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Toward Nonlinear Wave Digital Filters

Augusto Sarti and Giovanni De Poli

Abstract—The wave digital filter (WDF) theory provides us physical models that are available in the literature consist of
with a systematic methodology for building digital models of gn interconnection of the typical building blocks of WDF’s
analog filters through the discretization of their individual circuit and digital waveguides [10] (DWG’s). These latter elements
components. In some situations, WDF principles can also be suc- L ’
cessfully used for modeling circuits in which a nonlinear circuit C@n be seen as thdistributed-parametecounterpart of the
element is present under mild conditions on its characteristic. ~ (lumped WDF blocks. DWG elements are particularly suitable

In this paper, we propose an extension of the classic WDF for modeling acoustic resonating structures that are fully
principles, which allows us to considerably extend the class of compatible with WDF's.

nonlinear elements that can be modeled in the wave digital . .
domain. The method we propose is based on a new class of Hybrid WDF/DWG structures represent a good solution to

waves that can be chosen in such a way that incorporates the the problem of sound synthesis by physical modeling because,
intrinsic dynamics of a nonlinear element into a new class of besides referring to an acoustic instrument, they are based on
dynamic multiport adaptors. This family of junctions represents a g local (block-based) discretization of the physical elements
generalization of the concept of “mutator” in the analog nonlinear 4t constitute the analog model. In other words, there seems
circuit theory because it allows us to treat a nonlinear dynamic . ; .
element as if it were instantaneous (resistive). Fo be potent!al for a erX|pIe synthe_3|s approach based on the
interconnection of predefined building blocks.
One major problem of sound synthesis techniques based on
physical modeling, however, is still the treatment of nonlin-
AVE digital filters (WDF’s) [1]-[3] are well known earities, which are predominant in musical acoustics. They,
for possessing many desirable properties over otherfact, are the main responsible of the timbral dynamics of
digital filter implementations [4]. In fact, not only are WDFthe instruments; therefore, they cannot be modeled through
structures designed after analog (classical) circuits, but theiyhple linearization. In fact, while the WDF theory is a well-
tend to preserve most of the good properties of their analegtablished theory, the wave digital (WD) theory of nonlinear
counterpart. For example, passivity and losslessness of analpguits is still far from being formalized and developed in a
filters are preserved by their wave digital implementation [Shomogeneous way. As a matter of fact, the tools and methods
Furthermore, the behavior of WDF's is less sensitive to thfeveloped for the linear theory are often not sufficient for
quantization of the coefficients; therefore, WDF’s exhibit mod:overing most of the nonlinear cases, particularly when the
est accuracy requirements without giving up good dynamignlinearity is described by a differential equation rather than
range performance. The sensitivity properties of WDF'’s alsg algebraic equation, as in the resistive case.
guarantee stability under mild conditions, producing WDF Among the results on nonlinear WD structures that are avail-
structures that exhibit neither limit cycles nor zero-inpWple in the literature, it is important to mention Meettei’s
parasitic oscillations [6]. work [11] on WD circuits that contain a nonlinear resistor. In
The WDF theory for the synthesis of linear filters hagat work, the transformation that defines pditsb) of waves
reached, over the past two decades, an advanced level9h function of Kirchhoff pairév, i) of variables (voltage and
maturity. In fact, a large variety of WDF-based techniquegrrent) is used for mapping the characteristic of a nonlinear

has been developed for a wide range of applications [1]. Mof&sistor onto the WD domain, i.e., for transforming a- i
recently, however, we witnessed renewed interest in WDFR$e into ab — « curve. Such a WD characteristic can be

as the research in musical acoustics started to turn towgderted into a WDF structure by connecting it to a reflection-
synthesis througiphysical modelind7]-{10. ~ _ free (adapted) port of the circuit. This WD mapping approach,

Over the past few years, a variety of applications aimgg,ever, requires the nonlinear element to be resistive. In
at the physical modeling of musical instruments or acoustigis situation, in fact, the element is described by an algebraic

environments has been developed. Some of these solutiphigionship between voltage and current that is to be rewritten
are based on a model description that is based on scatter, 9. explicit relationship in the WD domain (wabeas a
parameters and wave variables. In particular, some of \ction of wavea)

The nonlinear resistors represent only a subset of the so-
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nonlinear resistors, capacitors, inductors, FNDR'’s, supercapach this paper, we further extend the ideas introduced in [15]
itors, superinductors, memristors, etc. and [16]. In particular, we propose a more general family of

Modeling nonresistive algebraic nonlinearities with classdigital waves that allow us to model a wider class of algebraic
cal WDF principles is known to give rise to problems ofind dynamic nonlinearities. The consequent generalization of
computability because closed loops without delays cannot tee WDF principles include dynamic multiport junctions and
avoided in the resulting WD structure. An example of WIadaptors, which synergetically combine ideas of nonlinear
implementation of a circuit containing a nonlinear reactanagrcuit theory (mutators) and WDF theory (adaptors). We will
can be found in [13]. The proposed approach consisted sifow that this generalization provides us with a certain degree
linearizing the bipole through an ideal transformer whose turn§freedom in the design of WD structures. In fact, not only can
ratio depends on the local terminal voltage. For examphee design a dynamic adaptor in such a way as to incorporate
a nonlinear capacitance is modeled as a linear capacitatite whole dynamics of a nonlinear element into it, but we
connected to the output of a variable transformer. This solutican also design a dynamic adaptor that will incorporate an
can be easily proven to preserve the losslessness of aibitrarily large portion of a linear circuit.
nonlinear capacitance. However, as we can expect, the factWe will show that under mild conditions on their pa-
that the turns ratio depends on the port voltage gives riser@ometers, such dynamic multiport adaptors are nonenergic,
a problem of computability of the resulting scheme. In facgnd therefore, the global stability of the reference circuit
the voltage that the turns ratio depends on can only be derivedpreserved by the wave digital implementation. For this
numerically by solving a nonlinear implicit equation at everyeason, such multiport junctions can be referred to as dynamic
time instance. adaptors

In similar situations, other authors [14] chose a more In order for this paper to remain as self-contained as
rudimentary solution that consists of inserting a delay elemgpssible, Section Il is devoted to some of the basic concepts
where the noncomputable connection (delay-free loop) & the WDF theory (Section I1I-B) and the treatment of in-
found. This solution, however, could easily introduce unastantaneous nonlinearities in the WD domain (Section II-C).
ceptable discretization errors or instability problems. The generalization of WDF theory is presented in Section IlI.

In order to overcome computability problems without hawn particular, in Section IlI-A, a new general definition of
ing to solve implicit equations, a different solution for a wavdligital waves is introduced, and its impact on the structure of
implementation of circuits that contain reactive nonlinearitiegcattering junctions is presented in Section IlI-B. A specific
was proposed in [15] and [16]. In this solution, new waveglass of elementary scattering junctions with memory that
are defined in order to be suitable for the direct modelirrgpresent the WD equivalent of mutators is then presented
of algebraic nonlinearities such as capacitors and inductoirs Section IlI-C, whereas the dynamic multiport junctions are
In fact, with respect to the new waves, the description éliscussed in Section llI-D. The problem of the passivity of
the nonlinear element becomes purely algebraic so that the dynamic multiport junctions is discussed in Section lll-
results already formulated for nonlinear resistors [11] cdn Finally, some examples of applications are developed and
be applied. In order to adopt such new waves, a specifiscussed in Section IV, where simulation results are presented
two-port element that performs the change of variables as well.
defined and implemented in a computable fashion. The reactivel hroughout the paper, we will indicate with lowercase
nonlinear element is thus modeled in a new WD domailetters the signals in the time domain, whereas the correspond-
where its description becomes memoryless. Roughly speakiiitg capital letters will denote either their Laplace transform
with respect to the new wave variables, the behavior of tif@hen they are a function of the complex variabig or
nonlinear bipole becomes resistor-like, and therefore, the twibeir Z transform (if they depend on the complex variab)e
port junction that performs the change of wave variables playéhenever the context does not help in distinguishing between
the role of a device that transform the reactance into a resiséem, it will be explicitly specified.

