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Abstract

In this paper we present a low-cost, accurate and #exible approach to the calibration of multi-camera acquisition
systems for 3D scene modeling. The adopted calibration target-set is just a marked planar surface, which is imaged in
several positions in order to emulate a larger 3D target-frame. In order to obtain a better camera parameter estimation,
the proposed approach is able to re"ne the a priori knowledge on the target-set through a process of self-calibration. This
allows us to start with rough measurements of the coordinates of the calibration targets. We formalize our parameter
estimation problem as a particular case of the more general class of inverse problem. In particular, we derive an analytic
prediction of the calibration performance, based on error propagation analysis, whose correctness is demonstrated
through simulation experiments. Finally, the results of a series of calibration experiments on real data is presented, which
con"rm the e!ectiveness of approach in a variety of experimental conditions. ( 1999 Elsevier Science B.V. All rights
reserved.

Zusammenfassung

Wir praK sentieren in diesem Artikel einen kostenguK nstigen, genauen und #exiblen Weg, um die Multi-Kamera-
Erfassung fuK r eine 3D-Szenariummodellierung zu kalibrieren. Die angenommene Zielmenge zur Kalibrierung ist
lediglich eine markierte ebene Ober#aK che, die in verschiedenen Positionen ins Bild gebracht wird, um einen groK {eren
3D-Zielrahmen zu emulieren. Um eine bessere SchaK tzung der Kameraparameter zu erhalten, ist die vorgeschlagene
Methode in der Lage, die a priori-Kenntnis uK ber die Zielmenge durch einen Selbstkalibrierungsproze{ auszunutzen. Wir
formulieren unser ParameterschaK tzproblem als einen Spezialfall der allgemeineren Klasse der Invertierungsprobleme.
Speziell leiten wir eine analytische Vorhersage fuK r die Kalibrierungsleistung her, die auf der Fehlerfortplanzungsanalyse
basiert, und deren Korrektheit anhand simulierter Experimente gezeigt wird. Abschlie{end werden die Ergebnisse einer
Reihe von Kalibrierungsexperimente mit echten Daten vorgestellt, die die Wirksamkeit der Methode in einer Vielzahl
experimenteller Bedingungen bestaK tigen. ( 1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

Dans cet article, nous preH sentons une approche de faible cou( t, preH cise et #exible pour calibrer des systèmes
d'acquisition à cameH ras multiples pour la modeH lisation de scènes 3D. L'ensemble cible de calibration que nous avons

0165-1684/99/$ - see front matter ( 1999 Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 5 - 1 6 8 4 ( 9 9 ) 0 0 0 4 2 - 0



adopteH est simplement une surface plane marqueH e, imageH e dans plusieurs positions a"n d'eHmuler une trame cible 3D plus
large. A"n d'obtenir une meilleure estimation des paramètres des cameH ras, l'approche proposeH e permet de ra$ner les
connaissances a priori sur l'ensemble cible au moyen d'un processus d'auto-calibration. Ceci nous permet de commencer
avec des mesures grossières des coordonneH es des cibles de calibration. Nous formalisons notre problème d'estimation de
paramètres comme un cas particulier d'une classe de problèmes plus geH neH rale. En particulier, nous deH rivons une
preH diction analytique de la performance de calibration, reposant sur une analyse de la propagation de l'erreur, dont
l'exactitude est deHmontreH e par des expeH riences de simulations. Finalement, nous preH sentons les reH sultats d'une seH rie
d'expeH riences de calibration sur des donneH es reH elles, qui con"rment l'e$caciteH de l'approche dans une large varieH teH de
conditions expeH rimentales. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multi-camera acquisition systems are today of-
ten employed for 3D scene reconstruction in a var-
iety of applications ranging from industrial quality
control to content for virtual reality applications.
In the past decades, in fact, a variety of methods
have been developed for estimating the 3D struc-
ture of a scene through the joint analysis of a set of
its views. Most of these methods rely on the a priori
knowledge of a set of parameters that speci"es the
geometrical model of the acquisition system. The
estimation process of such parameters is generally
called camera calibration and represents a crucial
step in the global reconstruction chain. As a matter
of fact, the quality of the reconstruction is crucially
dependent on the accuracy of the calibration pro-
cess and a 3D reconstruction of `metrica quality
often requires a long and cumbersome calibration
procedure. It is the aim of this article to approach
the calibration problem in a general fashion with
the goal of keeping the complexity and the setup of
the calibration procedure as simple as possible
without giving up accuracy in the estimation re-
sults.

It is well-known that the 2D coordinates of some
image features, as acquired with two or more
cameras, can be used for recovering the 3D position
of the scene details that originated them, through
a process of `geometric triangulationa. In order to
do so, we need to know the physical (optical and
electrical) and geometrical (positional) character-
istics of the cameras and we need to make sure that
the correspondences between image features are
correctly determined. The `matchinga of image

features is usually a critical problem as the search
space for stereo-correspondences is two-dimen-
sional (the image plane). However, the knowledge
of the model parameters of the acquisition system
can be used for making it a one-dimensional search
by exploiting the epipolar geometry of the camera
setup. In fact, given a point on the "rst image, the
stereo-corresponding point on the second one is
bound to lie on the epipolar line, which is the
projection of the "rst optical ray onto the second
image plane [1]. This epipolar constraint, however,
is generally not enough to guarantee the correct-
ness of a stereo correspondence. A search for fea-
ture correspondences along the epipolar line is, in
fact, often performed by comparing the luminance
pro"les in the neighborhood of the candidate
matches on the two views, under some constraints
on the relative ordering between them [13]. The
risk of matching ambiguities can be reduced
through the adoption of global consistency con-
straints, implemented through dynamic program-
ming [13]. In alternative, we can geometrically
remove the ambiguity with the introduction of
a third camera. In this case, in fact, each point of
a matched triplet is bound to lie on the intersection
of the epipolar lines corresponding to the other two
points.

The use of more than three cameras could be
justi"ed by the need of making the 3D reconstruc-
tion strategy more robust or by the need of expand-
ing the class of 3D information that we can safely
extract from a joint analysis of the available views.
For example, horizon contours (i.e. extremal bound-
aries generated by smooth self-occlusions) [14,18]
are known to provide valuable information on the
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local 3D structure of the surface (position, tangent
plane and curvature) near the visible rims of the
objects, provided that at least three cameras be
available. However, in order to make this recon-
struction approach robust, the adoption of at least
four cameras with known geometry would help.

It is important to mention that a number of
single-camera methods are also available in the
literature [19,23]. Such methods, often based on
the analysis of a video sequence acquired with
a single camera, are usually non-calibrated, in the
sense that the parameters of a camera model are
`implicitlya estimated together with the 3D struc-
ture of the imaged scene. However, if the goal is
that of a high-accuracy `metrica 3D reconstruction,
then a preliminary partial calibration (estimation
of the intrinsic camera parameters) of the camera
system becomes important, especially when the
camera resolution is modest [17]. In conclusion,
the acquisition systems that we are interested in are
multi-camera systems and, although the approach
we will illustrate can be applied to a broad range of
cameras, we will focus on cameras of modest res-
olution (standard TV resolution) in order to verify
what performance can be achieved with such low-
cost devices.

One obvious way to obtain information on the
camera parameters is, in fact, to decide them be-
forehand. This can be done through a mechanical
adjustment (through high-precision mechanical
supports) of the position and the orientation of
each camera and on the use of `metrica lenses and
sensors (optics with a priori known characteristics).
This solution, however, is normally not applicable
because of its complexity and its high cost. A more
#exible approach is to estimate the parameters of
the acquisition systems through a photogrammet-
ric analysis of matched image features [2,4,17,22].
In general the estimation procedure consists of
a joint analysis of one or more views of a number of
points (targets), which could be xducial marks
placed in the scene volume or even some natural
point-like features that belong to the scene to be
reconstructed. This procedure can be implemented
in a variety of ways, depending on the structure and
on the available a priori information on the calib-
ration targets. One common approach to camera
parameter estimation is to make use of an arti"cial

target-set, whose targets are attached to a rigid
frame that occupies part of the 3D viewing space,
with a priori known geometrical characteristics. As
the exact 3D coordinates of the targets are assumed
available (for example because they have been pre-
viously measured through some high-precision
procedure), they can be used together with the
image coordinates of their views in order to esti-
mate the parameters of the acquisition system. This
approach is commonly referred to as (simple) calib-
ration, and is characterized by a complete know-
ledge of the calibration target-set. The opposite
situation is produced by a set of targets that are
scattered in the scene volume in locations that are
completely unknown. This extreme situation oc-
curs when, instead of using a pre-measured calib-
ration target-frame, we use a set of targets that have
been arti"cially added to the scene or natural
point-like features that are already present in the
scene to be reconstructed. This type of blind calib-
ration problem is usually referred to as self-cali-
bration and, due to the much larger number of
unknowns, in total absence of a priori information
on the targets, it is an undetermined problem [7], in
the sense that it does not allow us to recover the
whole geometry of the camera system. In between
the two extremes of simple and blind calibration
there is a whole range of situations in which only
some information on the targets or on the cameras
is available in a variety of forms, for example stat-
istical information (nominal target coordinates and
a measure of their uncertainty), rigidity constraints,
etc. We will see that this partial information can be
successfully exploited for making the self-calib-
ration problem solvable.

It is important to emphasize that the estimated
parameters of the acquisition system are expected
to hold accurate only for measurements within the
3D volume `spanneda by the speci"c calibration
target-set [8]. In fact, roughly speaking, the target-
set plays the role of a training set for the simple
calibration procedure; therefore it should be chosen
in such a way to be `statistically representativea of
the scene to be reconstructed. As a consequence, in
order to achieve high accuracy in the calibration
and in the 3D reconstruction, it is important for the
targets to properly `"ll upa the entire volume that
will be later occupied by the object to be measured.
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1 In the following, the term multi-view will speci"cally refer to
the availability of several multi-camera acquisitions of the same
target-set in di!erent positions.

