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M ost of the methods for estimating the 3D 
structure of a scene through image analysis 
require an accurate a priori knowledge of 
the acquisition system’s model. The param- 
eters of this model can be estimated 

through a process called camera calibration [l], [ 2 ] ,  [3], 
[4], which is based on the analysis of image features of one 
or more views. The targets that originate such features can 
be “artificial,” i.e.,fiducial marks that have been intention- 
ally added to the scene, or “natural,” i.e., natural object 
features such as vertices or corners. The estimation proce- 
dure varies depending on the structure and on the avail- 
able a priori information. One common approach to 
camera parameter estimation is to use a rigid target-set that 
occupies part of the 3D viewing space, with a priori 
known geometrical characteristics. 

When the 3D targets’ coordinates are known before- 
hand, it is possible to use this information together with 
the image coordinates to estimate the camera parameters 
(strong calibration). Although the estimation accuracy is 
most influenced by that of the camera model [7],  a major 
bottleneck is represented by the reliability of the 3D tar- 
gets’ coordinates. Due to the high cost of accurate mea- 
surement procedures, the only way to improve the 
performance of the parameter estimation process is to im- 

prove the available measurements’ accuracy through a 
self-calibration [SI strategy. 

The most extreme self-calibration case is given when a 
number of targets (artificial or natural) are scattered in the 
scene volume in unknown locations. Without a priori in- 
formation on the targets, the increased number of un- 
knowns makes this  blind calibration p rob lem 
undetermined [5], as it does not allow us to recover the 
whole geometry of the camera system [6]. The 
self-calibration problem, in fact, can become solvable 
when some a priori information on the targets or on the 
cameras is available. However, even when solvable, 
self-calibration is an ill-conditioned problem, therefore it 
is important to exploit all we know about the camera sys- 
tem and the scene. In fact, some rough information on the 
target-set (e.g. statistical information on the target’s coor- 
dinates such as nominal position, and measurement’s un- 
certainty) or on the cameras (e.g., focal length) is often 
available or can be readily measured. We will show that, if 
such information is fairly unbiased, it can be refined 
through self-calibration while estimating the parameters 
of the acquisition system. 

One crucial problem of calibration strategies is their 
range of validity. The estimated parameters are, in fact, ex- 
pected to hold accurate only within the 3D volume 
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“spanned” by the target-set [ 91. As the target-set pla!.~ the 
role oftrniainpset, it should be designed in such a way to 
be “statistically representative” of the scene to be recon- 
structed. Accurate results are, in fact, obtained when the 
targets properly “fill up” tlie volume of interest, which 
means that the target-frame slioulcl be as large as the 
scene, with obvious difficulties in tlic calibration proce- 
dure. In order to overcome this difficulty, we can virtually 
“enlarge” a target-set of modest size through tlic acquisi- 
tion of several of its views in dif-ferent positions, s o  that 
the union of all targets will till up volume of intcrcst. Of 
course, every time we move the target-frame we intro- 
diicc six neu. positional unluiowns. Consequently, unless 
we are able to force the frame into pre-determined posi- 
tions through some expensive high-precision positioning 
deIrice, the o~i l !~ f2asible solution is to embed the motion 
parameter estimation into the calibration process. 

The temporal range of validity of calibration can also 
become a critical issue, especially when acquiring a long 
video sequence. Camera calibration is, in fax, v e q  sensi- 
tive to mechanical shocks, vibrations and even thermal 
changes on both the cameras and the supports. This pa- 
rameter drift can easily cause significant 3D recoiistruc- 
tioii errors. One obvious way to overcome this problem is 
to use expensive, h e a y  and rigid camera supports. Our 
approach is, instead, to detect and track any changes in 
the acquisition system and correct tlie camera parameters 
“on tlie fly” using only tlic image coordinates of natural 
sce~ie features. 

The Camera Geometry 
The camera model (see Fig. 1) that we adopted is basi- 

ear distortion of the optical lens and the o f k t  between 
cally an enhanced pinhole inodel that includes the nonlin- 

plr = [x,, 
ce 11 te r 

yo]’ of the principal point from the image 

where R is the rotation matrix and t is the translation vec- 
tor. The image coordinates can be easily expressed in pixel 
if the pixel size d = [d,  

I,ens distortion, which is inodeled as a nonlinear shift of 
tlie image points from their ideal perspective projection, is 
often well described by a polynomial model [ 101. In order 
to accurately model lens distortion [ 1 11 both of its mdinl 
and tanpential coinponeiits should be considered [ 121, al- 
though in some cases the tangential component can be as- 
sumed as negligible [l]. In this last case the polynomial 
model becomes y, = rd (1 + k ,  r,‘ + 12, r: = . . . ), in which 
the undistorted image coordinates p,, = [xl, y,, ] are 
written as a function of the distorted ones, T’,, and TY,, be- 
ing the distances between the principal point and the dis- 
torted and undistorted image points, respectively. The 
first two coefficients of the power series I?, and k ,  are of- 
ten sufficient for an accurate parameterization of the ra- 
dial distortion [ 71. 

