonlinear characteristic of the capacitor of the anharmonic oscillator
in the wave domain.

The varactor’s circuit can be implemented in the wave
domain by implementing the nonlinear capacitor as shown in
Section III-C1. By adopting the waves (13), the characteristic
of the nonlinear capacitor shown in Fig. 7 is mapped into the
wave domain as shown in Fig. 8.

Now, we need to connect the nonlinear capacitor to the rest
of the circuit. This operation may be done in two different
ways, depending on whether we decide to apply the condition
of instantaneous adaptation with the pair or that of total
adaptation.

Performing instantaneous adaptation allows us to implement
the linear portion of the circuit as a classical WDF structure.
In Fig. 9, we can see the complete wave implementation of the
varactor oscillator. Of the two scattering junctions of Fig. 9,
one is a standard three-port series adapted junction. The first
impedance port is set equal to in order to include the
resistor. The second port resistance is set equal to
in order to model the linear inductor as a simple delay with
sign change. The third port is adapted so that
no delay-free loops are created with the nonlinearity through
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Fig. 9. Wave implementation of the anharmonic oscillator based on instan-
taneous adaptation. The double-bordered box represents an R-C mutator,
and the presence of two “stubs” in its outputs denotes the absence of local
instantaneous reflections.

the scattering junction with memory. The wave mutator
is a scattering junction with memory where the reflection filter
is , as seen in Section III-C1. In order for this to be
true, we need to let

This is the reference capacity that we need to use to determine
the wave equivalent of the NL characteristic of the capacitor.

An alternative implementation can be obtained by perform-
ing total adaptation with respect to the whole portion
of the circuit. This corresponds to defining a pair of wave
variables that incorporate the whole memory of the linear
part of the circuit. In other words, we connect the nonlinear
capacitor to a voltage generator with internal impedance

(to be remapped onto the domain of the-transform
through bilinear transformation) and perform adaptation with
respect to the whole internal impedance. When the waves are
referred to , the wave equivalent of the above generator is
simply a source of voltage As a consequence, we only need
a scattering junction with memory that changes the reference
impedance to Such a junction
can be implemented as shown in Fig. 10, where the reflection
filter is given by

(17)

where , and

is the condition of instantaneous adaptation for the scattering
filter.

The conditions under which the scattering filter is stable
can be quite easily determined by studying the polynomial at

Fig. 10. Wave implementation of the anharmonic oscillator based on total
adaptation. Notice that we do not need to draw a complete scattering cell with
memory as we already know that the reflected wave toward the linear part of
the circuit is zero (total adaptation).

Fig. 11. Phase portrait of�0 = 3:57 V using the parallel integrator and
T = 1=(32f0):

the denominator of (17). Since this polynomial is Hurwitz for
, such conditions are simply

A phase portrait of the varactor’s state variables is shown
in Fig. 11 for The accuracy of the simulation
is quite independent of the sampling frequency, as long as
the stability condition is satisfied, and the nonlinear element
does not broaden the signal’s bandwidth beyond the Nyquist
frequency. In other situations [13], the simulation was quite
sensitive to discretization problems, and the choice of the
sampling frequency was critical.

V. CONCLUSIONS

In this paper, we proposed a generalization of the wave
digital filter theory, whose aim is to enlarge the class of
nonlinearities that can be embedded into WD structures. The
class of nonlinear elements that can be modeled through the
ideas proposed in this paper is that of the filtered algebraic
nonlinearities, which covers a rather wide class of dynamic
nonlinear elements. In particular, we introduced a class of
dynamic multiport junctions that synergically combine to-
gether ideas of nonlinear circuit theory (mutators) and WDF
theory (adaptors). We also showed that under some conditions
on the reference port transfer functions, such junctions are
nonenergic.
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We showed that this generalization provides us with a
certain freedom in the design of WD structures. In fact, not
only can we design a dynamic adaptor in such a way to
incorporate the whole dynamics of a nonlinear element into it,
but we can also design a dynamic adaptor that will incorporate
an arbitrarily large portion of a linear circuit.

The ideas presented in this work give us a different per-
spective on classical WDF’s and, at the same time, provide us
with a link to classical nonlinear circuit theory. In fact, they
allow the designer to choose among a variety of alternative
implementative solutions for each nonlinear circuit under
examination, whereas all traditional WDF structures can be
obtained as a particular case of the proposed approach. The
enhanced flexibility in the design of the new WD structures
is paid for in terms of conceptual complexity of the resulting
structure, which complicates the automatic synthesis of WD
systems.

Further extensions of the proposed theory are currently
under study in order to include a wider class of nonlinear
elements and circuits, including multiport nonlinearities with
memory, which are a direct extension of nonlinear algebraic
multiport devices [12].
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