The above idea of transforming reactances into nonlinear
resistors is not new in the theory of circuit design. In fact, Il. PRELIMINARIES
the literature on nonlinear circuits is rich with results that . . .
allow the designer to model arbitrary nonlinear networks ba/nIn this section, the basics of WDF theory and some results

using just nonlinear resistors, operational amplifiers, and otheﬁ the treatment of ”‘?r_‘"”e?r resistors are presented. Readers
who are already familiar with concepts and tools of WDF

linear circuit elements [17]-[20]. By doing so, it is possibl ) :

to design arbitrary bipoles without ever using a nonlinegrr]eory rgay S.k'p this part, whereas those who W".:mt to know
inductor or a nonlinear capacitor, which are more difficult tn;ore a Olét'\'; m?g refer to the work by Fettweis [1]’| [2],
implement. This is possible by using special two-port anal%ao’l.[S] anh eetrh teer [{:t)’] [61, [li]' For a more complete
devices callednutators[12], [18], [17], which are built using lography on the matter, see [1].

only operational amplifiers and linear passive resistors and
capacitors. In general, mutators reduce the problem of reaIiz'rﬁg
a wide class of nonlinear bipoles with memory to that of Constructing a digital model of a given analog filter can
synthesizing a nonlinear resistor. The method proposed in [ quite easily performed by applying a bilinear mapping to
and [16] is the digital counterpart of this analog approach the complex variable of its transfer function. This approach to

the design of nonlinear circuits. the synthesis can be thought of as “global” as it considers the

The Issue of Local Discretization
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transfer function as a whole. Conversely, a “local” approach its waverepresentation will be given in terms of the waves
discretization consists of properly interconnecting individuallginput) andb (output).
discretized portions of an analog filter. Although discretizing A linear resistork; can be described in the WD domain
smaller portions of an analog filter is generally simpler, thig:, b) by a relationship of the formh = ka, wherek = (R; —
way of proceeding may easily give rise to problems at th&)/(R;+R). By choosingR = R; (adaptation), theeflection
interconnection of the building blocks. coefficientt becomes zero, and so does the “reflected” (output)
Let us consider, for example, the interconnection of twwave, no matter what the “incident” (input) wave is. The
portions C; andC,) of an analog linear circuit. Each one ofparameterR can thus be chosen in such a way to eliminate
the two subcircuits can be seen as a set of linear differentiné instantaneous input/output dependency.
equations (local description). The two subcircuits interact When the bipole is an ideal capacit6f, the relationship
with each other through a port connection, which forces thetween Kirchhoff variables is a differential equation of the
port variablesy andi to satisfy some continuity constraintsform ¢ = C4%, which becomes algebraic in the domain of
(global constraints forced by the Kirchhoff equations). As e Laplace transforni(s) = sCV(s). By using (1) and the
consequence, connecting the two subcircuits through a pbittnear transformation [1], this relationship takes the form
means adding a set of “global” constraints to two “localB(z) = K(2)A(z), where
descriptions. If we individually discretized; and C,, we
would obtain two digital filtersD; and D5 that, in general, K(z)= —, =
cannot be directly connected together, as this would mean 1+pz I'+2r

ignoring the global constraints. Furthermore, the output of eaghan all-passeflection filter where” is the sampling interval,
one of them would generally depend instantaneously on §fd+ = RC is a time constant. Once again, the paraméter
input, and therefore, the interconnection®f and D could can be chosen in such a way to eliminate the instantaneous
easily give rise to a delay-free loop (an implicit equation)nput/output dependency. In fact, by lettidy= 7'/(2C), we
which cannot be implemented “as is.” Graphs that contafave K(z) = ~ 1.
delay-free loops are said to m®ncomputable The case of the linear inductor is similar to that of the linear
Computability problems can be avoided by eliminating thgapacitor. In fact, its WD description is an allpass filter whose
instantaneous input—output connection in just one of the pofignsfer function, except for a sign change, is the same as that

involved in each delay-free loop. This, unfortunately, is n@if the capacitors, with = L/R. The condition is thus given
possible when using Kirchhoff variables (voltage and currery, r = 2L/T, in which case, we hav&(z) = —271.

as they are all instantaneously dependent on each other. An order to obtain a WD implementation of a circuit, not
solution to this problem, which has been proposed by Fettwegjfily do we need a wave description of the individual elements,
in the late 1960's [2], consists of adopting a new set @fut we need to specify the topology of their interconnection.
variables that can be obtained from the Kirchhoff Val’iab|Q§ircuit t0p0|ogy is gi\/en in terms of the Kirchhoff equations
through a linear invertible transformation. The definition Oét all circuit nodes and |00ps and is imp|emented by means of
such variables resembles that of traveling waves in electri¢aliltiport junctions callecadaptors

lines. Therefore, the concept aflaptationcan be successfully  The two fundamental types of interconnection (parallel
used to avoid instantaneous input/output dependencies (reflggd series) are sufficient for specifying the circuit topology.
tions) where needed and make the implementation schemgeir wave equivalents, i.e., parallel and series adaptors, by
computable. Such filters, known as WDF's, represent a digplementing the corresponding Kirchhoff laws, act as an

crete implementation of analog linear filters that are obtain@sterface between wave pairs that are referred to different
through the interconnection of individually discretized circuiteference resistances.

p+ 271 T —27

elements and all described by wave variables. For example, a parallel connection ef ports with port
conductances?; = 1/R; to G, = 1/R, is characterized

B. Some Notes on Classical WDF Theory by the Kirchhoff equationsy; = v, = --- = v, and
. : . p i1+ -+, = 0. Themth output wave,,,, m = 1,---,n can

Let us consider two Kirchhoff variables and: that char- be written as a function of all input waves,, & = 1,---.,n

acterize any port of a linear circuit. Such variables can
mapped onto a new pair of variablesand b by means of a
linear transformation of the form

b = G0 — G, Whereao =mayr+ -+ Tnap and’yk =
2G,/G,G = Gy + -+ + G, are the reflection coefficients.
Notice thaty; +- - -+, = 2; therefore, the degrees of freedom
of ann-port parallel junction are down te — 1, which makes

a=v+Ri, b=v—Ri (1) one of then ports dependant on the others. In particular, we

may choose the reference conductances in such a way that, for

parametrized by geference resistanc&. The variables: and example;y,, = 1. This happens whe&'; +-- -+ G, 1 = G,
b can be thought of awavesthat travel in opposite directionsin which case,b,, becomes independent @f,, and portn
through an infinitesimal transmission line of characteristisecomes reflection free.
impedanceR. If R # 0, then the above linear transformation A multiport junction whose port resistances are chosen
is invertible; therefore, there is no loss of information in usingo that the reflection coefficient of one port is zero is
wave variables for describing a Kirchhoff paiv,i). As a called a reflection-freeadaptor, and the port that exhibits
circuit port is electrically characterized by a Kirchhoff pairno input/output connection is called adaptedport. In all
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other cases, the adaptor is said toumeonstrainedThe series or

adaptor can be derived in a similar way. i(v2) — i(vy) 1
By exploiting the adaptation conditions at junctions and _sup To—n, O R
bipoles, it is possible to build a computable WD structure V2

for modeling any linear circuit. If such invertibility conditions are satisfied, a nonlinear resis-
It is important to emphasize the fact that multiport adaptotance can be implemented in the wave domain as a nonlinear
are nonenergic [1] as the steady-state pseudo-power absonegh of the form
by them is always zero. .
For a detailed summary of all standard WDF multiport b= fla) (2)

junctions, see [3] and [4]. to be connected to aadaptedport of the WDF structure in

order to avoid computability problems.
C. Nonlinear Resistors

A nonlinear resistor is generally defined as an algebraic [Il. GENERALIZATION
relationship of the forn¥'(v, ¢) = 0 in the Kirchhoff variables As previously stated in the introduction, the nonlinear

v and:i. The Kirchhoff characteristic of the resistor can b&jements that are most often encountered in nonlinear cir-
transformed into a\_/avechargcterlstlc of the fornf(a,b) = 0 cuit theory are those that belong to the class of “algebraic”
through the following mapping: nonlinearities [12]. In the one-port case, such elements are
a+b a—>b characterized by an algebraic relationship between two port
fla,b) = F(T’ ﬁ) variablesv¥) andi®, wherej, k € {0,£1,+2,---} denote
- . time-differentiation (if positive) or integration (if negative)
The conditions that allow us to write the reflected wa\as of v andi. A multiport algebraic element is defined as an

ﬁ;‘ ﬁ)éﬁllcz';éf[‘;gﬁt'tﬁgl:); n{I(nalza?:: ﬁiﬁiiﬁ;ﬁagzgxgidffgcai algebraic relationship between two such variables for each
! P 1 of the resistor is continl'Jous with its derivatives and igort. All nonlinear devices that are not algebraic are called
(a,0) ynamic[12] elements.