An alternative way of incorporating lens distortion 
into the camera model is to adopt a siilgle (larger) pro- 
jection matrix that maps a vector containing the object 
coordinates (and, in some cases, mixed products ofco- 
ordinates LIP to a certain order) onto the final image co- 
ordinates [ 3 ] ,  [ l l].  This choice, however, represents a 

d,, 1’’ is linown. 

tersectioii between optical rays and image 
plane) and the center of the image. Accord- 
ing to this model, the world coordinates 
p,, = [x,,  y,? z,, ] of a point of the 3D 
scene are mapped onto the (uiidistorted) 
image coordinate$ p = [x y ]  through a 
relationship of the form 

rpl “’”, P=K[IIO]M 
“lJ=”L 1 J 

where k is a constant which normalizes to 
one tlie third element of the vector on  the 
left hand side, M is the rigid motion matrix 
that maps the world-coordinates p,, 
p o  i n t c anie r a - c o  o r d i 11 ate  s 
p, =[x, yc  z ~ ] ’ ,  while [ I  (01 is the per- 
spective projection matrix and K is a matrix 
that accounts for intrinsic camera parame- 
ten such a\ the focal distancefand the offset 

o 11 to 
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non-physical over-parametrization of the camera 
m o d e l  111, whi le  we  prefer  t o  w o r k  w i t h  a 
non-redundant set of parameters that retain a physical 
meaning, in order to be able to  exploit all the a priori in- 
formation on the camera setup. 

Inversion of the Camera Model 
Let p,,, (2). i = 1, ... , N ,  be the world-coordinates ofthe i-th 
target and let c,  , j = 1,. . . , M be the parameter vectors of 
the  A4 cameras.  T h e  image coordinates  
p‘ ! )  = [x’”(i)  y ( , ) ( z ) 1 7  of the i-th target, as seen from 
thej-th camera, can be the written as a function of both 
camera system parameters and target’s coordinates 

P ‘ W  = d m r , , )  (3) 

where m,,, =[p:(i) cf(i)]’. This global equation can 
be thought of as adirect formulation of the camera model- 
ing problem. Roughly speaking, self-calibration can be 
seen as the problem of invehng- this direct formulation 
with respect to m l , l .  When the 3D coordinates ofthe tar- 
gets are known and accurate, they can be embedded in the 
direct model (strong calibration), which now becomes 

In order to comply with the terminology that is nor- 
mally used for inverse problems [ 131, we will collect into 
a single vector p all the available target’s image coordi- 
nates p(’)(i) i = 1 ,..., N ,  j = 1 ,..., M ,  while the 2D vector 
space P that can be spanned by p will be called observation 
space. Similarly, we will define a global parameter vector 
m ,  which contains  all the  model  vectors 
( m  ’,, , i = 1,. . . , N ,  j = 1,. . . , M ,  in the self-calibration case, 
or m , , j = 1,. . . , M ,  in the strong calibration case) and 
spans the so-called model space M. In accordance to this 
terminology, g-(. ) will be referred to as direct model. 

F r o m  a practical  s tandpoin t ,  the  
strong/self-calibration process consists of exploiting a 
large number ofconstraints that cumulate in a space made 
of a large number of coordinates. The projection of a 3D 
point onto an image plane, in fact, gives rise to a pair of 
equations per image coordinate. It is customary (and ad- 
visable) to use a redundant number of fiducial points with 
respect to the number of unknowns, so that the model 
space will result as mer-constrained [ 11. Consequently, the 
determination of the model will have to be performed 
through a process of minimization of a measure of the er- 
ror between the observed data p and the data computed 
through the model parameter vector m [4], [ 71, [ 81. For 
example, adopting the MSE as a measure of this error, we 
will have to compute 

m = argmin, IIp - J(m)l12. (5) 

This global optimization process, which is often re- 
fkrred to as bundle adjustment, is clearly non-linear and a 

variety of methods can be used to determine the solution 
m. The procedures that are commonly adopted for such 
non-linear problems are all iterative [7]; therefore an ac- 
curate initialization of the minimization process could be- 
come crucial for preventing the algorithm from being 
trapped into some local minima [ 11. In order to take all 
the available information into account, each term of the 
cost hnction I I p - n( m)lIz to be minimized can be 
weighed by a factor that takes into account the accuracy 
with which the 2D coordinates of the image point have 
been detected and the accuracy with which the coordi- 
nate5 of the corresponding 3D point are known [SI, [ 141. 

Some Remarks on Inverse Problems 
Due to the limited image resolution and the unavoidable 
noise that affects the measuring process, the data vector j3 
generally differs from the data vector p that we would pre- 
dict if the CCD sensor was noiseless and had infinite reso- 
lution and if our camera model was infinitely accurate. 