This implies that the size of an adequate calibration
target-frame should be comparable with that of the
scene to be reconstructed, with obvious di$culties
in the calibration procedure. In order to overcome
this di$culty, we virtually `enlargea a target-set of
modest size through the acquisition of a number of
its views in di!erent positions. The positions of the
target-frame are chosen in such a way that the
union of all targets will "ll up volume of interest in
such a way to be more representative of the scene to
be reconstructed. Of course, every time we move
the target-frame we introduce six new positional
unknowns, unless we are able to force the frame
into pre-determined positions through some high-
precision positioning device. Due to the cost of
high-precision mechanical positioners, the only
feasible alternative is to move the pattern freely
between acquisitions and to proceed with an a pos-
teriori determination of this motion parameters by
embedding their estimation into the calibration
process itself. Notice that this way of proceeding
corresponds to performing a partial self-calibration
as some information on the global 3D set of targets
(position of the target-frame) is not available and,
therefore, must be estimated. However, we will keep
referring to this method as a simple calibration
technique, meaning that the available 3D coordi-
nates of the targets within the target-frame will be
taken as granted and trusted upon.

As we can easily expect, the quality of the simple
calibration process is strongly in#uenced by the
accuracy of the camera model. Because of that, the
ideal projective camera [1], also known as `pin-
holea camera, is usually not accurate enough as to
guarantee high accuracy in the 3D measurements.
In particular, accounting for the non-ideal behavior
of the camera lenses can become a crucial aspect in
applications of 3D reconstruction. However, al-
though the accuracy of the camera model can be
improved through the introduction of an adequate
number of parameters [21], there is no point in
using too sophisticated a model as one of the main
sources of inaccuracy in the calibration methods is,
in fact, the accuracy with which the 3D coordinates
of the targets are known. Due to the high cost of
accurate measurement procedures, the only option
we have for improving the performance of the para-
meter estimation process is to improve the calib-

ration performance through a sort of self-calib-
ration approach [6], which allows us to go beyond
the accuracy of the available target measurements.

As already said above, a blind calibration strat-
egy (self-calibration in total absence of information
on the targets) is an extremely ill-conditioned prob-
lem. However, some approximate a priori informa-
tion on the target-set is usually available, or it can
be easily obtained through rough measurements. If
such measurements can be assumed to be fairly
unbiased, even if they are rough, we can devise
a self-calibration strategy that is able to re"ne the
rough measurements of the target's coordinates
while estimating the parameters of the acquisition
system. In general, however, as we need to maxi-
mize the accuracy of the target's coordinates, we
need the noise that the data is a!ected by (additive
noise and the consequent error in the localization
of the image coordinates of the targets) [6] to be of
modest magnitude. In the following, we will refer to
this approach as a self-calibration method, in the
sense that the accuracy of the target's coordinates is
improved by the estimation process, with a conse-
quent improvement of the calibration's accuracy.

In this article we propose a simple and e!ective
technique for calibrating CCD-based multi-camera
acquisition systems, which is capable of highly ac-
curate results even when using a low-cost planar
calibration target-set of modest size, and low-cost
imaging devices, such as standard TV-resolution
cameras connected to commercial frame-grabbers.
The key features of the method are the above-
described `multi-view, multi-cameraa (MVMC) ap-
proach,1 based on the analysis of a number of views
of a calibration target-set placed in di!erent posi-
tions, combined with a self-calibration approach,
which makes it able to re"ne (when necessary)
rough information on the target's coordinates. Our
goal is to show that accurate calibration can be
a task of fairly modest di$culty and cost.

In order to devise and develop the method pro-
posed in this manuscript, we formalized the simple
calibration and the self-calibration methods as two
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Fig. 1. Adopted camera model.

particular instances of the more general class of
inverse problems [16], which only di!er in the
input data. In fact, we derived an analytic predic-
tion of the calibration performance, based on error
propagation analysis, whose correctness is demon-
strated in the manuscript through simulation ex-
periments. Furthermore, a series of calibration
experiments on real data has been carried out in
order to evaluate the accuracy and the robustness
of the proposed algorithm in a variety of experi-
mental conditions. In particular, we conducted
a series of experiments for comparing the perfor-
mance of the self-calibration approach with that
achievable through simple calibration.

The article is organized as follows: in Section
2 we summarize some basic concepts and de"ne the
notation that we will need to approach the con-
sidered problem. In particular, the camera model
adopted for this work is illustrated in detail. Fur-
thermore, we present the simple calibration and the
self-calibration problems (Section 2.2) as particular
cases of inverse problems. In particular, in Section
2.3 we discuss an approach to inverse problems
that can be used for analytically predicting the
performance of the simple calibration and the
self-calibration methods. In Sections 3 and 4 we
illustrate our approach to simple-calibration/self-
calibration, based on multiple acquisitions of
a planar target-set. This approach allows a great
#exibility in the exploitation of the a priori know-
ledge of the acquisition system and on the target-set.
Furthermore it allows us to obtain a level of accu-
racy which is at the same level as with 3D target-sets.
Sections 5 and 6 are devoted to the presentation of
the results of some simulation experiments on syn-
thetic data and on some calibration experiments on
real data. Such experiments con"rm the validity of
the analytical prediction of the performance of our
method, and prove the e!ectiveness and the #exibil-
ity of the approach in a variety of experimental condi-
tions. Section 7 concludes the manuscript with "nal
remarks and suggestions for future improvements.

2. Preliminaries

The goal of this section is to present and formal-
ize the camera simple-calibration and self-calib-

ration problems as instances of the general theory
of inverse problems. In order to do so, we will "rst
provide a description of the adopted camera model
and of the parameter estimation approach, in order
to be able to discuss this approach as a particular
case of inverse problem.

2.1. The camera model

A camera model is de"ned as the mathematical
relationship between the 3D coordinates of a point
in the scene space and its corresponding coordi-
nates on the image plane. Even though this rela-
tionship can be de"ned in a variety of ways, a rough
classi"cation can be made between those models
that are based on an operator (e.g. projection
matrix) that maps object coordinates onto image
coordinates through a homogeneous representa-
tion [1,20,22], and those that de"ne a model by
directly using all the optical and geometric para-
meters of the camera [17]. The camera model we
adopted, shown in Fig. 1, belongs to this latter
category, as we are interested in attributing to each
parameter a precise physical meaning. This choice
provides us with a certain #exibility in using all the
a priori information on the camera setup. For
example, if we know that the optical lens of the
adopted acquisition system has a nominal focal
length of 16mm, then this information can be read-
ily used for improving the reliability and the accu-
racy of the calibration process. Moreover, this type
of camera model provides us with more physical
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intuition and, as a consequence, allows us to readily
judge the outcome of the calibration through a di-
rect comparison between the estimated parameters
and the `physical characteristicsa of the camera
(position, orientation, focal length etc.). Another
important advantage of such camera models is that
it is characterized by a non-redundant set of para-
meters.

Three di!erent reference frames are de"ned and
used [17] for the camera model of Fig. 1:
f World reference frame } rigidly attached to

the scene; used for specifying the world coordi-
nates of any point p

w
"[x

w
y
w

z
w
]T of the 3D

scene;
f Camera reference frame } rigidly attached to the

camera; z
c
is the optical axis, while x

c
and y

c
are

parallel to the horizontal and vertical axes of the
image plane (which is assumed to be orthogonal
to the optical axis), respectively. The origin is the
optical center of the lens. The camera coordinates
of a 3D point are speci"ed as p

c
"[x

c
y
c
z
c
]T.

The intersection between optical axis and image
plane is called principal point;

f Image reference frame } de"ned on the image
plane; the origin is the center of the pixel at the
bottom-left corner of the image, x

f
and y

f
denote

rows and columns, respectively. The image coor-
dinates p"[x y]T are expressed in pixels (see
upper-left frame in Fig. 1).
The relationships between the world coordinates

of a point p
w

and the image coordinates p of its
projection onto the image plane are given in the
following:
1. Conversion from world-coordinates (p

w
) to

camera-coordinates (p
c
)

p
c
"R ) p

w
#t, (1)

where R is a rotation matrix and t a translation
vector which specify the rigid displacement be-
tween world reference frame and camera frame.

2. Perspective projection of a 3D point P onto the
image plane

p
u
"!

f

z
c

p
c
, (2)

which results in p
u
"[x

u
y
u

f ]T, f being the focal
length of the optical lens.

3. Lens distortion } modeled as a shift of the image
points from their ideal perspective projection,
lens distortion can be thought of as a nonlinear
stretching of the image plane. In order to accu-
rately model lens distortion [11] both its radial
and tangential components should be con-
sidered. With radial distortion, image coordi-
nates are radially shifted from the principal
point, while tangential distortion accounts for
the component that is perpendicular to the
radial direction. In this manuscript we only con-
sider radial distortion as the tangential compon-
ent is often negligible with respect to the radial
one [17]. The radial distortion is usually
modeled by the power series that expresses the
undistorted image coordinates p

u
"[x

u
y
u
]T as

a function of the distorted ones p
d
"[x

d
y
d
]T:

x
u
"x

d
) (1#k

3
r2
d
#k

5
r4
d
#2)

y
u
"y

d
) (1#k

3
r2
d
#k

5
r4
d
#2)

r2
d
"x2

d
#y2

d
,

(3)

where r
d

is the distance between the distorted
image point and the principal point. The "rst
two terms of the series (k

3
, k

5
) are usually su$-

cient for an accurate parameterization of the
radial distortion [21].

4. Conversion from camera coordinates to image co-
ordinates

x"c
x
#

x
d

d
x

, y"c
y
#

y
d

d
y

, (4)

where c"[c
x

c
y
]T are the image coordinates of

the principal point (expressed in pixels), while
d
x

and d
x

are the horizontal and vertical size of
the pixel, respectively [17].
The above set of equations allows us to directly

compute the image coordinates of a point, given its
position in the scene and the parameters of the
camera model.