?P?(F)ac:)mgé?o’:b%)] I|$hsegnt;f;ecgz?jrizgtnerlstlc of the resistor [i.e., Modeling an algebraic bipglg diregtly in terms of the waves
’ ' (1) can only be done when it is defined as an algebraic rela-
af £0 tionship between voltage and current at the port of connection
ab (a0,00) (resistive bipole). When the nonlinearity involves derivatives
~ and/or integrals of such variables (e.g., nonlinear inductors
guarantees the existence of a functigf(-) such that and capacitors), any modeling attempt based on classical WD

f(a, f(a)) = 0 in a neighborhood ofy. principles fails because of computability problems. In this
For example, the nonlinear characterisfitv,i) = v — case, the implicit equation corresponding to the closed loop
v(i) = 0 of a current-controlled nonlinear resistor is mappedeeds to be solved at every time instance.
onto the wave characteristic In order to overcome this difficulty, new types of waves
a+b a—b have been proposed in the literature [15], [16]. Through such
fla,b) = 2 U( 2R ) =4 new waves, a nonlinear reactance can be treated as if it were

resistive. This solution is inspired by a method that is widely

Therefore, we have used in nonlinear circuit theory for implementing a wide

of 9 fa+b fa-Db class of nonlinear bipoles with memory, including nonlinear
ob  Ob 2 “\ 2R capacitors and inductors. The method is based on special two-
1 dwdi 1 1 ,fa—b port analog elements [12], [17], [18] calledutators which
5T 9iab 2 + ar Y < R ) are built with only operational amplifiers and linear passive

» ) resistors and capacitors. Such devices are used, for example,
where v'(i) = (dv/di). to “mutate” a nonlinear resistor into a nonlinear inductor

In conclusion, thelocal invertibility of the characteristic \yhile preserving its nonlinear characteristic in the transformed
v = wv(i), i.e., the possibility of rewriting it in the form girchhoff domain.

b = f(a), is guaranteed by the conditiari(i) # —R. In this section, we will show that a wider class of digital
A similar procedure can be followed for a voltage-contrayayes can be defined, and a general family of WD muta-
resistor with characteristi€’(v, i) = ¢ —(v). In this case, the tors can be introduced and adopted for modeling nonlinear

local invertibility condition is given by'(v) # —1/R. algebraic devices and some dynamic nonlinearities.
The above results can be extended to the case in which

the nonlinear characteristic of the resistor is only continuous \nmve Variables with Memory
piecewise linear [11]. For example, the invertibility of the
characteristicc = 4(v) of a voltage-controlled resistor is
guaranteed by

Let us consider the analog Kirchhoff variable®) andi(¢)

that characterize a circuit port. The Laplace transformation,

) ) followed by bilinear transformation, will provide us with the
I It ICY) s _ 1 Z-transform of the discretized versions of such signals. Now,

mFvL U2 — U1 R instead of defining a pair of waves through the usual definition
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(1), which refers to an arbitrary port resistanBg we define simple we would like the result of the reflection filt&f(z) to
a new pair of wave variables in th&-domain, with reference be. In conclusion, the RTF can be chosen in quite an arbitrary
to an arbitrary port “impedance” (transfer functioR)s), as  fashion, provided that the stability condition énis satisfied.
The only constraint that could be required for avoiding delay-
Alz) = V(2) + B(:)I(2),  Bz) = V(z) - R(:)(2). (3) free Ioo?ols is on the leading term@) a?ndcl(o) of the tragsfer ’
The port impedancé(z) will be referred to as aeference functions.
transfer function(RTF). In order to explain the consequences 2) Filtered Algebraic Nonlinearities:.Let us now consider
of the above definition, we will now derive the descriptiora nonlinear bipole characterized by the equatiiw, q) = 0,
of generic linear and nonlinear bipoles in the extended WWhereq(¢) is a filtered version of(¢). More preciselyg andi
domain. are bound to satisfy a differential equation that, after Laplace
1) Linear Bipoles: In order to clarify how the above def-transformation, assumes the foi@(s) = H;(s)I(s). Notice
inition of waves can be used for extending the validity othat whenH;(s) is a constant, the nonlinear element becomes
WD principles to a wider class of nonlinear elements, let usnonlinear resistor (see Section II-C). More generally, when
first consider the case of a linear time-invariant macro-bipolgj; (s) = 3s*, with k integer and3 constant, then the bipole
characterized by a relationship of the foints) = R1(s)I(s), becomes algebraic; otherwise, the bipole is dynamic.
in the domain of the Laplace transform. A linear bipole of this As H; is a function ofs, the nonlinear element cannot
type can, in fact, be a whole linear circuit as seen from any gé considered as instantaneous with respeat tmd i, but
its ports. By adopting the new pair of waves (3) and using thecan still be considered as memoryless with respect to the
bilinear transformation, the WD version of this bipole assumegychnoff pair (v, q), which means that we can use the results

the form B(z) = K(2)A(z), where of Section II-C on nonlinear resistors [11], provided that we
i) — Ri(z) — R(z) define a wave pair of the form = v + ug,b = v — pg, p
(2) = Ri(2) + R(z) being a constant reference parameter. With this choice, the

) ) ) ) ~wave characteristic of the nonlinear element becomes
takes on the meaning of a reflection filter with transfer function

K(z), which must be guaranteed to be causal and stable a+b a—1b
through a proper choice of the RTR(z). F(v,q) = F< 2 2. ) = fla,b)=0

When the RTF matches the transfer function of the linear
bipole (R(z) = Ri(z)), the reflected wave becomes zeravhich, under proper conditions of the type specified in
(K(2) = 0), and the dynamics of the linear bipole is nowSection II-C, can be expressed in explicit form.
embodied into the wave paifz,b). This condition oftotal Let H;(z) be the result of the discretization df;(s)
adaptation R(z) = R;(z), however, is a very strong one.obtained through bilinear transformation. The new pair of
Since the main problem to avoid is that of the delay-fredigital waves can thus be defined as
loops in the interconnection of wave elements, what will
actually be required in most cases is the elimination of just A(z) =V () + pQ(z) = V() + pH;(2)1(2)
the instantaneougportion of the reflected wavénstantaneous B(2) =V(2) — nQ(2) = V(2) — uH;()I(2)
adaptation). In order to prevent the wave representation of the
linear bipole from instantaneously “reflecting” the “incident\yhere ;, £ 0. Such waves correspond to (3), wifl(z) =
wave, we need the reflection filtéf(~) to exhibit no instan- , (), and they are chosen in such a way as to incorporate
taneous input/output connection, i.&{(z) = » 1K (z), With  the dynamics of the nonlinear bipole so that the nonlinearity
K(z) causal and stable. When the RTF and the bipole transfef pe treated as memoryless.
function are rational functions of of the form Notice that, although voltage and charge can be directly
computed from such waves as

—~
N
~—

N
c(0) + ) e(i)z™

C(z) 4 po ot b _a—b
= = - bl q -
R(Z) D(Z) 1 M d ’ y 2 2/,L
* ; (©)2 the current can only be derived through filtering as
]\ﬂ
N A(z) — B(z
c1(0) + Z cr(8)z~" I(z) = M
Cy(z) - 2 H;(2)
Ry(x) = 55 = ——— = (@)
1(2) 14 Z di(§)7—i This means that depending on which RTF is being considered,
— = the above waves can be attributed different interpretations.