As j3 is measured through the analysis of the luminance 
profiles of the acquired views, it is usually affected by er- 
rors [ 151, [ 161. In order account for the measurement’s 
uncertainty, a conditional probability density function 
(PDF) of the form f- (j3 I p) can be defined, where ran- 
dom vectors and their instances are denoted by uppercase 
and lowercase letters, respectively. The direct model’s u11- 
certainty is modeled by a “spread-functioll,” which is a 
conditional p.d.f. of the form fF (p I m )  = S( p - m )  
that becomes an ideal impulse 6(. ) when the model is per- 
fect. 

We should not forget that some a priori information 
on the model parameters is usually available or it is easy to 
retrieve. In fact, at least a rough idea of the relative 
world-coordinates of the targets is normally known, and 
sometimes the nominal focal length of the cameras (or at 
least a range of values) is available as well. This a priori in- 
formation should not be ignored, therefore we need to in- 
corporate it [ 131 in the calibration/self-calibration 
process through the definition of some proper probabil- 
ity density filnctions. 

A statistical description of the acquisition system is 
given by the PDF f,,, ( p  I m). In general, the solution of 
our inverse problem is the value of m that maximizes the a 
posteriori information on the model’s parameters 
f,,, (ml p), which can be derived from f,,, ( p  I m). By do- 
ing so, we perform a maximum likelihood estimation 
(MLE) of the form 

PLp 

Furthermore, when the sources of uncertainty that af- 
fect our inverse problem can be modeled by a zero-mean 
Gaussian PdF, it is also possible to predict the accuracy of 
the solution of the inverse problem in a rather general 
fashion. The a posteriori covariance can be estimated us- 
ing a relationship of the form 
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where G is the Jacobian of the forward model, which rep- 
resents a linearization ofJ( m) at m M I  , C is the a priori 
covariance matrix of the model’s parameter vector and C ,, 
is the covariance matrix associated to both the “fornard 
modeling uncertainty’’ and the “experimental uncertainty” 
(i.e. the statistical relationship between 

Notice that the a posteriori information on the model 
parameters (C ,,, ) is obtained as a combination of a priori 
information (C ) and information on the dispersion of 
the available data (Cp). The diagonal elements of C 
represent the variance associated to the estimate of each 
model parameter m,,, . The other elements o fC  , can be 
used to estimate the correlation between the various pa- 
rameters and to have an idea on how “separable” such pa- 
rameters are [ 131. In conclusion, an inverse problem can 
always be seen as a way of “translating” information from 
the data space P into the model space M, therefore the so- 
lution of a “well-posed” inverse problem should give an a 
posteriori uncertainty on the model parameters that is 
smaller than the a priori uncertainty [ 131. 

and p). 

rig is shown in Fig. 2). Indeed, in or- 
der for the strong calibration problem 
to be solvable, it is necessary to have at 

Expanding the Range of Validity 
When the 3D coordinates of the fiducial points are 
known, we can adopt a strong calibration approach, al- 
though the (small) uncertainty on their positions can be 
included in the model through the computation of 
f,,, (p  I m). In this case, the dimensionality of the model 
space IS LM, where L is the number of parameters of the 
camera model andM is the number of cameras to be cali- 

Target-Frame Imaged 
in Different Positions 

though this is true of all “portable” target-sets. It is 
well-known, in fact, that reliable results can only be 
achieved with a large number of targets that are 
well-distributed in the object space of interest [9]. In or- 
der to overcome such limitations, we virtually enlarge the 
target-set through the acquisition of several of its views. 
As the motion parameters of the target-set need to be em- 
bedded into the calibration process (see Fig. 3), this 
s t rong  cal ibrat ion process incorpora tes  some 
self-calibration characteristics. 

If we are considering I‘ different positions of the tar- 
get-set, then 6( V-1) new unknowns must be added. On 
the other hand, a total of F = cl=, 2 H  ,k equations can 

2. Example of multi-camera acquisition system. 
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should keep in mind, however, that a joint calibration of 
all cameras is generally more efficient and introduces a 
larger number of constraints in the parameter estimation 
process, with the result of reducing the risk of an errone- 
ous estimation. As a matter of fact, if we consider that the 
motion of the target-frame from view to view is the same 
for all cameras, then each camera gives its contribution to 
the estimation of this motion. For this reason, the simul- 
taneous calibration of all cameras of the acquisition sys- 
tem (MVMC approach) increases the well-posedness of 
the calibration problem, with the result of making the es- 
timation easier and more reliable. With respect to the case 
in which one camera is calibrated with Vviews of the tar- 
get-set, each additional camera adds L unknowns and ap- 
proximately 2ENequations (assuming that all targets are 
imaged in the various acquisitions). 