In conclusion, our camera model is completely
and uniquely speci"ed by the parameters involved
in the above equations. In particular, R and t are
called extrinsic parameters, as they de"ne the geo-
metric relationship between cameras and 3D scene,
while the others are called intrinsic, as they only
depend on the physical characteristics of the
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Fig. 2. Calibration setup.

cameras. Throughout this manuscript, the para-
meters of the jth camera will be speci"ed by the
following vector of eleven elements:

c
j
"[u(j) h(j) t(j) t(j)

x
t(j)
y

t(j)
z

f (j) k(j)
3

k(j)
5

c(j)
x

c(j)
y

]T, (5)

whose "rst six elements are the Euler angles and the
translation components that characterize the rigid
displacement (R, t) from the world-frame to the
camera-frame. It is important to emphasize that the
size of the pixel (d

x
, d

y
) is assumed a priori known

and is not included in the set of camera parameters
that are to be estimated through camera cali-
bration. This assumption is reasonable in the fol-
lowing two cases [17]:
f digital camera, provided that the actual pixel size

is known;
f camera with an analog output connected to

a frame grabber (image digitizer), provided that
pixel size is known and that the ratio between the
pixel-clock frequency of the camera and the samp-
ling frequency of the frame grabber is known (our
calibration experiments with analog cameras were
conducted by synchronizing the frame grabber's
clock with the camera pixel clock [4]).

2.2. Estimation of the acquisition system's
parameters

The estimation of the camera parameters is car-
ried out through the analysis of the views of a test
object (calibration target-set). The target-set usu-

ally consists of a set of xducial marks, also called
targets, positioned within the 3D volume that is
being imaged by the camera system (see Fig. 2).

As already said in the Introduction, we adopt
a simple calibration approach when the knowledge
on the 3D coordinates of the targets is complete
and accurate, therefore it can be trusted upon as is.
When, on the contrary, no information is available
at all, then the estimation problem (blind calib-
ration) is generally undetermined. When, "nally, the
3D positions of the "ducial points are only partially
known, then they need be estimated as well through
some self-calibration process. We will see in the
next Section under which conditions this approach
is applicable as far as the number of cameras and
the number of views of the calibration target-set are
concerned [9].

Let p
w
(i), i"1,2, N, be the world-coordinates

of the ith target and let c
j
, j"1,2, M be the

parameter vectors of the M cameras. The image
coordinates p(j)(i)"[x(j)(i) y(j)(i)]T of the ith target,
as seen from the jth camera, can be the written as
a function of both camera system parameters and
target's coordinates

p(j)(i)"g(m
i,j

), (6)

where m
i,j
"[pT

w
(i) cT

j
]T. This global equation can

be thought of as a direct formulation of the camera
modeling problem. Roughly speaking, a self-
calibration problem can be seen as a method for
inverting the formulation (6) with respect to m

i,j
.
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When, on the contrary, the knowledge of the 3D
coordinates of the targets is complete and accurate,
then it can be considered as embedded in the direct
model (simple calibration), which now becomes

p(j)(i)"g(p
w
(i), m

j
)"g(i)(m

j
), m

j
"c

j
. (7)

In general, given a set of data and a parametric
model g( ) ) of the system, estimating the parameters
that characterize the system through the selected
model represents an inverse problem [16]. In our
case, the inverse problem consists of using the avail-
able data p(j)(i) in order to determine the correct
parameters that make the model g( ) ) correctly de-
scribe the mapping of the 3D points onto the image
planes. Such parameters are, quite clearly, the in-
trinsic and the extrinsic ones that characterize the
camera system.

In order to follow the terminology that is nor-
mally used when dealing with inverse problems
[16], we will collect into a single vector p all the
available image coordinates of all the targets
p(j)(i), i"1,2,N, j"1,2,M, while the 2D vector
space P that can be spanned by p will be called
observation space. Similarly, we will de"ne a global
parameter vector m, which contains all the model
vectors (m

i,j
, i"1,2, N, j"1,2, M, in the self-

calibration case, or m
j
, j"1,2, M, in the simple

calibration case) and spans the so-called model
space M. In accordance to this terminology, g( ) )
will be referred to as direct model.

From a practical standpoint, the simple-calib-
ration/self-calibration process can be seen as a way
of exploiting a large number of constraints that
cumulate in a space made of a large number of
coordinates. The constraint equations are those
that force the projection of a target onto an image
plane, computed through Eq. (6), to correspond to
its actual image coordinates. In fact, the projection
of a 3D point onto an image plane give rise to a pair
of equations (one per image coordinate). It is cus-
tomary (and advisable) to use a redundant number
of "ducial points with respect to the number of
unknows, so that the model space will result as
overconstrained [17]. As a consequence, the deter-
mination of the model will have to be performed
through a process of minimization of a measure of
the error between the observed data p and the data
computed through the model parameter vector

m [4,6,21]. For example, adopting the MSE as
a measure of this error, we will have to compute

mL "arg min
m

MDDp!g(m)DD2N. (8)

This minimization process is clearly nonlinear and
a variety of methods can be used for determining
the solution mL . The procedures that are commonly
adopted for solving this type of nonlinear problems
are all iterative [21]; therefore an accurate initia-
lization of the minimization process could become
crucial for preventing the algorithm from being
trapped into some local minima [17]. In order to
take all the available information into account,
each term of the cost function to be minimized in
Eq. (8) can be weighted by a factor that takes into
account the accuracy with which the 2D coordi-
nates of the image point have been detected and the
accuracy with which the coordinates of the corre-
sponding 3D point are known [6,24].

2.3. Some remarks on inverse problems

As already said above, the camera simple-calib-
ration/self-calibration process consists of the es-
timation of the model parameter vector m, through
the knowledge of the observed data p and the direct
model g( ) ). This operation corresponds to inverting
the model function

m"g~1(p).

In inverse problems, such as calibration and self-
calibration problems, the data vector p is usually
the result of physical measurements. As a conse-
quence, due to the unavoidable noise that a!ects
the measuring process, the observed data vector
p8 will generally di!er from the data vector p that we
would predict if the CCD sensor were noiseless and
had in"nite resolution and if our camera model
were in"nitely accurate.

The vector p contains the image coordinates
of all the targets as viewed by all the cameras.
The measuring process that provides the observed
data vector p8 consists of the analysis of the
luminance pro"les of the acquired views and, as
such, it is a!ected by errors [3] that are mostly due
to the limited image resolution [5]. In order to be
able to account for measurement's uncertainty,
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a conditional probability density function (p.d.f.) of
the form fPI @P

( p8 Dp) can be de"ned, where an upper-
case letter denotes a random vector and its lower-
case version denotes an instance of this vector.

It is important to keep in mind that any direct
model g( ) ) used in practical applications can only
be approximate. In fact, our camera model only
involves elementary principles of geometrical op-
tics, while a much more complex formulation
would be required for a more correct and complete
description of the optics and of the image sensor
[11]. In order to take the model's uncertainty
into account, a conditional p.d.f. of the form
fP@M

( pDm)"S( p!g(m)) can be de"ned. Quite
clearly, the `spread-functiona S of a perfect model
will be an ideal impulse d( ) ).

As already said in the Introduction, some a priori
information is usually available (or easy to obtain)
on the model's parameters, and this should not be
ignored. In particular, the world-coordinates of the
targets could be known with a certain (even very
limited) accuracy. Of course, depending on how the
available partial information is speci"ed for the
calibration problem, a variety of di!erent problems
can be formulated and approached. For example,
rather than knowing the 3D coordinates of the
targets with limited accuracy, our knowledge could
be limited to the fact that the targets are scattered
over a nearly-regular grid, or that the target-set
undergoes a rigid motion during the acquisition of
a series of multi-views. Other than on the target-set,
some information could also be available on the
camera parameters. For example it might be
known that the focal length of a camera lies within
a speci"c range. All the above a priori information
can be incorporated [16] in the calibration/self-
calibration process through the de"nition of some
proper probability density functions.

A statistical description of the acquisition system
is provided by the p.d.f. fP,M

( p, m). In general, the
solution of an inverse problem and, in particular, of
our calibration problem, is the value of m that
maximizes the a posteriori information on the
model's parameters fM@P

(m D p), which can be derived
from fP,M

( p, m). By doing so, we perform a max-
imum likelihood estimation of the form

m
ML

"max
m

[ fM@P
(mDp)]. (9)

Furthermore, when the sources of uncertainty that
a!ect our inverse problem can be modeled by
a zero-mean Gaussian p.d.f., it is also possible to
predict the accuracy of the solution of the inverse
problem in quite a general fashion (see Appendix
A).

As shown in Appendix A for the general case of
the nonlinear direct model g( ) ) (calibration prob-
lems are nonlinear) it is possible to estimate the
a posteriori covariance using a relationship of the
form

CM@P
"(GTC~1P G#C~1M )~1, (10)

where

G"A
Lg

LmBm/m
ML

is the Jacobian of the forward model, which repres-
ents a linearization of g(m) about m

ML
, CM is the

a priori covariance matrix of the model's parameter
vector and C

P
is the covariance matrix associated

to both the `forward modeling uncertaintya and
the `experimental uncertaintya (i.e. the statistical
relationship between p8 and p).

Notice that the a posteriori information on the
model parameters (CM@P

) is obtained as a combina-
tion of a priori information (CM) and information
on the dispersion of the available data (CP). The
diagonal elements of CM@P

represent the variance
associated to the estimate of each model parameter
m

i,j
. The other elements of CM can be used to

estimate the correlation between the various para-
meters and to have an idea on how `separablea
such parameters are [16]. In conclusion, an inverse
problem can always be seen as a way of `translat-
inga information from the data space P into the
model space M; therefore the solution of a `well-
poseda inverse problem should give an a posteriori
uncertainty on the model parameters that is smaller
than the a priori uncertainty [16].

3. Multi-view multi-camera approach

As already said in the previous Section, the aim
of simple camera calibration and self-calibration is
to estimate the model parameters m from the
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2 It can be shown [17] that, when dealing with a single-
camera system, all points should not be co-planar unless the
pixel size is known beforehand.