A more general class of dynamic nonlinearities is repre-
then the absence of an instantaneous reflection at the bipggated by bipoles whose characteristic is of the féttn, ) =
port is guaranteed by the conditiaff0) = ¢;(0) (instanta- 0, wherep andq are filtered versions of andi, respectively.
neous adaptation However, manyntermediateconditions of Let P(s) = H,(s)V(s) and Q(s) = H,(s)I(s), where H,is
adaptation are possiblpdrtial adaptatior), depending on how the voltage filterand H; the current filter. Nonlinear resistors
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are obtained with filters with constant frequency response. P
All algebraic bipoles are modeled by letting, (s) = s’ \
H;(s) = Bs* with o and 8 constants ang and k integers. |
In all other cases, such nonlinearities are dynamic. As we can

|

} |

see, this class of nonlinearities is wider than the previous one 1 K E@ I

as, besides including all algebraic bipoles, it covers all those : :
nonlinear devices that can be represented as a cascade of two b, | | a,

filters with an instantanous nonlinear element in between. I-K ;

Like in the previous case, the nonlinearity results as being = @ ——————————
memoryless with respect to pair of waves= p + uq,b = @
p— pg, v being, once again, a reference parameter Hgtz) =000
be the result of the discretization &f, (s) obtained through
bilinear transformation. The new pair of digital waves can be

|
T
|
defined as I
I
Az) = P(2) + pQ(z) = Hy(2)V(2) + uHi(2)1(2) | +
B(z) =P(z) — pQ(z) = Hy(2)V(2) — nH;(2)1(z). (5) b, |
_ o . _ H2 )< :
Notice that this time, both Kirchhoff variablesand: must I~ ___1
be derived from the waves and? through the filtering of (b)

A(z) _ B(z) Fig. 1._ D|(ect |_mp|ementat|0n (a) and one-filter implementation (b) of the
scattering junction.

_ A(2) + B() B

V&) ==m,m &) = =m0
However,p andg can be directly computed from the above The output waves can be easily expressed as a function of

waves asp = (a + b)/2 and ¢ = (a — b)/(2p). As a the input waves as

consequence, under proper invertibility conditions, the wave

characteristic of the nonlinear bipole Bi(z) = K(2)A1(z) + (1 — K(2))As(

N
~—

By(2) = (1+ K(2))A1(2) — K (2)Aa(2) (6)
a+b a—>
Flp,q) = F| ——, 2 = fla,b) =0 where
- RQ(Z) — Rl(z)
i - K(z)= 4"
can be expressed in the fortn= f(a). (2) Ro(2) + Rul(z)
B. Scattering is the transfer function of theeflection filterthat characterizes

the scattering junction with memory, which is expected to be

we now consider the problem Of how tp _perform a trang, isal and stable. Properties of passivity and losslessness will
formation between two different pairs of digital waves of thBe discussed at the end of this section

types defined in the previous section. This operation, in fact,A direct implementation of () is shown in Fig. 1(a), which

can be helpful for understanding the structure of multipog;dn also be implemented with just one scattering filter, as
junctions, which are the basic elements for building wav?a”oWn in Fig. 1(b). From Fig. 1, we notice that the wéve
digital structures. We will first examine the digital waves of  that enters port 1 is partially reflected through the filter

Eg?s'ul\;\;hlv(\:/rill \mltlanbieregitr;?ietg t?)stlﬂgler:cl)lirgvéi\(/e?zl-rvr\]/g\s/gs .gf(z) and partially transmitted to port 2 through the filter
. . : K(»), whereas the wave, entering port 2 is partiall
(5), which we will refer to agouble-filter waves +K(2) y gp P y

. . T S reflected through the filte~K(z) and partially transmitted
Single-Filter Waves:A scattering junction is a two-portthrough the filterl — K(z)

element whose aim is that of transforming the wave pair
(a1,b1), which is referred to the RTH; (), into the wave
pair (a2, b2), which is referred taR,(z). Let

Notice that the above two-port junction is suitable for
modeling the scattering between all types difnensionally
homogeneousne-filter waves, i.e., not just waves of voltage
dimension but any type of wave pairs of the same dimension.

A1(z) =Vi(z) + Ri(2)11(2) SO L i .
When considering the digital implementation of a scattering
Bi(z) =Vi(z) — Ru() (=) junction, it is of crucial importance to derive the conditions
Ay(z) =Va(2) + Ra(2)12(2) under which any of its ports do not exhibit any instantaneous
Ba(2) = Va(z) — Ra(2)12(2) reflection, as its interconnection with other circuit ports might

give rise to delay-free loops. In order to avoid instantaneous
where 4 () and A;(z) are the waves that enter the junctionreflection of the waves entering the two ports of a digital
and B;(z) and B»(z) the corresponding reflected waves. Thecattering junction, it is necessary and sufficient §¢z) to
scattering junction is then characterized by the continuigxhibit no instantaneous input/output connection, B&(z) =
constraintsV; (z) = Va(z) and I (z) 4+ I»(z) = 0. 2~1K(z), with K(z) causal and stable.
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When the two reference impedances are rational functions
of z a,

RQ(Z) = = (7)
14> dy(i)zi e _ ;

=1 I
a

H;

i

1
the condition of instantaneous adaptation is the same as thab—}—> =
of linear bipoles (see Section IlI-A.1), i.ec; (0) = ¢2(0).

f
| | I
. l O
| | | |
Total adaptation’?; = R, is also possible and represents : : : :
the case in which the scattering junction becomes a direct : I : :
I
I I .| @ |
I A ! b, : 5 : a,
| | |
I

connection between the two ports. Finally, partial adaptation
is a condition that lies anywhere in between instantaneous and,
total adaptation, depending on how simple we would like the 0-<—1— 7
reflection filter X to result. In conclusion, the RTF's can be i
chosen in quite an arbitrary way, provided ti&is causal and
stable. The only constraint that could be required for avoiding ()
delay-free loops is on the leading terrag0) and ¢;(0) of Fig. 2. Scattering two-port cell. Two equivalent implementations.
the two RTF's.

Double-Filter Waves:We now want to model the scattering notice that one of the two above structures might be

between waves of the form (5), i.e., waves that are dimensiQ§}aferable to the other one, depending on which one of
ally nonhomogeneous. In order to do so, let us consider t two filters H,, (z)/H.,,(z) and H; (z)/Hi, () is the

two pairs of digital wavesay, b;) and(az, bz) given by simplest. In fact, it often happens that eithy, (2)/H., (2)
A1(2) =H,, (2)V1(2) + H;, (2)]1(2) or H;, (z)/H;,(z) results as being memoryless, in which case,
Bi(2) = H, ()Vi(2) — Hy, (2).(2) a one-filter scattering junction can be employed. In addition,

notice that it is possible to reverse the order in which the two
Az(z) = Hy, (2)V2(2) + Hi, (2)12(2) two-port elements in dashed boxes of Figs. 2(a) and (b) are
Ba(z) = Hu, (2)V2(2) — Hiy(2)12(2) (8) cascaded.

where, without loss of generality, we dropped the free param-Notice that with reference to Fig. 2(a),'Yand (1) can be

eteru and app|y the Continuity Constraintg1 (Z) — ‘/’2(2) — interpreted as one-filter waves of the form

}/(z) and".fl(z) = —I(2) = I(2) in order to express the Al(2) = Pi(2) + Ri(2)Q1(2)

reflected” wavesB;(z) and By(z) as a function of the ,

“incident” waves A;(z) and A,(z). In fact, by defining a By(2) = P1(z) — Ra(2)Qu(2)

reflection filter of the form where Pi(z) = H,,(2)Vi(2),@Q1(2) = H,,(»)[1(#), and
K(z) = Hy\ (2)Hi, (2) = Hi, (2) iy (2) (9) Ri(z) = H;,(2)/H,, (), which need to be interfaced with
H, (2)H;,(z)+ H,,(2)H;, (2) other compatible one-filter waves of the form

we find two alternative sets of scattering equations, which lead .
to two different implementations. The first one is given by Ax(z) = Po(z) + Ra(2)@a(2)
H, (%) Bs(z) = Pa(z) — R2(2)Q2()
(1= K(z))Ax(2)
Hy,(2) where P(2) = H,,(2)Va(z), Q2(2) = H,,(2)I2(z), and
H,, (=) Ry(z) = H,,(2)/H,, (). In conclusion, the left dashed box

Ba(z) = H, (2) (1 +K(2)Ai(z) - K()A2(2)  (10) Fig. 2(a) acts as #&requency-selective transformerhose

and can be implemented as shown in Fig. 2(a), whereas #@" i to make the waves dimensionally homogeneous.

second one is given by In addition, in this case, we can derive the conditions
under which a port does not exhibit instantaneous reflection.
Bi(z) =K(2)A1(z) + (1+ K(2))Az2(2) Again, there is a certain freedom in the adaptation conditions.
For example, we may require the reflection filt&(z) of
Hi, (2)(1 — K(2)A1(2) — K(2)As(2)  (11) (9) to become identically zero by lettingl,,, (#)H,,(z) =
H;, (2) H,,(z)H; (z). This condition oftotal adaptationis a rather
and can be implemented as shown in Fig. 2(b). restrictive one, but it can be relaxed by requiriigz) just to

Bi(z) =K(z)Ai1(2) +

Hil (Z)
Hi (Z)

BQ(Z) =
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exhibit no instantaneous input/output connection, i.e., to be of a,
the form K(z) = =1 K(z), with K(z) causal and stable.