As in the strong calibration case, our self-calibration 
strategy is based on an MVMC approach. This way, we 
can virtually expand the target-frame and provide the esti- 
mator with more “independent” data. If an M-camera ac- 
quisition system is used for acquiring a set of Vviews per 
camera of a target-frame that contains H targets, then we 
have 2 M W  > 3H + M L  + 6(V - 1). Notice that, on the 
left-hand side of this inequality is the number of con- 
straints (two equations per viewed target per camera), 
under the simplifying assumption that the image coordi- 
nates of all targets can actually be determined. On its 
right-hand side is the number of unknowns to be esti- 
mated: 3H coordinates of the targets (such points are 
usually not exactly coplanar); M L  camera parameters; 
and 6(V - 1) parameters that characterize the motion of 
the target-frame. If, for example, we assume L = 11, the 
above inequality suggests us that a single-camera acquisi- 
tion system would need at  least V = 2 views for the 
self-calibration problem to be solvable. It is important to 
remember, however, that the self-calibration problem is 
generally undetermined, and is made solvable by the as- 
sumption that the errors on the 3D coordinates of the tar- 
gets are limited (although not necessarily small) and have 
zero mean. In general, given the number ofviews, there is 
a minimum number H of targets below which the prob- 
lem is undetermined. In practice, however, due to the ill 
conditioning of the problem, it is customary to use a 
number of targets that will make the problem largely 
over-determined. 

be written, H,, being the number of targets that are im- 
aged in the h-th view taken from the j - th  camera 
(0 < H ]) < H ,  H being the total number of targets of the 
calibration frame). In the previous section, we assumed 

multi-ocular. This assumption, however, is not 
tive. In principle, in fact, we could individually cali 
the cameras by following the above procedur 

Cruising the Parameter Space 
As shown in the previous sections, calibration is an in- 
verse problem to be approached through global nonlinear 
optimization. With this approach, which is 

large number  of  unknowns  (especially f o r  
If-calibration) and the cost function to be minimized is 

hly nonlinear. These facts make the search for the 
obal minimum quite a difficult problem to solve. As a 

that the acquisition system we intend to calibr opted in photogrammetry, the search space is made ofa 

matter of fact, a number of solutions have been proposed 
in the literature, whose aim is to make the optimization 
problem solvable with a reasonable computational cost 
and with minimum risk of settling for a relative mini- 
mum. A simple solution is to use all the available a priori 
information on the camera parameters and on the target’s 
coordinates. For example, if some rough information on 
the target’s coordinates or the focal length is available, 
one could first determine a rough approximation of the 
other parameters by taking the available information for 
granted, and then refining all the parameters through a fi- 
nal bundle adjustment. As the first rough solution brings 
the algorithm closer to the global minimum, the final 
global optimization step can be speeded up and carried 
out more safely. When the search space is prohibitively 
large and the available a priori information is not suffi- 
cient to get close enough to the global minimum, or when 
we need a fast implementation of the estimation strategy, 
some additional constraints need be exploited. 

Projective constraints and invariants are extensively 
used in computer vision for separating the estimation of 
intrinsic (physical) parameters from that of the extrinsic 
parameters (camera position and orientation), and for 
finding closed-form expressions to reduce the 
dimensionality of the search space. This approach con- 
sists of “peeling the layers’’ off a stratified model of vi- 
sion, from projective to affine to euclidean. The first step 
is projective calibration, in which a camera projection ma- 
trix P [sec (l)] is determined for each camera from a 
number of image correspondences [ 181, [ 191. This oper- 
ation is usually based on projective constraints that can be 
bilinear (epipolar constraint), trilinear (trifocal tensor), 
or multilinear, depending on the number ofviews that are 
being considered simultaneously [20]. 

According to the epipolar constraint, two ste- 
reo-corresponding optical rays are bound to be coplanar. 
This fact can be expressed in closed form as 

( P ” ) ) ~  Fp‘” = 0 , F 1 (K‘2))-TRS(I<(1))-1 

where p(l) arid p(2)  are the image coordinates of two cor- 
responding points as seen from the two cameras and F is 
the so-called fundamental matrix [18], which can be de- 
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termiiied in closed form if a number ofcorresponding im- 
age coordinates are available [ 191. 

Notice that, from image correspondences alone, the 
camera projection matrix P can only be recovered up to  a 
projective transformation. However, it is reasonable to 
assume that the intrinsic parameter IC, of (2) does not ac- 
count for any skew. This restricts the ambiguity of the re- 
coiistructioii to metric (P can be recovered up to a 
similarity transformation) [21], [6] .  

Given two views and the fuiidamental matrix that ex- 
presses the projective relationship between them, there 
are a variety of methods that allow us to determine the 
projection matrices (see, for example, [18] and [ 191). 
Such methods ~ ~ ~ u a l l y  exploit the fact that the projectioii 
matrices can be determined up to a similarity transforma- 
tion so that the projection matrix ofthe first view can be 
simply chosen as P’ ’ I  = [I I 01. This choice results in a sim- 
plification of the procedure for determining the other 
projection matrix. 