3 In the following we will use the term `positiona to mean
both position and orientation.

knowledge about the observed data p, i.e. to solve
the inverse problem m"g~1(p). The observed data
p is a set of all image coordinates of the calibration
targets, as seen on all available views, i.e.
p"Mp(j)(i);1)i)N, 1)j)MN where N and
M are the total number of targets and cameras,
respectively.

3.1. The simple calibration approach

In the case of simple calibration, the 3D coordi-
nates of the "ducial points are known. The (small)
uncertainty on their positions can be included in
the model through the computation of fP@M

( pDm).
The dimensionality of the model space, in this case,
is ¸M where ¸ is the number of parameters of the
camera model (from Eq. (5) we have ¸"11) and
M is the number of cameras to be calibrated.

In order for the calibration problem to be solv-
able, it is necessary to have at least as many con-
straints (equations) as unknowns. As each "ducial
point gives rise to a pair of equations per camera,
a minimum of six independent (non-collinear)
points is required for determining the eleven para-
meters of the camera model.2 However, since the
problem is nonlinear and strongly ill-conditioned
[20], a larger number of points should be con-
sidered.

Since the pixel size is a known parameter (see
Section 2.1), the simple calibration problem can
also be solved adopting a simple target-set whose
"ducial points are all coplanar [17]. A planar tar-
get-set is much simpler to build than a 3D target-
frame. In fact, it can be easily constructed applying
a su$cient number of properly shaped stickers (tar-
gets) to a rigid planar surface. The coordinates of
the targets (and their uncertainty), relative to
a frame attached to the surface, can be quite easily
determined while applying the stickers to the sur-
face. Conversely, a 3D calibration target-frame al-
ways requires an accurate 3D measurement of the
coordinates of the targets, which is generally per-
formed with some photogrammetric technique

[10]. The main drawback of 2D target-sets, how-
ever, is that of providing data that are rather corre-
lated to each other. Furthermore, they occupy
a rather limited volume of the scene, and this is true
of all target-sets (also the 3D ones) that are small
enough to be considered as `portablea. It is well-
known, in fact, that a reliable camera calibration
can only be performed if the targets are not only
numerous enough, but also well-distributed in the
3D space that will later be occupied by the object to
be measured [8]. In order to overcome such limita-
tions, we virtually enlarge the planar target-set
through the acquisition of several of its views, as
shown in Fig. 3. The positions of the target-frame
are chosen in such a way that the union of all
targets will occupy the entire volume of interest in
a fairly uniform fashion.

The above strategy requires a modi"cation of
a standard simple calibration procedure as, even
when the coordinates of the targets are known with
respect to the frame attached 2D surface, the rela-
tive motion that the target undergoes between ac-
quisitions is not known and needs to be
determined. In order to do so, we could proceed by
forcing the frame into pre-determined positions by
means of high-precision positioning devices. This
choice, however, would end up being more complex
and expensive than the construction of a 3D tar-
get-frame. The only feasible alternative is thus to
freely move the pattern between acquisitions and to
proceed with an a posteriori determination of this
motion by embedding its estimation into the calib-
ration process itself. In order to do so, the six
parameters that describe both position and orienta-
tion3 of the target-set (relative to the world refer-
ence frame) will be added to the model parameters
that need to be estimated for each position of the
target-frame. By doing so, we modify the simple
calibration method in the direction of self-calib-
ration, even if we keep referring to it as a simple-
calibration approach.

If we are considering < di!erent positions of the
targets-frame, then 6(<!1) new unknowns must
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Fig. 3. Schematic description of the calibration setup in which a simple 2D target-set is being imaged by a camera, in a variety of poses.
The 3D position and orientation of the calibration frame in each one of the considered poses is included in the set of unknowns to be
estimated through calibration.

be added to the number of unknowns that
we would have if only one position were con-
sidered. On the other hand, a total of F"

+V
k/1

2H
jk

equations can be written, H
jk

being the
number of targets that are imaged in the kth view
taken from the jth camera (0)H

jk
)H where H is

the total number of targets of the calibration
frame).

In the previous section, we assumed that the
acquisition system to be calibrated is a multi-cam-
era rig. This assumption, however, is not restrictive.
In principle, in fact, we could individually calibrate
the cameras by following the above procedure. We
should keep in mind, however, that a joint calib-
ration of all cameras is generally more e$cient and
introduces a larger number of constraints in the
parameter estimation process, with the result of
reducing the risk of an erroneous estimation. As
a matter of fact, if we consider that the motion of
the target-frame from view to view is the same for
all cameras, then each camera gives its contribution
to the estimation of this motion. For this reason,
the simultaneous calibration of all cameras of the
acquisition system increases the well-posedness of
the calibration problem, with the result of making

the estimation easier and more reliable. With re-
spect to the case in which one camera is calibrated
with< views of the target-set, each additional cam-
era adds ¸ unknowns (in our case ¸"11) and
approximately 2H< equations (assuming that all
targets are imaged in the various acquisitions). The
"nal approach is therefore a multi-view, multi-cam-
era calibration (see Fig. 4), in which all parameters
are estimated through the same global error min-
imization process.

3.2. The self-calibration approach

In all simple calibration procedures, including
the case of multi-view multi-camera (MVMC)
simple calibration, the quality of the parameter
estimation strictly depends on the accuracy with
which the world-coordinates of the targets are
known. More precisely, Eq. (A.5) of the Appendix
gives us the a posteriori covariance matrix CM@P

as
a function of the uncertainty CP on the world-
coordinates of the targets and a priori uncertainty
CM on the model's parameter vector. From Eq.
(A.5) we deduce that, in order to obtain high
accuracy in the estimation of the acquisition
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Fig. 4. Schematic description of the calibration setup in which a simple 2D target is used for calibrating an M-camera acquisition system
with (in our case M"3). As the positions and the orientations of the calibration frame are a priori unknown, they need to be estimated
through calibration.

system's parameters, we need to use either a simple
calibration strategy with very accurate information
on the target's coordinates or a self-calibration
approach for re"ning our knowledge of the target's
coordinates while estimating the camera para-
meters. Notice that, in the simple calibration case, if
the 3D target's coordinates were not accurate
enough, the linearization (15) would no longer be
a correct approximation of the (nonlinear) model.
Notice also that the a priori information on the 3D
coordinates of the targets is important for the con-
vergence of the self-calibration process.

As in the simple calibration case, our self-
calibration strategy is based on a multi-view
multi-camera (MVMC) approach, and the reasons
behind this choice are exactly the same: to virtually
expand the target-frame and "ll up the object space
with targets; and to provide the estimator with
more `independenta data.

If an M-camera acquisition system is used for
acquiring a set of < views per camera of a target-
frame that contains H targets, then the following
inequality must hold

2M<H'3H#M¸#6(<!1). (11)

On the left hand side of this inequality is the num-
ber of constraints (two equations per viewed target
per camera), under the simplifying assumption that
the image coordinates of all targets can actually be
determined. On the right hand side of Eq. (11) is the
number of unknowns to be estimated: in fact there
are 3H coordinates of the targets (such points are
usually not exactly coplanar); M¸ camera para-
meters (with ¸"11); and 6(<!1) parameters that
characterize the motion of the target-frame.

As we can see from Eq. (11), a single-camera
acquisition system obviously requires at least
<"2 views for the self-calibration problem to be
solvable. It is important to remember, however,
that the self-calibration problem is, in general, an
undetermined one, and is made solvable by the
assumption that the errors on the 3D coordinates
of the targets be limited (although not necessarily
small) and have zero mean. In general, given the
number of views, there is a minimum number H of
targets below which the problem is undetermined.
In practice, however, due to the ill-conditioning of
the problem, it is customary to use a number of
targets that will make the problem substantially
overdetermined.
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4. Implementation

In both simple-calibration and self-calibration
the observed data vector p contains the image coor-
dinates of all the targets in all the available images.
In order to guarantee an accurate localization (with
sub-pixel accuracy) of the "ducial points, the image
coordinates of the center (or some other relevant
point such as a corner or an edge crossing) of the
target must be detected with an appropriate sub-
pixel technique. For example, the points to be de-
tected could be the centers (or the vertices) of a grid
of black square stickers on a white background. In
our case, the centers of circular stickers (contrasting
with the background) are considered, and the im-
age coordinates are estimated through template
matching [5]. In order to do so, the image coordi-
nates of the "ducial points are "rst roughly esti-
mated through luminance thresholding. Such
coordinates are then re"ned by comparing the
luminance pro"le, in a neighborhood of the rough
estimate, with a synthetic luminance template
through a mean-squares optimization process. By
doing so we estimated the parameters of the (ellipti-
cal) template and, in particular, the re"ned coordi-
nates of the "ducial point (center of the ellipse).
The accuracy of the estimated coordinates of the
"ducial points mainly depends on the size of
the adopted template [5] and is described by the
2N]2N covariance matrix C

-0#
, where N"H<M

is the number of data points. The localization error
in template matching applications is mainly to be
attributed to the fact that a comparison is per-
formed between an ideal template and a sampled
luminance pro"le. The pixels that contribute to this
error can be numerous and their contributions can
be assumed as independent. Therefore it is reason-
able to treat the statistical distribution of the local-
ization error as Gaussian and with zero mean. In
conclusion, in normal conditions, the covariance
matrix can be assumed as being diagonal, i.e;

C
-0#

"p2
-0#

I
2N

. (12)

This is so as
f the localization error of all "ducial points on all

available images can be considered to have the
same Gaussian distribution, with standard devi-
ation p

-0#
and zero mean;

f the localization errors of two di!erent points are
uncorrelated.
Let c"[cT

1
2 cT

M
]T be the vector of the (in-

trinsic and extrinsic) camera parameters of all
the M cameras. The data vector p"[x

1
y
1

x
2

y
2
2 x

N
y
N
]T contains the image coordinates

of the visible targets, as extracted from all the
< views of all the M cameras. In general we have
N)H<M, H being the number of targets on the
frame, which becomes an equality if all targets are
visible. The model parameters vector m will thus
contain:
f the world-coordinates p

w
of the H targets (in

self-calibration case); the world reference frame
could be, for example, attached to the target-
frame in its "rst position;

f the vector c of all camera parameters;
f the vector that describes the rigid motion under-

gone by the target-frame between two di!erent
positions; this motion can be speci"ed with re-
spect to any of the target-frame's position, for
example the "rst one:

*"[*T
21
*T
31

2 *T
V1

]T,

where *
k1
3R6, k"2,2,<, contains the transla-

tional coordinates and the Euler angles that de-
scribe the position and the orientation of the
target-frame in its kth position, relative to its "rst
position.
The complete parameter vector is thus given by

m"[pT
w

cT *T]T. Given an estimate mL of this vec-
tor, we can predict the corresponding data vector
pL through the direct model: pL "g(mL ).