Let us assume the four causal filters
H, (2),H,,(2),H; (z), and H,;,(») to be described
by rational functions of the form of (7). A necessary and
sufficient condition for avoiding instantaneous reflections at
both ports of the scattering junction is b,

h'vl (O)h’lz (0) = h'vz (O)h’ll (0) (12)
Fig. 3. Structure of thé2 — C' mutator. Notice that when port 2 is connected
whereh,, (0), h,, (0), h;, (0), and h;,(0) are the leading terms to a nonlinear capacitor, the wave variables and b becomeb and «,
of the numerators ofH,, (z), H,,(2), Hi, () and H;,(z), espectively.
respectively. In addition to the above adaptation condition,
we need to make sure thaf(z) corresponds to a causal and, H; (») = Ry(») = R and H;,(») = Ra(») and choosing

stable filter. the structure of Fig. 2(b).
Notice that we may eliminate the instantaneous reflections
C. Elementary Scattering Junctions: Mutators at both ports by letting? = 7°/2C, in which case, we have

z) = z~1. This last result is quite interesting as the junction
t

A particular case of wave scattering junctions with memor‘é/{( - - .
. - . etween a capacitive RTF and resistive one is performed by the
is represented by the wave digital mutators [15], which are

L cattering junction of Fig. 1(b), whose reflection coefficient is
intimately related to a class of two-port analog elements [12], .

. . : delay element and whose second port is left unconnected. As
[17], [18] called mutators which are built using only oper-

\ " . . : .. a consequence, the whole scattering junction may be replaced
ational amplifiers and linear passive resistors and capacitors;, . ; .

. with just one delay element, as predicted by the classical WDF
Mutators can be used, for example, to transform a nonlinear :
. . : : ! . -theory [1] (see Section II-B).
inductor into a nonlinear resistor while preserving the nonlin-

. X . . The waveR — C mutator can be used to extend the results
ear characteristic in the transformed Kirchhoff domain. This . . ) X
. ._._on nonlinear resistors [11] to the case of nonlinear capacitors
property can be quite useful as, for example, synthesizin

a . X . .
nonlinear inductor with a prescribed — i characteristic is goy following the method explained in Section IlI-Al. In fact,

o ) . .~ the waves at port 2 of th& — C of the mutator are
generally much more difficult than implementing a nonlinear

resistor with the same characteristic in the ¢ plane. In this T 14271 1
case, ank — I, mutator can be used to map the— ¢ plane  42(2) =V (2) + 250 1 -1 I(z) = V(2) + C Q(2)
onto thev — ¢ plane. In general, mutators reduce the problem T 1421 1
of realizing nonlinear algebraic bipoles to that of synthesizingP2(2) =V (2) = 5 =75 [(2) = V(z) - 5 Q(z) (13)
a nonlinear resistor. i
The scattering junction with memory of the type definewhereQ(z) is associated with the electrical chaige), 4(t) =
in this section represents a direct extension of the conceptit#)- As a nonlinear capacitor can be described by an algebraic
mutator because it is suitable for modeling a wide class tflationship of the formP(v,q) = 0 between the electrical

dynamic nonlinear elements (filtered algebraic nonlinearitiesfargeg and the voltage, we can use the results of Section II-
as explained in Section IlI-A2. C by letting C play the role of “reference capacitance” in the
In this section, we consider the wave equivalents of tHi@ear transformation that maps the Kirchhoff characteristic of
mutators that are used for modeling the simplest types e nonlinear capacitor onto the wave domain. In conclusion,
nonlinear elements with memory. in order to implement the nonlinear capacitor in the wave
1) Nonlinear Capacitors-& — C Mutator: The waveR — domain, we only need to implement a nonlinear map of the
C mutator is simply a scattering junction between a capal®m b = f(a) and connect it with the capacitive port of the
itive RTF and resistive one. With reference to the resultd — C mutator of Fig. 3, through the relationships= 4, and

of Section IlI-B, this situation can be dealt with by lettingz2 = b. This operation is possible if the invertibility conditions
Ri(s) = R and Ry(s) = 1/(sC),C > 0. After bilinear of the nonlinear characteristic of the capacitor are satisfied.

transformation, the scattering filter Examples of application of this solution are reported in [15]
for the anharmonic oscillator and in [16] for the inverted
Ry(z) — R T 14271 pendulum.
K(2) = i Rl =55 o - _ . T
2(2) + R 2C 1—=z 2) Nonlinear Inductors-R — L Mutator: The R — L mu
tator is a scattering junction between an inductive RTF and a
of Fig. 1 becomes a first-order causal allpass filter resistive one; therefore, it can be implemented as in Fig. 1(b).
. With reference to the results of Section IlI-B, 18 (s) = R
K(z)=2 +z b= T -2RC and Ry(s) = sL, L > 0. The corresponding scattering digital
1+ pz=t’ T +2RC filter
which is stable whenp| < 1, i.e., whenR > 0. The same K(z) = _ptzT _T-2L/R (14)

—1» P= .
result can also be derived by lettint,, (z) = H,,(z) = 14 pz—t T+2L/R



1662 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 6, JUNE 1999

is a first-order causal allpass filter whose stability is guaranteed
by the condition|p| < 1, which requires the reference
resistanceR to be positive. Instantaneous reflections can be
eliminated at both ports of the scattering junction by letting
R = 2L/T, in which case, we havé((») = —z1, as
expected from the classical WDF theory [1].

The aboveR — L wave mutator can be employed for im-
plementing nonlinear reactive elements of the fdvfiju, j) =
0,(t) = di(t)/dt. This definition does not correspond exactly
to that of a nonlinear inductor, but it has a meaningfudig. 4. Structure of the&? — L mutator. Notice that when port 2 is connected
nterprtationfor mechanical systems n fact s characteristies T by, e s Innes T (0N L
represents a nonlinear _r6|ation$hip between force_ (VOIta.ge'l_\E 'F')stivepo?/t. to theinductiveport and then erl?lbedded into the nonlinearity.
variable) and acceleration (derivative of the velocity, which is
the current-like variable). In this case, we may proceed exactly
as seen for nonlinear capacitors by defining the wave pair D Multiport Junctions with Memory

The approach proposed above for deriving scattering junc-

b,

2L 1— 271 tions with memory can be readily extended to parallel or series
Ax(z) =V(2) + 7 7 Tt I(z) = V(2) + LJ(2) multiport junctions.

2, 1— z—1 When only the current is filtered (of the Kirchhoff variables
By(z) =V(2) = - 151 I(z) =V(z) = LJ(z) to which the waves are referred), the multiport junctions

turn out to be structured like those derived by Fettweis [1],
where J(z) is the Z-transform of the discretized version 0fprovided that reflection cc_)efficients are replaced_by reflection
j§(t), and L is a constant parameter that plays the role Jditers. For example, a series connectlonmorts with RTFis
a “reference inductance.” The correspondiRg- L mutator £1(?) 10 R.(2) is characterized by the Kirchhoff equations
results as being a dynamic scattering junction, whose reflectibi?) + -+ Va(z) = 0 and [1(z) = --- = I(z). The Z-
filter is just a delay element with sign change. transforms of thenth output waveB,,,(z),m = 1,---,n, can

More interesting is the case in which the nonlinear inductdfus be written as a function of all input waves.(z), k =
is defined as an algebraic relationship of the fdfif, i) =0 1" "»" a8 B (#) = Am(2) = Tin(2)(A1(2) + -+ An(2)),

between the flux linkagep (¢ = v) and the curreny. Where
Nonlinear inductors with a magnetic core are usually described 2R, (2)
this way. In this case, we can use the results of Section I11-A2 [,n(2) i

with the pair of wave variables Ry(z) + -+ Ra(2)

T 144 are the reflection filters, which are assumed to be causal
z

Ao(2) =P(2) + LI(z) = = — V(z) + LI(z) and stable. The multiport junction is thus characterized by
2 1= n reflection filtersI'y(z), k = 1,---,n, which are bound to
_ _ 14z _ satisfy the constraint
Bs(z)=P(2) — LI(z) = 5 1 =1 V(z)— LI(2)
—z
which correspond to (8) wherH,, (z) = 1,H;(z) = > () =2 (15)
R, H,(z) = L and k=1
T 14 Therefore, as in the linear case, the number of “independent”
z

. . ports isn — 1. The fact that the reflection filters are bound

21—z to satisfy (15) can be used to simplify the structure of the
_ S ) Junction. For example, by lettind?,(z) + - -- + R,,—1(z) =
From (9) we derive the reflection filter, which results as . (2), we obtain',(z) = 1 with the result thatB,,(z) = 0.
(14), as expected.. . By doing so, we make theth port reflection free.