When more than two views are available, the deter- 
mination ofthe projection matrix can be made more ro- 
bust by adopting multiliiiear constraints. For example, 
one constraint that is often exploited when using three 
views is the trifocal tensor [20], which determines the 
position of a primitive in one image, given the position 
in other two. 

Once the projection matrices P’ ” are available for all 
the views, the next step consists of determining the intrin- 
sic and extrinsic matrices KIh’ and MI” that generated 
them. The literature is rich with methods for determining 
such matrices using additional geometric constraints. 
One solution often adopted consists of applying con- 
straints on the intrinsic camera parameters through the 
absolute conic [22], [ 2 3 ] .  The absolute conic is a set of 
points of imaginary projective coordinates [x, y, z ,  t ]  ’‘ 
that lie o n  the plane at infinity ( t  = 0) and satisfy the eqira- 
tion x2 + y2 + z 2  = 0. One remarkable property of the 
absolute conic is that it does not vary under scaled Euclid- 
ean transformations. Thus, its projection onto the image 
planes is invariant under rigid displacements of the cam- 
era (if the intrinsic parameters remain unchanged). The 
fact that the image of the absolute conic (IAC) depends 
only on the matrix K ofthe intrinsic camera parameters is 
confirmed by the fact that its equation is of the form 
p ’ IC -.’ K -Ip = 0. As a consequence, if the matrix I< -’ 
of this conic can be found, we can determine K through 
Cholesl<i factorization. In general, it is easier to work with 
the inverse I<KT of the IAC matrix, which is called dual 
image of the absolute conic (DIAC). 

The quadric of planes that are tangent to the absolute 
conic is called the absolute quadric, and is generally repre- 
sented by a 4 x 4 symmetric rank-3 dual matrix R. If T 
transforms points from p ,,, to Tp ,j,, then it transforms !2 
onto TRT 7 - .  If T is a similarity transformation, then !2 
remains unchanged. When the transformation is the pro- 
jection matrix P, then the absolute quadric is mapped 
onto the image of the absolute conic whose dual matrix is 

l?QP ’ . A comparison with the DIAC yields the so-called 
Kruppa constraint 

hKK7 =PQP’ (9) 

which relates the dual of the image of the absolute conic 
to the absolute quadric [24]. Since we luiow the projec- 
tive matrix (up to a change of basis), if some information 
is already available on the intrinsic camera parameters, the 
Kruppa constraint can be used for recovering the Euclid- 
ean geometry. For example [ 231, [ 241, luiowing the coor- 
dinates ( ~ , , , y , ~ )  of the principal point, it is possible to 
rewrite the ICruppa constraint as 

r fi‘ 0 0 

where k is the index that specifies the considered \ .  ww, as- 
sumiiig a reference frame attached to the first camera so 
that P‘” = [ I  I 01. In fact, from (10) we recognize that R is 
symmetric and rank 3 .  The above version of the Kruppa 
constraint allows us to specify a total of 4(n - 1) equations 
(four equations for each one of the n-1 views, as the first 
view is excluded) in the four unknowns f; ,a, , a 2 ,  and 
a3.  More specificallj~, if yII is the (ij) element of the 
maitrix r = h kK ,:K*i, then the four equations associated 
with the  h-th view ( k = 2  ... n )  are y l ,  =y12 and 
y12 = y13 = y23 = 0. As a consequence, we need at least 
two views in order to determine the focal lengths. Once R 
has been computed, and h /?IC k I ~  is available, the above 
four equations allow LIS to determine K b .  In order to do  
so, since l-/< is already diagonal, it is not necessary to com- 
pute its Choleski factorization, as it suffices to let y33 be 
the scale factor h />. The focal length turns out to be 

f k  = JYll  I Y 3 3 .  

Now that the intrinsic matrices are known, the 
epipolar constraint between two views becomes 

(q ‘ / ! l )T  Eqf’”I = 0, 

where 

and E = RS is 
called essential matvix, which only contains extrinsic pa- 
rameters. From the essential matrix it is possible to alge- 
braically determine R and t/ I t I through a process based 
on singular value decomposition [ 191. The scale factor of 
the translation can finally be (at least approximately) de- 
termined by exploiting the a priori knowledge on the ac- 
tual size of the calibration target-set or the actual distance 

1 b I - (K 1 1% 1 ) -1 ( b 1 , f ill 1 = (K 1 lii 1 ) -1 1 i l l  1 - 
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sively increased at each step. For example [27], [28], in 
the case of strong calibration, we can first proceed with 
the individual calibration of each camera through a sepa- 
rate analysis of the Vviews of the target-frame. By averag- 
ing the V sets of camera parameters obtained from the 
individual calibrations, we obtain a good starting point 
for the next calibration step. This second step still con- 
cerns the individual cameras, but it uses all the available 

ews simultaneouslv. At the end of this proces5, we ob- 

In principle, the target-set’s 
mplexity could be minimized 
reducing the number of 
ets to the minimum, while 

i -  

between two of the scene features that originated the used 
image points. 