The estimation algorithm is based on an iterative
procedure whose aim is to determine the maximum
likelihood estimation m

ML
of m corresponding to

the prediction p
ML

"g(m
ML

) that di!ers the least (in
the MSE sense) from the observed data pJ :

m
ML

"min
m

MDg(m)!pJ D2N. (13)

Due to the large number of unknowns and to the
ill-conditioning of the problem, the search for the
global minimum of the cost function C(m)"
Dg(m)!pJ D2 can be very di$cult and could easily
return some local minimum instead. Quite clearly,
we could avoid this problem by having the minim-
ization process start from a point which is close
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4An even better robustness against local minima would have
been achieved by using techniques of simulated annealing [15],
but in this case the computation time would be prohibitive in
most applications.

enough to the global minimum, but this would
require a rather accurate approximation of the "nal
solution to begin with. The multi-view multi-cam-
era approach to simple calibration (and self-calib-
ration), in fact, o!ers an elegant way to solve this
problem through fractionating the estimation pro-
cess in a multi-resolution fashion.

In order to better explain the approach, let us
"rst assume that the world-coordinates of the tar-
gets are known and consider the case of simple
calibration. As a "rst step, we proceed with the
individual calibration of each camera through
a separate analysis of the < views of the target-
frame. By averaging the < sets of camera para-
meters obtained from the individual calibrations
we obtain a good starting point for the next calib-
ration step. This second step still concerns the indi-
vidual cameras but it uses all the available views
simultaneously. At the end of this process we ob-
tain a re"ned version of the camera parameter
vector c and M estimates of the vector * that
describes the target positions. As a last step, we can
proceed with a global (all cameras) calibration pro-
cess based on the simultaneous analysis of all the
views. This last minimization step will perform a re-
"nement of the previous estimate of the parameters,
which consists of the parameter vector c and an
average between all the target-frame's motion vec-
tors. More speci"cally, the simple-calibration pro-
cess can be organized as follows:

Step 1: single-view single-camera (SVSC) simple
calibration. Each camera is individually calibrated
< times, one for each view of the calibration target-
frame. Calibration is performed through a non-linear
optimization process. In particular, some parameters
are "rst roughly estimated using Tsai's calibration
algorithm [17], and then re"ned while estimating the
other parameters through nonlinear optimization.

Step 2: multi-view single camera (MVSC) simple
calibration. The calibration of each individual cam-
era is re"ned through a joint analysis of all the
< views of the target-frame. Both the camera para-
meters and the vector that speci"es the positions of
the target-frame are estimated through nonlinear
optimization. The process starts from the camera
parameters estimated through SVSC calibration.
As far as the intrinsic parameters, however, an
average between < solutions is used.

Step 3: multi-view multi-camera (MVMC) simple
calibration. All the M cameras are calibrated simul-
taneously through a joint analysis of all the views of
the target-frame. Camera parameter vectors and
target-frame's positions are re"ned through nonlin-
ear optimization. The starting point for the minim-
ization process is the vector of parameters
c obtained through MVSC calibration. As far as the
vector * that describes the positions of the target-
frame is concerned, its initial vector is given by the
average of the estimates obtained through MVSC
calibration.

Although the nonlinear minimization process
has been implemented in a `multi-resolutiona
fashion, the intrinsic ill-conditioning of the problem
suggests the adoption of a search strategy that
exhibits a certain robustness against local minima.
Preference should be given to algorithms that are
able to explore the space of the unknowns in a more
exhaustive fashion than standard gradient-based
optimization methods. Our best results have been
achieved with the Nelder}Mead algorithm [15],
which is a modi"ed version of the simplex method.4

Often the world-coordinates of the targets are
only approximately known. Their `nominala posi-
tion, in fact, can be simply determined only if we
can accept a signi"cant uncertainty, which can usu-
ally be determined as well. In this case, a self-
calibration process must be adopted for reducing
this uncertainty. The optimal approach to self-cal-
ibration is the one that simultaneously estimates
camera parameters and targets' world-coordinates
through global nonlinear optimization. In order to
avoid local minima, the camera parameters can
"rst be roughly estimated through MVMC calib-
ration by assuming that our a priori knowledge of
the targets' world-coordinates is not a!ected by
uncertainty. Then the whole vector m containing
both targets' world-coordinates and camera para-
meters can be re"ned through the minimization of
the cost function (13).

If the a priori information on the world-coordi-
nates of the targets is su$ciently accurate, then
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a suboptimal approach to self-calibration can be
adopted. In this case, in fact, the camera parameters
can "rst be roughly estimated through MVMC
calibration by assuming that the targets' world-
coordinates are correct. Then the 3D coordinates of
the targets can be re"ned by taking the previously
estimated camera model as given. The process can
be iterated until a stable global solution is reached.

Notice that, even when the uncertainty of the
world-coordinates of the "ducial points is very
limited, we can always estimate the uncertainty of
the model's parameters through a linearization
of the direct model. More precisely, the uncertainty
of the targets' world-coordinates can be treated in
the same way as the data uncertainty p

-0#
associated

with the limited precision in the localization of the
"ducial points on the image plane (see Eq. (A.5)).
For a "rst and rough estimate of this uncertainty, it
is reasonable to assume that the image coordinates
of targets that are Gaussian-distributed over
a planar frame around their nominal location, are
still Gaussian-distributed, and their standard devi-
ation on the image plane is

pP"pP
w

f

z
c

,

where pP
w

is the standard deviation of the uncer-
tainty of the targets' world-coordinates, f is the
focal length of the camera and z

c
is the distance

between camera and targets. As the 3D measure-
ments and the image feature localization error can
be considered as statistically independent,
a measure of the uncertainty of the global data can
be computed. The uncertainty can still be con-
sidered as Gaussian, with variance

p2
PI "p2

-0#
#p2P. (14)

The global covariance matrix C
PI "p2

PI I2N
is then

used to predict the uncertainty CM on the estimated
model by using Eq. (A.5).

The knowledge of the uncertainty on the world-
coordinates of the targets plays a crucial role in the
estimation process as it is used for reducing the
search space of the minimization process. Roughly
speaking, the smaller the uncertainty on targets'
world-coordinates, the stronger the constraints on
their re"nement. This approach can thus be

thought of as a soft transition between calibration
and self-calibration, depending on accuracy of the
a priori knowledge on the targets' world-coordi-
nates. This is a key feature of the proposed tech-
nique, as it allows us to fully exploit the available
a priori information.

5. Simulation results

In this section we present the results of a series of
simulations on synthetic data, which have been
carried out in order to verify the correctness of Eq.
(A.5), for the performance evaluation of the pro-
posed calibration (self-calibration) algorithm.

If we have very limited a priori information on
the model parameters, or even no information at
all, the a posteriori covariance matrix CM@P

becomes

CM@P
"(GTC~1P G)~1, G"A

Lg

LmBm/m
ML

. (15)

The diagonal elements of CM@P
quantify the dis-

persion of the model parameters, while the
extradiagonal elements describe the correlations
between parameters.

5.1. The simple calibration problem

In order to verify the accuracy of the results
predicted by Eq. (15), we "rst simulated the simple
calibration of a single camera using a single view of
the target-frame (SVSC calibration). The con-
sidered camera was characterized by a standard TV
resolution (720]576 pixel) and a pixel size of
11]11lm. The focal length was 16mm, the princi-
pal point was chosen in the image center and the
radial distortion was limited to the "rst term of
Eq. (3) (k

3
"10~3mm~2). The simulated target-

frame was a square-shaped planar grid of 256
points with a step-size of 50 mm, placed at a dis-
tance of 1100 mm from the camera and tilted 153
with respect both the x

c
and y

c
axes of the camera

reference frame. Its position was chosen in such
a way that its center would be seen exactly in the
center of the image. We estimated the dispersion of
the camera parameters (with respect to the correct
values) through the simulations of a series of 400
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Table 1
Dispersion of the camera parameters in SVSC calibration (the dispersion p

i
was analytically estimated while p(

i
was estimated through

simulation) for di!erent RMS magnitudes of the 2D positional noise. The target-set was a rigid set of 256 point positioned on a square
grid with a step-size of 50mm. The target was placed at a distance of 1100mm from the camera, tilted about 15 degrees with respect to
the x

c
and y

c
axes of the camera reference frame, and positioned in such a way that its center would be projected onto the center of the

image

p
D
"0.1 pixel p

D
"0.2 pixel p

D
"0.5 pixel p

D
"1 pixel

Parameter p(
i

p
i

p(
i

p
i

p(
i

p
i

p(
i

p
i

/ (degree) 0.048 0.051 0.096 0.100 0.240 0.259 0.481 0.544
t (degree) 0.013 0.012 0.026 0.023 0.065 0.055 0.129 0.119
h (degree) 0.045 0.040 0.070 0.079 0.227 0.187 0.454 0.416
t
x

(mm) 0.927 0.820 1.853 1.641 4.635 3.858 9.267 8.494
t
y

(mm) 0.912 0.983 1.823 1.923 3.647 5.055 9.117 10.539
t
z

(mm) 1.391 1.312 2.782 2.609 6.956 6.268 13.911 13.624
f (mm) 0.020 0.019 0.040 0.038 0.101 0.082 0.202 0.199
c
x

(pixel) 1.219 1.079 2.439 2.158 5.647 5.074 12.193 11.183
c
y
(pixel) 1.200 1.294 2.400 2.534 5.999 6.662 11.997 13.887

calibrations in which the available data (image co-
ordinates of the "ducial points) are a!ected by
a Gaussian noise with a given variance. In particu-
lar, we considered positional RMS errors of 0.1, 0.5
and 1 pixel in both horizontal and vertical direc-
tions. Such errors account for both localization
errors and uncertainty of the world-coordinates of
the targets. The results are collected in Table 1.