As already seen in Section I1I-A2, we may choose betweenTne apove condition dbtal adaptatioris a very strong one,
two alternative structures for the scattering junctidh{ L \yhereas computability is, in fact, guaranteed by a condition of
mutator), which are specified by (10) and (11). The struCtujigstantaneous adaptatiot is not difficult to verify that when
of Fig. 2(b), however, is preferable to the one of Fig. 2(a),e port RTF’s are rational functions of the form
asH; (z)/H;,(z) = R/L = 2/T is just a scale factor, which
can be easily embedded into the nonlinear characteristic of the 7

H,,(2)

N
inductor. The final implementation of the nonlinear inductor is cx(0) + Z cx(m)z™™
thus represented by thié — L mutator of Fig. 4, whose port 2 Cr(2) et
, ‘ _ - Ri(z) = =
is closed on a nonlinear element, provided that the conditions :
of invertibility of the nonlinear characteristic of the inductor 1+ Z di(m)z—m
are satisfied. m=1
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then the instantaneous adaptation is guaranteed by the condNotice that when all ports are referred to the same types of
tion filtered waves, i.e., whe#/,, = --- = H,, = H,, then the
voltage filter can be eliminated from the junction

c (0) = e (0).
( ) rgz:l ( ) Bm(z) = Am(z) - Fm(z)(Al(z) + -+ An(z))

Similarly, we have the case of parallel multiport jumtio”ﬁ/here
with memory. In this case, the instantaneous adaptation con-

e 2H; (2)
dition is expressed as Tpn(2) = i
Hi () + -+ H;, (2)
n—1
(07 =Y en(0)7h E. Passivity of Multiport Junctions
m=1

_ _ An important problem that needs to be carefully addressed
Notice that when the bipole connected to tht@ port has s that of thepassivityof the multiport junctions with memory
a transfer function that matches the port's RTF, the bipoff:fined in the previous sections.

reflection filter becomes zero, and the corresponding junctionin classical wave digital filters, in order to characterize
port is left unconnected. As there is no need to implement theoperties such as passivity, nonenergicicity, or losslessness,
reflection filter of an unconnected port, total adaptation can Bepseudo-powef1], [22] function is defined. Through this
used as an effective way of simplifying the implementatiofunction, it is not difficult to show that all adaptors (parallel,
structure, and this fact will be made clearer in Section IV. series, and lattice), ideal transformers, gyrators, and circulators
In general, we can always decide to use single-filter wavgge nonenergic; reactances (capacitors and inductors), unit
throughout the circuit, except where the wave characterisifements, and QUARL's are pseudolossless; resistances are
of a nonlinear element is given in terms of waves of differepseudopassive. The definition of pseudopower provided in [1]
nature. This choice allows us to maximize the compatibilitind [22], however, does not help us characterize the passivity
of wave digital structures with the traditional WDF structuresf the wave mutators introduced before. In fact, the two-
For the sake of generality, however, it is instructive to shoport scattering junctions with memory seen above cannot be
how to derive multiport junctions with memory correspondingasily represented as full-synchrohisave digital two-ports
to double-filter waves. [1], [22], as the delay elements used for implementing the
As seen in Section II-B, double-filter waves can be transeflection filter cannot be assigned a meaningful value of port
formed into single-filter waves through a two-port elementsistance. In order to characterize the passivity of the wave
such as that in the left dashed box of Fig. 2(a). This fagtutators, it is thus necessary to introduce the concepitaf
suggests to us that we could implement a multiport junction febmplex poweentering the junction.
filtered waves by adding such devices at the ports of a voltageq et us consider am-port scattering junction with memory
wave junction. This solution, however, may not be vergharacterized by the single-filter digital waves,,b;), k =
efficient because of the number of filters to be implemented. ... » and the corresponding RTFB(2),k = 1,---,n
Let us consider an-port series junction for filtered waves.The total complex pseudopower entering theorts of the
By applying the continuity constraint; () +---+V,(2) =0 junction is defined as

and I;(z) = --- = I,,(z), we obtain
Ai(2) An(2) P=> IV
< :Arnv _Frnv ,
Bo2) = Ane) = n) 75 44 2 2
where =1 Z (Ay — By) (*)G(* (Ay + By)
2H. (2 k=1
Do) = il
i (%) 4o i (?) whereGy(2) = 1/Ry(2) and the asterisk between parentheses
Hy, (2) Hy,(2) denotes paraconjugation, i.€7(")(z) = G*(1/z*) (which is

The condition of instantaneous adaptation at poris thus the only analytical continuation of the complex conjugation

given by on the unit circle of theZ-transform plane). Notice that the
above definition is consistent with that of ttsteady-state
hi, (0) < h;, (0) pseudopoweprovided in [1] and [23] as well as that of the
h,, (0) k:lzk:;ém h., (0) total complex power provided in [24]. The above expression
T of the pseudopower can be easily rewritten in matrix form as
where the filter’s coefficients are obviously defined. Similarly,
the condition of instantaneous adaptation in the case of the P=1(A- BY"G™(A+ B)
parallel multiport junction is given by :i ADMA
h 0 zn: h'vk (0) IMost conventional WD filters are full-synchronic, i.e., all arithmetic
() hik (()) operations can be performed simultaneously at every periodically recurring

zm .
k=1,k7#m instants.
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where, in the matrix case, the asterisk between parenthesases, in fact, depends on the “degree of adaptation” between
denotestransposedparaconjugationA = [A4;---A,]* and the RTF’s of junction ports and bipoles, which decides how
B = [B; --- B,]* are the wave vectors, which are related tmuch of the “dynamics” of the system will be incorporated
each other through the scattering matfif>) asB = SA,G into the adaptors. This increased freedom, however, must be
is a diagonaln x n matrix whose diagonal elements arearefully dealt with as there are some constraints that need to

Gy, k= 1,---,n, and be taken into account.
First of all, we need to make sure that the passivity
M=a0% -8s¥a® +a¥s - sHag properties of the individual elements of the reference analog
—(I- S<*>)G<*)(I+S) circuit are preserved by their WD counterpart. This, how-

ever, is automatically guaranteed by an appropriate choice of
wherel is then xn identity matrix. From the above expressiorthe analog-to-digital mapping (e.g., bilinear transformation),
of the complex pseudopower, it is not difficult to showProvided that some precautions be taken in the numerization
that if the port admittance matrix(z) converges on the Process. Furthermore, we need to guarantee that the stability
unit circle, then both parallel and series multiport junctiongroperties of the whole analog reference circuit are preserved
are nonenergic. For example, the total complex pseudopow®¥rits WD counterpart.