This approach has the immediate advantage of dealing 
with the many variables in a more structured fashion, al- 
though it suffers from the drawback that it does not ac- 
count for lens nonlinearities. Furthermore, the 
determination of the principal points is not carried out ex- 
plicitly. In order to overcome this last problem, Borghese 
et. al. [25] estimate the principal points of a binocular 
camera system through a nonlinear minimization process 
based an evolutionary approach, while projective con- 
straints and invariants are used for computing the rest of 
the parameters in closed form. 

The above approach can be used for a careful initializa- 
tion of a global optimization process, and to achieve re- 
sults of considerable accuracy with limited risk of 
encountering relative minima and a heavy reduction of 
the computational load. However, we performed some 
estimation experiments in which the nonlinear distortion 
parameters were estimated with the principal points 
while the remaining parameters were computed explic- 
itly. More specifically, we implemented a loop in which 
the optimization of distortion parameters and principal 
points is cascaded with the explicit computation of the re- 
maining parameters until a stable configuration is 
reached [26]. The cost function is based on the agreement 
between the actual data and the data predicted with the 
estimated model, and on the degree of satisfaction of 
other constraints. As our camera system is trinocular, the 
system uses both bilinear and trilinear constraints. 

The tests performed on this parameter estimation ap- 
proach seem to confirm its effectiveness, as its adoption 
speeds up the computational time of almost two orders of 
magnitude, We will see in the next section that this ap- 
proach has the advantage of increasing the number of 
constraints considerably, allowing us to further reduce 
the complexity of the target-set. 

Implementation 
When the target-frame is planar, it is very easy to roughly 
measure the relative targets’ coordinates. In this case, the 
global minimum can be safely reached through an itera- 
tive process in which the number ofunknowns is progres- 

%in a refined versi&l of the camera parameter vcctor c 
and A4 estimates of the vector v that describes the target 
positions. The last step consists of a global (all cameras) 
calibration based on the simultaneous analysis of all the 
views. This last optimization step refines the previous es- 
timate of the parameters, which consists of the parameter 
vector c and an average between all the target-frame’s mo- 
tion vectors. 

In the case of self-calibration, the camera parameters 
can be roughly estimated first through MVMC calibra- 
tion by pretending that our a priori knowledge of the tar- 
get’s world coordinates is not affected by uncertainty. 
The whole vector m containing both targets’ world coor- 
dinates and camera parameters can then be refined 
through a global minimization process. 

Notice that even when the uncertainty of the targets’ 
world coordinates is very limited, we can always estimate 
the uncertainty of the model’s parameters through a 
linearization of the direct model. The uncertainty of the 
targets’ world coordinates, in fact, can be treated in the 
same way as the uncertainty oiOc of the image feature local- 
ization. For a first and rough estimate of this uncertainty, 
it is reasonable to assume that, if the targets are 
Gaussianly distributed over a planar frame around their 
nominal locations, their projections on the image plane 
remains Gaussianly distributed. Therefore, their standard 
deviation on the image plane is op = op,, f / z, ,  where 
ol,,, is the standard deviation of the uncertainty of the tar- 
gets’ world coordinates, f is the focal length of the cam- 
era, and z ,  is the average distance between the camera and 
targets. Because the 3D measurements and the image fea- 
ture localization error can be considered statistically inde- 
pendent, a measure of the uncertainty of the global data 
can be computed. The uncertainty can still be considered 
Gaussian, with variance 05 = o;,< + of .  The global 
covariance matrix C, = o:f!%, is then used to predict 
the uncertainty C 

We have experimentally verified that the calibration’s 
uncertainty (measured as the variance of the target’s re- 
construction error) is approximately proportional to the 
inverse of the number of targets (with a fixed number of 
target views). Let us assume, for example, that the acqui- 
sition system is made of three standard TV-resolution 
cameras (Fig. 2). Due to the geometry of the acquisition 
systems, and considering the fact that the orientation of 
the planar target needs to be reasonably tilted with respect 
to the camera’s optical axes, it is usually reasonable to ac- 
quire four or five views of the target-frame. Assuming 

on the estimated model. 
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that the accuracy of the feature localization is about 0.1 
pixel, with a target-set placed at about 800 mm from the 
cameras (assumed as being about 500 mm apart from 
each other), we cannot expect the target’s reconstruction 
accuracy to be any better than 0.1 mm. In such condi- 
tions, 15-20 targets turned out to be enough for maxi- 
mum accuracy. 