We also carried out some simulations for study-
ing the in#uence of the target-frame's orientation
on the quality of the estimates. Also in this case the
simulations concern the SVSC approach, but the
results are signi"cant for the MVMC case as well.
We used Eq. (15) to estimate the camera para-
meter's dispersions in two di!erent calibration
setups. In the former the above-described calib-
ration pattern (planar surface with 256 targets on
a square grid with 50mm step-size) was tilted 53, 03
and 03with respect the x

c
, z

c
and y

c
axes, respective-

ly. In the second setup tilt angles were 153, 03 and
153, respectively. In both cases the positional error
of each image coordinate of the targets was
pP"0.15 pixel. The results of these simulations are
collected in Tables 2}4. As we can see, the quality of
the estimates is strongly in#uenced by the orienta-
tion of the target (especially that of the parameters
t
z

and f ). Furthermore, the orientation of the tar-
get-set also signi"cantly in#uences the extra-diag-

onal elements of the a posteriori correlation matrix
CM@P

, which characterize the correlation between
parameters. This reveals a strong correlation be-
tween c

y
and t

x
and between c

x
and t

y
.

From the above simulation results and further
experiments we observed that, in general, choosing
an orientation of the target-frame which is far from
parallel to the image plane of the camera improves
the estimate of f and t

z
. However, tilting a planar

calibration frame too much would cause the targets
to occupy only a portion of the image, with the
result of losing the bene"ts gained through tilting.
This is especially true for smaller target-frames.
With our choice of calibration frame, however, we
found that a good compromise between such two
contrasting needs was to use tilt angles of approx-
imately 303. In particular, tilting the target-frame
about 303 around the x

c
axis particularly improves

the estimates of c
x
and t

x
, while tilting the frame of

about 303 around the y
c
axis particularly improved

the estimates of c
y
and t

y
.

We carried out some further investigation for
determining the relationship between the number
of targets and the dispersion of the estimates (see
Fig. 5). The size of the targets was the same for all
acquisitions, while their total number was modi"ed
by changing the step-size of the square grid where
they lied. Also in this case we performed SVSC
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Table 2
Accuracy of the camera parameter's estimation method. Two di!erent calibration setups are considered: m is the actual parameter
vector, m( is its estimate obtained through calibration and p(

m
are the computed values of the dispersion of the parameters. In both the

considered calibration setups a 2D positional error with an RMS magnitude of 0.15 pixel (for each coordinate) is considered

First case: p
D
"0.15pixel Second case: p

D
"0.15 pixel

Parameter m
0

m( p(
m

m
0

m( p(
m

/ (degree) 5.0 5.005 0.066 15.0 14.988 0.048
t (degree) 0.0 !0.002 0.004 0.0 0.000 0.013
h (degree) 0.0 !0.015 0.034 15.0 14.993 0.045
t
x

(mm) 0.0 0.401 0.944 0.0 !0.176 0.927
t
y

(mm) 0.0 0.632 1.123 0.0 !0.255 0.912
t
z

(mm) 1100.0 1096.248 8.969 1100.0 1098.457 1.391
f (mm) 16.0 15.944 0.131 16.0 15.978 0.020
c
x

(pixel) 360.0 359.468 1.241 360.0 360.236 1.219
c
y
(pixel) 288.0 287.161 1.476 288.0 288.338 1.200

k
3
(mm~2 10~3) 1.0 0.990 0.006 1.0 1.000 0.006

Table 3
Correlation between parameters: "rst calibration setup

/ t h t
x

t
y

t
z

c
x

c
y

f k
3

/ 1.0000 0.0000 0.0000 0.0000 0.8712 0.8567 0.0000 !0.8711 0.8561 !0.0145
t 0.0000 1.0000 0.9077 !0.9195 0.0000 0.0000 0.9200 0.0000 0.0000 0.0000
h 0.0000 0.9077 1.0000 !0.9399 0.0000 0.0000 0.9411 0.0000 0.0000 0.0000
t
x

0.0000 !0.9195 !0.9399 1.0000 0.0000 0.0000 !1.0000 0.0000 0.0000 0.0000
t
y

0.8712 0.0000 0.0000 0.0000 1.0000 0.5399 0.0000 !1.0000 0.5385 !0.0182
t
z

0.8567 0.0000 0.0000 0.0000 0.5399 1.0000 0.0000 !0.5389 1.0000 !0.0313
c
x

0.0000 0.9200 0.9411 !1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
c
y

!0.8711 0.0000 0.0000 0.0000 !1.0000 !0.5389 0.0000 1.0000 !0.5376 0.0181
f 0.8561 0.0000 0.0000 0.0000 0.5385 1.0000 0.0000 !0.5376 1.0000 !0.0238
k
3

!0.0145 0.0000 0.0000 0.0000 !0.0182 !0.0313 0.0000 0.0181 !0.0238 1.0000

Table 4
Correlation between parameters: second calibration setup

/ t h t
x

t
y

t
z

c
x

c
y

f k
3

/ 1.0000 0.6061 0.6274 !0.5947 0.9828 0.7831 0.5930 !0.9827 0.7836 !0.0506
t 0.6061 1.0000 0.9868 !0.9870 0.5143 0.7570 0.9870 !0.5125 0.7575 !0.0498
h 0.6274 0.9868 1.0000 !0.9865 0.5489 0.7735 0.9866 !0.5470 0.7740 !0.0507
t
x

!0.5947 !0.9870 !0.9865 1.0000 !0.5159 !0.7405 !1.0000 0.5141 !0.7382 0.0627
t
y

0.9828 0.5143 0.5489 !0.5159 1.0000 0.7273 0.5141 !1.0000 0.7250 !0.0604
t
z

0.7831 0.7570 0.7735 !0.7405 0.7273 1.0000 0.7384 !0.7251 0.9984 !0.1716
c
x

0.5930 0.9870 0.9866 !1.0000 0.5141 0.7384 1.0000 !0.5123 0.7361 !0.0623
c
y

!0.9827 !0.5125 !0.5470 0.5141 !1.0000 !0.7251 !0.5123 1.0000 !0.7229 0.0600
f 0.7836 0.7575 0.7740 !0.7382 0.7250 0.9984 0.7361 !0.7229 1.0000 !0.1216
k
3

!0.0506 !0.0498 !0.0507 0.0627 !0.0604 !0.1716 !0.0623 0.0600 !0.1216 1.0000
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Fig. 5. Dispersion of the camera parameters versus number of "ducial points (log scale) in a single-view single-camera calibration.
Notice that the parameter's dispersion is always inversely proportional to the square root of the number of targets, as expected.

calibration, but the results can be extended to the
MVMC case. As we can see from Fig. 5, the para-
meter's dispersion is always inversely proportional
to the square root of the number of targets. This
suggests that all of the "ducial points contribute
with `independenta information to the estimation
process. Quite obviously, this fact holds true as
long as the image localization error of the "ducial
points can be assumed as independent from the
density of the targets. In fact, when the localized
points are the centers of black circles on a white
background, too dense a target would force the
radius of such circles to be too small to allow good
localization accuracy.

We also observed that, instead of increasing the
number of targets, it is possible to consider more
views of the target-frame with changes in the ori-

entation and in the camera-frame distance, with
very little loss of accuracy (see Table 5). In general,
however, the best calibration results are obtained
by selecting the orientation according to the
above-listed indications.

It is important to notice that the calibration
residuals, i.e. the di!erences between the observed
image coordinates and those predicted through the
estimated camera model, are very important for
judging the quality of the calibration results.
Fig. 6 shows the vector "eld of such residuals. Its
vectors, placed in correspondence to the image
locations of the targets, represent the (magni"ed)
di!erences between observed and estimated image
coordinates. It is reasonable to expect that the
residual vectors of a good calibration will have
a random and uniform distribution of orientations,

326 F. Pedersini et al. / Signal Processing 77 (1999) 309}334



Table 5
Comparison between SVSC calibration (1024 "ducial points) and a MVSC calibration (256 "ducial points): m is the vector of the actual
parameters; m( is the vector of parameters estimated with a typical calibration; and p(

m
is the computed dispersion of the parameters

First case: 1 view, 1024 points Second case: 4 views, 256 points

Parameter m
0

m( p(
m

m
0

m( p(
m

f (mm) 16.0 15.962 0.064 16.0 15.978 0.068
c
x
(pixel) 360.0 359.508 0.745 360.0 360.236 0.825

c
y
(pixel) 288.0 287.461 0.833 288.0 288.338 0.744

k
3
(mm~2 10~3) 1.0 1.0 0.006 1.0 0.992 0.006

Fig. 6. Vector "eld of typical calibration residuals (di!erences between the observed image coordinates and those predicted through the
estimated camera model). It is reasonable to expect that the residual vectors of a good calibration will have uniformly distributed
orientations, and will be characterized by a magnitude that is comparable with the uncertainty of the observed data.

and will be characterized by a magnitude that is
comparable with the uncertainty of the observed
data. In fact, if the residuals were larger than the
data uncertainty, then we could conclude that the
acquisition system is poorly modeled. In the oppo-
site case, the model would be exceedingly accurate
for calibration purposes, and could be used for
noise characterization.