entering a parallek-port junction, whose equations are As far as this last point is concerned, we have already
verified that parallel and series multiport junctions are intrin-
B;, =2V — Ay sically nonenergic, provided that the port RTF's are stable.
n A computable interconnection through nonenergic junction of
1% =% Z Iy Ay elements having the same passivity properties as the reference
k=1 ones will preserve the stability properties of the reference

analog circuit. However, we need to make sure that the quan-
wherel'y, = 2G,/G and G = Xj_; Gy can be easily proven tjzation of the filter coefficients will not affect the continuity
to be identically zero. In fact, sincél, + Br = 2V,k = (onstraints on the junctions.
1,---,n, and (Ax — By)Gr = 2Ix,k =1,---,n, we have Another fact that needs to be stressed is that the conditions
N N of computability expressed in this section are only local
1 _ (%) (%) _ (=) _ because they only guarantee that a port is reflection-free, but
P=3 2 (=BG (A By =V ) LT =0 they do not tell us whether the whole circuit will be, in fact,
computable. In order to make sure that a nonlinearity can
provided that the port RTF's are stable. The same conclusiactually be connected to a port, not only do we need to make
can be drawn with series multiport junctions with memory abe port reflection-free, but we also need to make sure that
well as mutators. no other delay-free directed loop via an outer feedback path
In conclusion, a parallel or series multiport junction i€xists. This problem could arise from the presence of a second
nonenergic, like the memoryless junctions seen, for exampt@nlinearity in the circuit.
in [1], provided that the RTF’s are stable. Parallel and seriesIn general, a classical WDF implementation of a linear
dynamic multiport junctions can thus be rightfully callectircuit gives us only one degree of freedom in the global
dynamic adaptors choice of the reference resistances. This degree of freedom
Similar conclusions can be drawn for dynamic multiporis exploited whenever a resistive nonlinearity is included in
junctions that correspond to double-filter digital waves. Ithe circuit, as we need to adapt the port where the element is
fact, when using waves of the ford = H,V + H;I and connected. Something similar happens when modeling filtered
B = H,V — H;I+, we haveV = (A + B)/(2H,) and algebraic nonlinearities in the WD domain, as a minimal
I =(A- B)/(2H;). As a consequence, the definition of theondition of instantaneous adaptation, must be satisfied at
total pseudopower entering the junction is the same as befdies port of insertion of the nonlinearity. As a consequence,

i

k=1 k=1

provided that when two or more nonlinearities are present in the circuit,
1 we cannot guarantee that they can all be incorporated in the

Gy = Pr—r WD structure through the approach devised in Section llI.

Ho Hj, A case in which this can, in fact, be done is when the

nonlinear elements belong to portions of the circuit that are
“instantaneously decoupled” from each other through a delay
The generalized wave digital structures resulting from tredement. This situation is not at all infrequent in musical acous-
above definitions of digital waves resemble those of classidals, where resonating or reverberating structures are often
WDF's, especially when using single-filter waves. Howevemodeled by means of digitalaveguidegnetworks of delay
because of the newly added filters involved in multipoftnes interconnected through WDF-like multiport junctions).
junctions and bipoles, a few considerations are in order. Such multiport elements, which can be seen as the distributed-
First of all, we are now confronted with an increase@darameter counterpart of WDF's, have a “decoupling” effect
freedom in the construction of the wave digital structures, am wave digital structures.
the choice of the waves that can be adopted for a circuit portWhen no decoupling multipoles are present in the WD
is much wider than with classical WDF's. The choice of sucbircuit, we need to identify a minimal portion of the circuit

F. Final Remarks
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that contains all nonlinear elements and to proceed with its e
global discretization. ‘:l bz ) gz
I 2 1-7' |
! I
|
IV. EXAMPLES OF APPLICATIONS b | : a
. . . ! 217 2
In this section, we present some simple examples of scat- <t T 1 AT ©

tering junctions and elements that cannot be modeled with ! [

classical WDF principles. We will consider just three cases: T o
. . Fig. 5. Scattering junction for connecting the wave characteristic of the
* Memristor We use double-filter waves, but the two-porfyemristor to a standard WDF port. Notice that and b will become the

junction that connects a memristor to a standard WDdetput and the input, respectively, of the instantaneous wave-equivalent of

port has no actual scattering. Its structure is, in fact, malj§ memristor.

only of the left dashed block of Fig. 2, whose purpose is

just to make the waves dimensionally homogeneous withAs far as the wave filters (i.e., those that appear in the left

each other. dashed box of Fig. 2) are concerned, we have
. Erequenc_y-Depenqent Negative Resistty implementa- H;, Rs 21 _ -1 _H,

tion requires one-filter waves. T = ST ii. - @
 Varactor Oscillator This is the simulation of a circuit v Folz/mya—a=1/142-1) +z v2

with chaotic behavior in critical conditions. as expected. In conclusion, the scattering junction that is
required for connecting the wave equivalent of the memristor
to a standard WDF port is as shown in Fig. 5.

Notice that the presence of poles on the unit circle could

The memristor [19] is a bipole characterized by an algebraigye rise to problems of stability, thus impairing the nonener-
relationship of the fornt'(¢, ¢) = 0, where¢ = v, andg = i.  gjcity condition. In order to avoid this, we can adopt different
Its name is a contraction afiemory resistobecause it behaves giscretization mappings from the bilinear one.
like a resistor whose resistance (conductance) depends on thehe condition of invertibility of the nonlinear characteristic
complete past history of its current (voltage). g = G sing of the memristor can be readily derived with

Although the menmristor is realized only in the form of aneference to the case of the voltage-controlled resistor. In fact,

active circuit, such a two-port circuit element is consideregle haveG cos ¢ # —1/R. Global invertibility is guaranteed
a to be as basic as resistors, capacitors, and inductors. fhehe conditionG < 1/R.

peculiar behavior of the memristor makes it particularly useful
in applications to device modeling and signal processing [14. Frequency-Dependent Negative Resistor
A physical example of a memristor [12] characteristic is
given by ¢ = G sing. This relationship implies that =
(G cosg)v, which confirms the fact that the conductanc
depends on the past history of the voltage.
Let us consider the problem of connecting the wave equi

A. Memristor

A frequency-dependent negative resistor (FDNR) [12], [25]
is defined by a relationship of the forin= Md?v/dt?. Its
analog transfer function is, thus, of the folm= (1/s>M)1,
\/y_heres is the complex variable of the Laplace transform,

alent of such a nonlinear element with a standard W ich is to_be remapped onto ”ﬁ‘p""?”e th_rough biIir_1ear_

port, which is characterized by the wave variablés — transformat_lon. Although_ the FDNR is a Ilnear_dewce,_lt

H, V+H.IB = H,V — H, I, where H,, = 1 an cannqt be implemented in the wave digital domain by using

H‘l - R v ! ! ! classical WDF adaptors. In fact, if we adopt the wave pair
) 0(|a,b), which is referred to as the resistanfe we obtain a

A natural way of choosing the wave variables, in order f Wave relationship of the fornB(z) = K (z)A(z), where

the memristor to be implemented as an instantaneous elem
is 1

K(z)= M ) (16)
As IHUZV—I—HZ‘ZIIHU2V+MGIQI:P+NQ

2 TE
: s?M s=(2/T)(1—2=1/142~1)
By=H,V-—H,I=H,V—nuG,I=P—puQ

This reflection filter is not stable as its poles lie on the

imaginary axis of thes plane. As the bilinear transformation
whereH,, = 1/s,G%, = 1/s and H;, = 11/s, which is to be preserves stability properties, the wave digital reflection filter
mapped onto the domain of the Z-transform through bilinearll not be stable either. In fact, the filter we obtain, after
transformation. choosingM = T?/(4R) for instantaneous adaptation, is of

With reference to the results of Section 11I-B on the dynamithe form K(z) = 227!/(1 4+ 2=2), whose poles are on the

adaptors, it is not difficult to realize that the scattering filtemnit circle, as expected. Likewise, it is not possible to find a
is, in fact, simply a reflection coefficient of the fordd = stable implementation of aR — M mutator, as its reflection
(n — R)/(n + R). The condition of instantaneous adaptatiofilter would, once again, be given by (16).
i = R leads toK = 0, which makes the junction totally On the other hand, we can always model the FDNR with
reflection free. waves of the forma = v 4+ ¢/C andb = v — ¢/C, where
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—— WW———60000—— NL characteristic in Khirchhoff domain

R L v 12

(D a[=L] i

Fig. 6. Electrical circuit of the anharmonic oscillator.

dg/dt = ¢, andC plays the role of a “reference capacitance.”