Minimizing the Target-Set 
In principle, the target-set’s complexity could be mini- 
mized by reducing the number of targets to the mini- 
mum, while increasing the number of positions from 
which the target-frame is viewed. For example, the esti- 
mation of a set of 11 parameters for each camera of a 
trinocular acquisition system requires a minimum of six 
targets (which can also be ~op lana r ) .~  Below this mini- 
mum it is necessary to exploit additional projective con- 
straints and invariants. 

One interesting example of this strategy [25] was de- 
veloped for a binocular acquisition system. A calibrated 
bar ending with two spherical targets at a laown distance, 
is moved inside the worlung volume while the camera sys- 
tem acquires a sequence of images. As the target frame 
comprises just two targets, a fairly large number of im- 
ages must be acquired before the desired accuracy in the 
estimated parameters is reached. The method becomes 
particularly convenient with stereo video sequences, 
which pose some limitations to the computational com- 
plexity of the approach. Instead of adopting a global 
minimization procedure, in fact, the method uses the pro- 
jective constraints and invariants of the previous section 
in order to compute as many parameters as possible in 
closed form. The remaining parameters are estimated 
through a proper optimization process. More specifically, 
the focal lengths are determined using the properties of 
the absolute conic in the projective space while the extrin- 
sic camera parameters are computed from the epipolar 
geometry up to a scale factor, which is determined from 
the actual length of the calibration bar. The principal 
points are estimated through a nonlinear minimization 
process, which is carried out through an evolutionary op- 
timization approach. This method does not account for 
nonlinear lens distortion, however, we performed some 
experiments in which the distortion parameters were in- 
cluded in the nonlinear optimization step, confirming 
that the hypothesis of the absence of nonlinear distortion 
can be removed [26]. 

Although the above estimation method is not based on 
self-calibration, the need to measure the rigid bar before- 
hand with appropriate accuracy is not too strong a bur- 
den, as it consists of just a simple 1D measurement, 
whose accuracy will directly influence the quality of the 
camera parameter estimation. 

Making the Calibration Adaptive 
In order to detect and track any camera parameter changes 
and correct them ‘‘on the fly” [29], [30], the image features 
(control points) to be analyzed need to be localiu-d with 
high (sub-pixel) accuracy [31], 1321. If the control points 
are artificial targets, then they can be detected and 1ocdiu.d 
through some advanced template matching process. In the 
case of naturd object features, one solution is to search for 
corners or vertices (~.iewcr-independent crossings between 
311 edges) [33], [34], [35]. 

Vertices are characterized by the fact that the 
Laplacian of their luminance profile is zcro. Furthermore, 
the Baudet operator DET = I ~~I ,,,, - I i, has a relative 
maximum (in all directions) in the proxinit). of vertices 
and, when applied to a set of progressively more filtered 
versions of the image, the maxima can be shown to be col- 
linear. These two constraints can be used jointly for deter- 

A 4. Example of low-cost target-set (laser-printed sheet of paper 
glued to a planar glass surface). 

1 1 0 ideal Paint Position 
-Positional Error, ‘mm , . 

I ‘  I 

A 5. Targets‘positional errors caused by the dragging action of 
the laser printer. 
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mining a vertex with super-resolution accuracy. In order 
to do so, we can look for the zero-crossing of the 
Laplacian along the line of the maxima of the DET. The 
achieved results show that such improvements allow us to 
reach a localization accuracy that is better than 0.2 pixels. 
As far as feature matching is concerned, we 
M-partite matching algorithm based on the simil 
the local luminance profiles, which also takes the 

(A4 being the number of cameras) of homologous points, 
which can be back-projected onto the 3D scene space. 
Through a proper analysis of the magnitude and the tem- 
poral behavior of the back-projection error, we can reveal 
and characterize any incidental modification of the cam- 
era parameters. In order to correct the parameters on the 
fly, we keep track of the stable scene points and use them 
for re-calibration or self-calibration. .- . .  . geometry specified by the current calibration into ac- 

count. The matching process generates a set oflll-tuples 

L 6. Exomple of 30 reconstruction: triplet of original views of a flot 
newspaper's page (a) and oblique view of a set of 30 points of 
the newspaper's page, retrieved through area matching (b). The 
resulting standard deviation from plonority is 0.1 mm. 

A 7. €xample of teleconferencing scene. 

"k_ In order to validate the adaptive cahbration technique, 
we conducted a series of experiments. In some cases, we 
simulated a change in the acquisition setup by modifying 
the calibration parameters. In others, we physically modi- 
fied the camera setup (e.g., relative camera position or fo- 
cal length). In all such cases, the system revealed a 
significant increment of the accuracy index, and, since the 
number of matched points was not significantly affected by 
the parameter change, we could use most of the matched 
points as control points and correct the calibration param- 
eters. The accuracy of the corrected parameters turned out 
to be comparable with that of the original calibration in 
both cases of re-calibration and self-calibration. 