As a concluding remark, it is important to
mention the fact that, when the radial distortion
is very modest (high-quality optical lenses), a
n accurate estimation of the principal point be-
comes more di$cult, as already shown in the litera-
ture [20]. In this case it is necessary to estimate
such parameters with some other methods, as
shown in [12].
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Table 6
Dispersion of the parameters with a self-calibration setup based
on three cameras. The target-frame is acquired in three di!erent
positions. In all views the target-set is approximately parallel to
the image planes

Parameter p

Euler angles 0.002 degree
Translational components 0.0015 mm
Focal length 0.0009 mm
Radial distortion coe$cient 10~6mm~2

Optical center's coordinates 0.018 pixel
x and y coordinates on target-plane 0.06 mm
Elevation from target-plane 0.11 mm

Fig. 7. Estimation of the uncertainty of the coordinates of a 3D
point, starting from the region of uncertainty associated with its
projection on the image planes.

Table 7
Parameter dispersion for a trinocular camera system, with "ve
views of the target-frame. In two of the views, the target is
signi"cantly tilted with respect to the image planes

Parameter p
m

x and y coordinates on the target plane 0.045 mm
Elevation from the target plane 0.08 mm

5.2. Self-calibration

In order to quantitatively evaluate the perfor-
mance of the proposed self-calibration we per-
formed some simulation experiments based on Eq.
(15). The simulated setup was based on a trinocular
TV-resolution acquisition system whose cameras
were positioned at the vertices of a triangle with
600 mm sides. The focal length of the lenses was
approximately 12mm. The target-frame was
a nearly-planar surface with 600 targets, approxim-
ately arranged at the crosspoints of a square grid of
50 mm step-size, with a zero-mean positional error,
so that the reference grid could be used as a `nom-
inala rough measurement of the target's coordi-
nates.

As a "rst experiment, we performed self-calib-
ration using three di!erent positions of the target-
frame, all modestly tilted with respect to the image
planes and placed at a distance of about 1.3 m from
them. The feature localization error was about 0.07
pixel. The estimated dispersion p of the parameters
resulted as in Table 6.

As we can see, the estimated residual uncertainty
of the targets' world-coordinates were found to be
very close to the targets' positional error over the
nominal grid. In order to compute this uncertainty,
we followed a geometrical approach that was sim-
ilar to that shown in Fig. 7 for the simpli"ed case of
a binocular acquisition system. As we can see, the
regions of uncertainty on the image planes are
projected onto the 3D space, giving rise to general-
ized cones. The intersection of such cones repres- ents the corresponding dispersion of the targets'

location in the object space.
Quite clearly, the results improve signi"cantly if

we add two more views in which the target-frame is
more tilted with respect to the image planes. In this
case the world-coordinates were improved by the
self-calibration approach, as shown in Table 7.

Such results con"rm the importance, for calib-
ration as well as self-calibration, of using several
views of the target-frame in a variety of positions.

6. Experimental results

In order to test the reliability of our (simple/self)
calibration methods, we performed a series of tests
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Fig. 8. A trinocular view of the high-quality target-frame.

in a variety of experimental conditions. In this
section, we present the results of two series of tests:
the former is relative to a high-quality target-frame
whose targets are not just known in their nominal
3D coordinates but have been accurately measured
through a photogrammetric procedure in order to
quantify the positional displacement relative to the
nominal coordinates. For the second experiment
we used a less expensive target frame, of which we
only knew the nominal 3D coordinates of the
targets. For all our experiments we adopted an
acquisition system made of three standard TV-
resolution CCD cameras.

The "rst test, was conducted with three Sony
DCX950 color cameras, each with a 3CCD sensor
of 2/3A (diagonal size). The cameras, whose nominal
focal length was 12 mm, were mounted on a rigid
frame at the vertices of a triangle with a baseline of
800 mm and the other two sides of about 500 mm.
The volume to be calibrated was about 2 m wide,
1.5 m deep and 1.5 m tall, placed at an average
distance of about 2 m from the camera set.

The adopted high-quality target-set was made of
a grid of 29]20 "ducial points (centers of black
circular stickers with a radius of 12.5 mm), placed
on the surface of an aluminium `waferawith honey-
comb structure for improved rigidity and light
weight (see Fig. 8). The grid's nominal step-size was
50 mm, while the exact world-coordinates of the
targets had been measured through classical photo-
grammetric methods (whose accuracy was better
that 0.1 mm). With this target-set we performed
a series of simple calibration experiments, in which
the target-frame was placed in "ve di!erent posi-
tions, two of which were signi"cantly tilted with
respect to the image planes.

As a "rst step, we determined the image coordi-
nates of the targets with sub-pixel accuracy through
a procedure based on template matching. The esti-
mate of the coordinates of the center of a matched
elliptic template is a!ected by uncertainty due to
a number of reasons, including the "nite resolution
of the digital sensor and the template's modeling
uncertainty. As the causes of the localization
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Table 8
Self-calibration results using a high-quality target-frame. Dis-
persion of the estimated world-coordinates of the targets with
respect to the actual (measured) ones: p(

m
is the dispersion esti-

mated through several self-calibrations relative to di!erent im-
age acquisitions. The dispersion p

m
is computed analytically and

is given as a range of values because it depends on which
acquisition is being considered (we only have limited a priori
information on the views)

Parameter p(
m

p
m

x coordinate (mm) 0.064 0.03}0.07
y coordinate (mm) 0.078 0.03}0.07
z coordinate (mm) 0.1108 0.05}0.12

Fig. 9. Trinocular system used for the second set of calibration
(and self-calibration) experiments.

uncertainty are numerous and nearly independent
from each other, it is reasonable to treat the statist-
ical distribution of the localization error as Gaus-
sian. With elliptic spots having an area of
approximately 20}30 pixels (such as in our case),
the localization error is found to be approximately
distributed as a Gaussian with a standard deviation
of about 0.1}0.2 pixels, as suggested in [5] for
a situation that was very similar to ours. In order to
analytically verify our experimental results, we
chose a std. dev. of 0.15 pixels. With this uncertain-
ty on the image localization of the "ducial points,
the estimated dispersion of the camera parameters
was found to be in complete agreement with that
computed through Eq. (15). We also carried out
a series of self-calibration experiments using "ve
di!erent positions of the same target-frame. By
using self-calibration for re"ning the nominal
(low-accuracy) world-coordinates of the targets, we
obtained the results listed in Table 8. As we can see,
there is a good agreement between the values ob-
tained experimentally and those predicted analyti-
cally through Eq. (15) applied to the self-calibration
experiment. In these measurements the z

c
axis is

chosen to correspond to the average of the optical
axes of the three cameras. Due to the limited base-
line of the triangular camera frame, along this di-
rection the dispersion of the measurements is larger
than in the other two directions. The results of
Table 8 con"rm the accuracy of the self-calibration
approach.

When dealing with a smaller calibration volume,
it is much easier to construct low-cost target-

frames. In order to show this fact, we carried out
a series of experiments on a scene volume of about
60]60]60 cm, placed at an average distance of
about 80 cm from the camera set. For the second
set of experiments, we adopted three B/W SONY
XC77CE cameras with 2/3A (diagonal size) CCD
sensors, with a nominal focal length of 16 mm,
placed on a rigid frame at the vertices of a triangle
that was approximately 40 cm tall and had a base-
line of about 60 cm (see Fig. 9). We used an inex-
pensive target-set made with an A4-size sheet of
laser-printed paper glued on a #at surface for test-
ing our self-calibration MCMV approach. The tar-
get-set was made of 10]14 circular dots with
a radius of 5 mm, laser-printed at a resolution of
600 dpi. The targets were nominally positioned at
the crosspoints of a square grid with a step-size of
20 mm (see Fig. 10), and the extracted image-coor-
dinates were those corresponding to the centers of
the circular dots.

In Fig. 11 the a priori locations (de"ned directly
on the drawing to be printed) of the "ducial points
and the corresponding positional error (computed
using the a posteriori coordinates estimated
through self-calibration) are visualized. As we can
see, the action of the paper drive system of the laser
printer introduces a positional error, which is also
con"rmed through visual inspection by means of
a high-precision ruler. In conclusion, typical laser
printers are able to guarantee high resolution but
poor positional accuracy; therefore this type of
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Fig. 10. A trinocular view of the low-cost target-frame (laser-printed sheet of paper glued to a planar glass surface).

Fig. 11. A priori locations of the "ducial points and corresponding positional errors computed from the coordinates estimated through
self-calibration. Notice that the error pattern corresponds to the deformation of the sheet of paper due to the mechanism for paper
traction in the laser printer.
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target-set is suitable for self-calibration but not so
much for simple calibration. However, we must
keep in mind that the systematic error caused by
the dragging action of the printer's mechanics is not
guaranteed to be unbiased. As a consequence, as it
is reasonable to expect, better results are achieved
when using targets that are printed on a large-
format sheet of paper through a professional ink-jet
plotter. This also was con"rmed experimentally.

Anyway, in our experiments we found a good
agreement between the a priori and the a posteriori
world-coordinates of the "ducial points; therefore
these types of target-sets can be e!ectively adopted
in simple calibration applications.

We "nally carried out some experiments for
evaluating the maximum accuracy that can be
reached by a 3D reconstruction procedure based
on stereo-correspondences, when using the above-
described trinocular camera system, calibrated with
the proposed MCMV method. In order to do so,
we considered a set of views of the target-frame that
had not already been used for calibration. We esti-
mated the distance between "ducial points through
back-projection of their image-coordinates. The
obtained accuracy was better than 0.2mm, with an
average distance of 2000 mm between cameras and
object and a maximum object size of approximately
1500 mm (corresponding to a relative accuracy of
about 130ppm). Similar results were found with
some other 3D reconstruction experiments, per-
formed on a variety of test objects.

7. Conclusions

In this paper we presented a simple and e!ective
technique for calibrating CCD-based multi-camera
acquisition systems. The proposed method was
proven to be capable of highly accurate results even
when using very simple calibration target-sets and
low-cost imaging devices, such as standard
TV-resolution cameras connected to commercial
frame-grabbers. In fact, the performance of
our calibration approach is found to be about the
same as that of other traditional calibration
methods based on 3D target sets [17,20], but our
planar target is much easier to construct, carry and
handle.