With reference to such waves, the FNDR becomes a simple 4 : : " :
delay element, provided that the adaptation conditidn= 5 : : /
CT/2 is satisfied. 2

C. Varactor Oscillator

o o 325 2 s g s o o5 1 15 2
Examples of simulation of chaotic circuits in the wave e [Cx10™Y

digital domain are already available in the literature [11],
[13]_ In particular, Meerktter [11] showed that as all chaotic_':i9~ 7. _Nonlinear cha_lracteristic of the capacitor of the anharmonic oscillator
. . . s . . in the Kirchoof domain.
circuits belonging to Chua’s family [26] are characterized by
the presence of a nonlinear resistance (which can be usually
modeled with a piecewise linear characteristic), they can be , ,, __ NL characteristic in wave domain
easily implemented in the wave domain by means of the[V] : : :
method of Section II-C. 5L N
Chaotic behavior in electrical circuits is due, in most cases,
to a nonlinear resistance. There are, however, several examples 1o}
of circuits that contain a nonlinear reactance and exhibit, in 5 :
certain conditions, chaotic dynamics or particularly interesting 3/ ;
phenomena such as subharmonic oscillation (period doubling). : \
Examples of such circuits can be found in [27]—[31], and the
accuracy of their computer simulation is usually quite sensitive : : :
to the errors caused by discretization. \\
An example of circuits of the type described above, whose : f f
simulation in the wave digital domain was studied in depth : , , : :
by Felderhoff [13], is represented by the anharmonic oscilla- -5 i : . : i i : i

. . . . L. . -20 -10 0 10 20 30 40 50 60 70
tor [29] of Fig. 6. This simple RLC circuit is characterized a [V]
by a nonlinear voltage-controlled capacitance, whgse v _ -, _ _ _
characteristic Fig. 8. Nonlinear characteristic of the capacitor of the anharmonic oscillator

in the wave domain.
C Y >
= 0 —YF/————— v — Vo . . . .
1 «/1+v/vo7 The varactor's circuit can be implemented in the wave

domain by implementing the nonlinear capacitor as shown in
is shown in Fig. 7. The parameters used for the simulation $&ction IlI-C1. By adopting the waves (13), the characteristic
such a circuit arey = 0.6 V, R = 180 2, L = 100 sH, and of the nonlinear capacitor shown in Fig. 7 is mapped into the
Cy = 80 pF, and the voltage supplied by the ideal generaterave domain as shown in Fig. 8.
is e(t) = eo sin(27 fot), fo = (2m/LCy) 1. Now, we need to connect the nonlinear capacitor to the rest

When v < wp, the nonlinear element is replaced by @&f the circuit. This operation may be done in two different
resistive sourcé = ¢ = (v + vp)G, G > 0. In any case, the ways, depending on whether we decide to apply the condition
chaotic behavior of the varactor occurs in the region vy of instantaneous adaptation with the- L pair or that of total
of its characteristic. adaptation.

In order to implement the varactor oscillator in the wave Performing instantaneous adaptation allows us to implement
digital domain, Felderhoff [13] proposed a solution that enthe linear portion of the circuit as a classical WDF structure.
ploys classical WDF elements, including a transformer whose Fig. 9, we can see the complete wave implementation of the
transform ration = v//v results as being a function of thevaractor oscillator. Of the two scattering junctions of Fig. 9,
nonlinear capacitor voltage. As v depends on both portone is a standard three-port series adapted junction. The first
waves, we cannot obtain its value directly from the wavienpedance port is set equal iy = R in order to include the
variables at the capacitor; otherwise, the implementation woulgsistor. The second port resistance is set equBhte 2L /T
be noncomputable. In order to overcome this problem, in order to model the linear inductor as a simple delay with
should be derived by solving an implicit equation per samptgn change. The third port is adaptdés = R; + R») so that
with a consequent increment of complexity. no delay-free loops are created with the nonlinearity through
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a(t)=(t) b, )
—>

R,

b,
- —

4 Fig. 10. Wave implementation of the anharmonic oscillator based on total
adaptation. Notice that we do not need to draw a complete scattering cell with
- memory as we already know that the reflected wave toward the linear part of
the circuit is zero (total adaptation).

T i [Ax10°] Phase portrait
10 ; " : .
aST' RZ) b, | ]
T < J |

Fig. 9. Wave implementation of the anharmonic oscillator based on instan- |
taneous adaptation. The double-bordered box represents an R-C mutator

and the presence of two “stubs” in its outputs denotes the absence of local s"(l’ _{ 8
instantaneous reflections. 2t / {'>‘\r(’7/'"i,':,’5"-?'\?7@
Vil wrsf'\.\,e@;'.«.\
L | [ g
the scattering junction with memory. Tlie— R wave mutator () ‘)\ ‘\“[l\(‘"m{’/.’
is a scattering junction with memory where the reflection filter,, | a“s;.é"“Q\}\g,‘.;\\\, X\ \ e 1
is K =~ 1, as seen in Section 1II-C1. In order for this to be \\3 “&\‘(\%\'g///"\&ﬁi":‘/‘f:{‘\‘\/'\\\ '_(/,4
true, we need to let al .@""\\\\\\\\('/\l/\‘w‘v‘\\\\ /) .
T T/2 SRS
Cl = 2R3 = R —+ 2L/T -93 -2.5 -2 -1.5 -1 -0.5 [1} '90.5

This is the reference capacity that we need to use to determjne . . . .
the wave equivalent of the NL characteristic of the capacitar.: 11. Phase portrait ofy = 3.57 V using the parallel integrator and
quival _ _ Pacitor. = 1/(s2f,).

An alternative implementation can be obtained by perform-
ing total adaptation with respect to the whdie— L portion ] ] ] o )
of the circuit. This corresponds to defining a pair of wavie denominator of (17). Since this polynomial is Hurwitz for
variables that incorporate the whole memory of the line&r< ¢ < 1, such conditions are simply < RC' < r/2.
part of the circuit. In other words, we connect the nonlinear A Phase portrait of the varactor's state variables is shown
capacitor to a voltage generator with internal impedafice= N Fig- 11 forT" = 1/(32f,). The accuracy of the simulation
R+ sL (to be remapped onto the domain of tHetransform IS Quite independent of the sampling frequency, as long as
through bilinear transformation) and perform adaptation witf€ Stability condition is sat|§f|ed, and the nonlinear element
respect to the whole internal impedance. When the waves SR€S not broaden the signal’s bandwidth beyond the Nyquist
referred toZ;, the wave equivalent of the above generator f€€duency. In other situations [13], the simulation was quite
simply a source of voltage. As a consequence, we only need€nsitive to discretization problems, and the choice of the
a scattering junction with memory that changes the referer?@mPling frequency was critical.
impedanceZ; = 1/(sC) to Z; = R + sL. Such a junction
can be implemented as shown in Fig. 10, where the reflection V. CONCLUSIONS

filter is given by In this paper, we proposed a generalization of the wave

N2 -8)+ 2726 digital filter theory, whose aim is to enlarge the class of

T 14215+ 2=2(1— §) (A7) honlinearities that can be embedded into WD structures. The

class of nonlinear elements that can be modeled through the

whereé = 2RC/T, and ideas proposed in this paper is that of the filtered algebraic
T/2 nonlinearities, which covers a rather wide class of dynamic

nonlinear elements. In particular, we introduced a class of
dynamic multiport junctions that synergically combine to-
is the condition of instantaneous adaptation for the scatteriggther ideas of nonlinear circuit theory (mutators) and WDF
filter. theory (adaptors). We also showed that under some conditions

The conditions under which the scattering filter is stablen the reference port transfer functions, such junctions are
can be quite easily determined by studying the polynomial abnenergic.

T R+2L/T
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We showed that this generalization provides us with [as]
certain freedom in the design of WD structures. In fact, not
only can we design a dynamic adaptor in such a way to
incorporate the whole dynamics of a nonlinear element into [1,6]
but we can also design a dynamic adaptor that will incorpora[tﬁ]
an arbitrarily large portion of a linear circuit.

The ideas presented in this work give us a different peft8]
spective on classical WDF’s and, at the same time, provide
with a link to classical nonlinear circuit theory. In fact, they
allow the designer to choose among a variety of alternati\#]
implementative solutions for each nonlinear circuit undgs,
examination, whereas all traditional WDF structures can be
obtained as a particular case of the proposed approach.
enhanced flexibility in the design of the new WD structures
is paid for in terms of conceptual complexity of the resultind23]
structure, which complicates the automatic synthesis of W[IQ4]
systems.

Further extensions of the proposed theory are currentpl
under study in order to include a wider class of nonlinegse
elements and circuits, including multiport nonlinearities with
memory, which are a direct extension of nonlinear algebra[i%?]
multiport devices [12]. [28]
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