Experimental Results 
In order to test the reliabhty of our calibration methods, we 
performed a series of tests in a variety of experimental condi- 
tions, using three standard TV-resolution CCD cameras 
(Fig. 1). A first series of tests was conducted on a 
high-quality target-frame whose targets, nominally scat- 
tered on a regular grid, were accurately measured through a 
photogrammetric procedure. The surface of the tar- 
get-frame was a lightweight honeycomb-structured alumi- 
num "wafer" for improved rigidity. MCMV self-calibration 
was performed using only the nominal target's coordinates, 
producing results whose accuracy was comparable with that 
obtained through strong cabbration using the accurate mea- 
surements on the target's coordinates. 

Some other self-cahbration MCMV experiments were 
conducted with an inexpensive target frame (see Fig. 4) ob- 
tained by gluing an A4-sized sheet oflaser-printed paper to a 
flat surface. In Fig. 5 ,  the a priori location of the target 
points (defined on the printed pattern) and the correspond- 
ing positional error (estimated through self-calibration) are 
visualized. As we can see, the paper dragging action of the 
laser printer causes a positional error, as visually confirmed 
using a hgh-precision ruler. In conclusion, laser printers are 
able to guarantee h g h  resolution, but poor positional accu- 
racy; making this type of target-set suitable for 
self-calibration and not for strong calibration. However, as 
the positional error caused by the dragging action is not 
guaranteed to be unbiased, it is preferable to use a profes- 
sional ink-jet plotter, as confirmed experimentally. In this 
case, in fact, we found a good agreement between a priori 
and a posteriori world coordmates of the targets; which 
confrms that such target-sets can be effectively used for 
strong calibration. 
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8. Two views of the 30 point clouds estimated through area matching. 

a 9. Example of complex object. 

10. Cloud of 30 points reconstructed from several triplets of 
views after fusion. 

Finally, we fmally carried out some experi- 
ments for evaluating the maximum accwa9 
that can be reached by a 31) recoiistruaioii 
procedure based on stereo-correspoiidences 
[37], when using the above-described 
trinocular cancra system, calibrated with our 
MCMV method. To do so, we considered a 
set of views of the target-frame that had not al- 
ready been used for calibration. We estimated 
the distance between fiducial points through 
back-projection of their image-coordinates. 
The obtained accuracy was better than 0.2 
mm, with ai average distance of2000 mm be- 
tween cameras and object, aid a maximuni 
object s ix  ofapproximately 1500 mm (corre- 

sponding to a relative accuracy of about 130 ppm). S d a r  
redt ,  were found with some other 3D reconstruction exper- 
inients performed on a variety of test object,. In Fig. 6, an ex- 
ample of recoiistruaioii of a flat surface (a newspaper page 
glued to a flat surface) from one triplet ofviews is reported. In 
this case, the resulting standard deviation from planarity was 
about 0.1 111111. In Figs. 7 and 8, a complex telecoiferencing 
scene and its reconstruction from one triplet of views are 
shown. Fhially, an example of reconstruction from several 
triplets of views is shown in Figs. 9 and 10. Data fusion is 
achieved by first estimating the egomotion from 3D cun'e 
ma tchg ,  and by then inergiiig the partial reconstructions. 

Conclusions 
In this article, we presented some simple and effective tech- 
niques for accurately calibrating a multi-camera acquisition 
system. The proposed inethods were proven to be capable of 
accurate results even when using k7ery simple calibration tar- 
get-sets and low-cost imaging devices, such as standard 
TV-resolution cameras connected to commercial 
frame-grabbers. In fact, the performance of our calibration 
approach yielded results that were about the same a.. that of 
other tradtional calibration methds based on large 31) tar- 
get sets [ 11, [12]. The proposed cabbratioii strategy is based 
on a multi-view, multi-camera approach. This was based on 
the analysis of a nunber of views of a simple cabbration tar- 
get-set placed in dffereiit (unknown) positions. Further- 
more, the method is based on a self-cahbration approach, 
whch can refuie the a priori laowledge of the world coord- 
nates of the targets (even when such information is vey 
poor) while estimating the parameters of the camera model. 
Finally, we proposed a method to male the cahbration tech- 
nique adaptive through the analysis of natural scene features, 
allowing the camera parameters to hold accurate throughout 
the acquisition session in the presence of parameter drift. 
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Endnotes 
‘Work supported in part by the ACTS Project “PAN- 
ORAMA,” l’roj. No. AC092. 
’It can be shown [ l ]  that, when dealing with a sin- 
gle-camera system, all points should not be co-planar uii- 
less the pixel size is linown beforehand. 
‘This is a reasonable assumption with digital cameras; or 
with CCD aiialog cameras with liiiown ratio between 
pixel-clock and frame grabber’s sampling rate. 
4Six extrinsic parameters (three Euler angles and three 
traiislational components) plus five intrinsic parameters 
(principal point’s offset, two coefficients of the radial dis- 
tortion and the focal length). 
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