The proposed calibration strategy is based on
a `multi-view, multi-cameraa approach, whose aim
is to calibrate the multi-camera system through the
analysis of a number of views of a simple cali-
bration target-set, placed in di!erent (unknown)
positions. Furthermore, the method is based on
a self-calibration approach, which is able to re"ne
the a priori knowledge of the world-coordinates of
the targets (even when such information is very
poor) while estimating the parameters of the cam-
era model.

The proposed method was proven to be #exible
enough to allow the user to incorporate the a priori
knowledge on the targets' locations in a variety of
ways.

The accuracy and the robustness of the proposed
calibration strategy was con"rmed by a series of
experiments, carried out with a variety of calib-
ration setups. The accuracy of the analytical predic-
tion of the uncertainty of the calibration results was
also proven through simulation experiments.

Further research is currently being carried out in
order to minimize the complexity of the calibration
(self-calibration) process, by simplifying as much as
possible the structure of the target-set while im-
proving the management of the a priori informa-
tion on the calibration setup.

Appendix A. Additional remarks on inverse
problems

In this appendix, we provide some additional
information on inverse problems in order to ex-
plain how to derive Eqs. (9) and (10). For a de"ni-
tion of the adopted notation, see Section 2.3.

Let us "rst de"ne fP,M
( p, m) as the p.d.f. that

statistically describes the whole acquisition system.
From this function we can derive all marginal and
conditional p.d.f.'s of interest. For example, we
have

fM(m)"PPfP,M
( p, m) dp,

which incorporates our a priori information on the
model's parameters. Notice that the term a priori
speci"es information that is not based on the data
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5The term least-square estimation is justi"ed by the fact that
mJ maximizes fM@P

(m/p); therefore it also minimizes the quadratic
expression (Gm!dI )TC~1P (Gm!dI )#(m!m6 )TC~1M (m!m6 ).

p. Conversely, the a posteriori information on the
model's parameters is a p.d.f. of the form

fM@P
( mDp)"

fP,M
( p, m)

:MfP,M
( p, m) dm

,

conditioned by the knowledge of the data vector p.
In turn, the data vector p is known in terms of the
observations p8 , as the model is a!ected by some
degree of uncertainty. As the model uncertainty is
speci"ed by fPI @P

( p8 Dp), we can write:

fPI ,M
( p8 ,m)"fM(m)PPf PI @P

( p8 Dp) fP@M
( pDm) dp

and

fM@P
(mDp)"

fM(m):PfPI @P
( p8 Dp) fP@M

( pDm) dp
:MfM(m):PfPI @P

( p8 Dp) fP@M
( pDm) dp dm

,

whose denominator plays the role of a normaliz-
ation factor; therefore we can also write

fM@P
(mDp)"a ) fM(m)PPfPI @P

( p8 Dp) fP@M
(pDm) dp,

which represents the solution of the inverse prob-
lem in its general formulation. As a matter of fact,
from fM@P

(mDp) it is possible to extract any type of
information we need on the model parameters (e.g.
mean values, median values, maximum likelihood
values, errors etc.).

When all sources of uncertainty that a!ect our
inverse problem can be modeled by a zero-mean
Gaussian p.d.f., it is possible to predict the accuracy
of the solution of the inverse problem in quite
a general fashion. In fact we have:

fM@P
(mDp)"K ) expG!

1

2
(g(m)!p8 )TC~1P (g(m)!p8 )

!

1

2
(m!m6 )TC~1M (m!m6 )H

"K ) exp[!h(m)] (A.1)

where m6 "E[m] is the a priori estimate of the
model's parameter vector, which can be derived
from fM(m). Similarly, CM is the a-priori covariance
matrix of the model's parameter vector. Similarly,

C
P

is the covariance matrix associated to both the
`forward modeling uncertaintya and the `experi-
mental uncertaintya (i.e. the statistical relationship
between p8 and p). Finally K is, as usual, a normaliz-
ation factor.

The solution of a general inverse problem and, in
particular, of our calibration problem, is the value
of m that maximizes fM@P

(mDp), i.e. the following
maximum likelihood estimation

m
ML

"max
m

[fM@P
(mDp)]"min

m

[h(m)].

If the direct model g( ) ) is linear, then instead of
writing p"g(m) we can write p"Gm, therefore
Eq. (A.1) can be rewritten as:

fM@P
(mDp)"K ) expC!

1

2
(m!mL )TC~1M (m!mL )D,

(A.2)

where

m
ML

"(GTC~1P G#C~1M )~1(GTC~1P dI #C~1M m6 ),

(A.3)

CM@P
"(GTC~1P G#C~1M )~1. (A.4)

Eq. (A.2) shows that, when the forward problem
is linear and the uncertainty can be modeled as
Gaussian, the a posteriori p.d.f. in the model space
is Gaussian.5

In the case in which the direct model g( ) ) is
nonlinear, as happens with camera calibration
problems (see Eqs. (1)}(4)), an approximate result
can still be achieved through an iterative computa-
tion of the maximum likelihood estimation m

ML
,

which is based on a linearization of g(m) about
m

ML
for estimating the a posteriori covariance

CM@P
"(GTC~1P G#C~1M )~1, (A.5)

where

G"A
Lg

LmBm/m
ML

(A.6)
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is the Jacobian of the forward model. As we can see,
the reliability of such results depends on how well
g( ) ) can be linearized about m

ML
.

References

[1] N. Ayache, Arti"cial Vision for Mobile Robots, MIT
Press, 1991.

[2] Y.I. Aziz, H.M. Karara, Direct linear transformation into
object space coordinates in close-range photogrammetry,
in: Proc. Symp. Close-Range Photogrammetry, Univer-
sity of Illinois at Urbana-Champaign, Urbana, 1971, pp.
1}18.

[3] D. Barbe, Imaging devices using the charge-coupled con-
cept, in: Proc. IEEE, Vol. 63, No. 1, January 1975.

[4] H.A. Beyer, Some aspects of the geometric calibration of
CCD-cameras, ISPRS Intercomm. Conference on Fast
Processing of Photogrammetric Data, Interlaken, 1987.

[5] H.A. Beyer, Geometric and radiometric analysis of
a CCD-camera based photogrammetric close-range sys-
tem, Ph.D. Thesis, No. 51, Institut fuK r GeodaK sie und
Photogrammetrie, ETH, ZuK rich, May 1992.

[6] W. Faig, Manual of Photogrammetry, 4th edition, Ameri-
can Society of Photogrammetry, 1990.

[7] O. Faugeras, Strati"cation of three-dimensional vision:
Projective, a$ne, and metric representations, Journal of
the Optical Society of America (Optics, Image Science and
Vision) 12 (3) (March 1995) 465}84.

[8] G. Ferrigno, N.A. Borghese, A. Pedotti, Pattern recogni-
tion in 3D automatic human motion analysis, ISPRS Jour-
nal of Photogrammetry and Remote Sensing 45 (1990)
227}246.

[9] A. Gruen, H. Beyer, System calibration through self-calib-
ration, Invited paper, Workshop on Camera Calibration
and Orientataion in Computer Vision, XVII ISPRS Con-
gress, Washington, D.C., August 1992.

[10] C.F. Laizet, Determination of video cameras parameters in
stereoscopic mode, Fourth European Workshop on
Three-Dimensional Television, Rome, 20}21 October
1993.

[11] R. Lenz, U. Lenz, New developments in high resolution
image acquisition with CCD area sensors, Optical 3-D

Measurement Techniques II, Gruen/Kahmen Editors,
Wichmann, 1993.

[12] R. Lenz, U. Lenz, New developments in high resolution
image acquisition with CCD area sensors, Optical 3-D
Measurement Techniques II, Gruen/Kahmen (Eds.),
Wichmann, 1993.

[13] Y. Otha, T. Kanade, Stereo by intra- and inter-scanline
search using dynamic programming, IEEE Trans. PAMI
7 (2) (1985) 139}154.

[14] F. Pedersini, A. Sarti, S. Tubaro, 3D surface reconstruction
from horizons, International Workshop on Synthetic-
Natural Hybrid Coding and Three-Dimensional (3D)
Imaging (IWSNHC3DI'97), Rhodes, Greece, 5}9 Septem-
ber 1997.

[15] W. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,
Numerical Recipes } The Art of Scienti"c Computing,
Cambridge University Press, 1986.

[16] A. Tarantola, Inverse Problem Theory, Elsevier, 1987.
[17] R.Y. Tsai, A versatile camera calibration technique for

high-accuracy 3D machine vision metrology using o!-
the-shelf TV cameras and lenses, IEEE Journal on Ro-
botics and Automation RA-3 (4) (August 1987) 323}344.

[18] R. Vaillant, O.D. Faugeras, Using extremal boundaries for
3D object modeling, IEEE Trans. Pattern Analysis and
Machine Intelligence 14 (2) (February 1986) 157}173.

[19] L. Van Gool, A. Zisserman, Automatic 3D model building
from video sequences, European Transactions on Tele-
communications 8 (4) (July}August 1997) 369}378.

[20] G.Q. Wei, S. De Ma, Implicit and explicit camera calib-
ration: Theory and experiments, IEEE Trans. PAMI 16 (5)
(May 1994) 469}480.

[21] J. Weng, P. Cohen, M. Herniou, Camera calibration with
distortion model and accuracy evaluation, IEEE Trans. on
PAMI 14 (10) (October 1992) 965}980.

[22] Y. Yakimowsky, R. Cunningham, A system for extracting
three-dimensional measurements from a stereo pair of TV
cameras, Computer Graphics and Image Processing
7 (1978) 195}210.

[23] Z. Zhang, O. Faugeras, 3D Dynamic Scene Analysis,
Springer-Verlag, 1992.

[24] D. Zhang, Y. Nomura, S. Fujii, Error analysis and optim-
ization of camera calibration, in: Proc. of IEEE/RSJ Inter-
nat. Workshop on Intelligent Robots and Systems IROS-
91, Osaka, Japan, 3}5 November 1991, pp. 292}296.

334 F. Pedersini et al. / Signal Processing 77 (1999) 309}334


