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ABSTRACT
In this paper we present a unified approach for
calibration and self-calibration of multi-camera
systems. The technique is based on an algorithm
for the resolution of the self-calibration problem,
with which it is possible to find the camera
geometry up to an arbitrary perspective
transformation of the calibrated scene space. The
correct geometry is then obtained by properly
exploiting the dimensional constraints introduced
with the observation of a very simple calibration
pattern. Experimental results have been carried
out with many different 3D configurations of the
fiducial points, in order to calculate both the
minimum number of points, necessary to reach the
desired accuracy, and their best disposition in the
scene space.  Moreover, the accuracy of the
proposed calibration method is evaluated and
experimentally validated.

INTRODUCTION

Camera calibration is that set of operations with
which geometric, optical and electrical
characteristics of a camera system are determined.
High accuracy in the calibration results is normally
highly desirable, especially when performing 3D
scene reconstruction from digital perspective
views, captured by such camera systems.
There are several calibration approaches, which
differ depending on the available a-priori
information in the calibration scene. One common
approach is to use a calibration pattern that
occupies part of the 3D scene space. The
calibration pattern has to be built in such a way to
allow a simple and accurate recovery of its
geometrical characteristics. Typically, it contains a
sufficient number of fiducial marks, whose shape
allows their accurate localization in the images.
When the 3D coordinates of such points, in the
external reference frame, are known beforehand, it
is possible to exploit their relationship with the
corresponding image coordinates in order to
estimate the camera parameters. This approach is
traditionally known as camera calibration [1].
Conversely, if the 3D coordinates of the fiducial

points are unknown, the problem is known as a
self-calibration problem. Without any a-priori
information on the pattern, the increased number of
unknowns makes this problem undetermined, in the
sense that it can be solved for only a part of the
unknowns. The problem, however, can be made
determined if some a-priori information about the
pattern is available.
Aim of this work is to develop a camera calibration
procedure in which the necessary a-priori
information is introduced in such a way to simplify
as much as possible the procedure of acquisition of
the calibration pattern. In the proposed calibration
scheme, a self-calibration approach is employed for
the estimation of the linear part of the camera
model. The 3D information provided by the pattern
allows then to solve for the residual uncertainty, as
well as to estimate the nonlinear part of the model.
The key feature of such an approach is that it works
with any kind of calibration pattern and any degree
of knowledge on the pattern itself (once the
minimum information necessary to solve the
problem is provided). This freedom can be
exploited for making the calibration pattern and the
acquisition procedure maximally simple. The
importance of a simple calibration pattern is further
emphasized by the consideration that one crucial
problem of calibration strategies is their range of
validity. As the calibration pattern plays the role of
a sort of “training set”, it should be designed in
such a way to be statistically representative of the
scene to be reconstructed. Accurate results are, in
fact, obtained when the pattern properly “fills up”
the volume of interest, which means that the pattern
should be as large as the scene. For this reason, it is
very desirable to calibrate a scene with a pattern of
modest size, which is moved an acquired by the
cameras in several different positions.
A quite exhaustive set of experiments have been
carried out, in order to evaluate the accuracy of the
estimation by using very simple calibration
patterns. The experiments have been carried out on
a trinocular camera system, and two patterns have
been tested: a planar surface and a rigid bar, with
two fiducial points, situated at the extremities,
whose distance is known [6].



CAMERA MODELS AND CALIBRATION

PROBLEMS

With camera model, we mean the set of
mathematical relationships that link the 3D
coordinates of a point in the scene space, to the 2D
coordinates of its projection on the acquired image.
Such relationships can be defined in different ways,
as the literature shows. Among them, a distinction
could be made between:
• The physical model, which describes the

projection process in terms of all the optical
and geometric parameters of the camera, like
its position, orientation, the focal length, the
position of the optical axis, etc.

• The projective model, which defines an
operator P (projection matrix) that links the
coordinates of a 3D point to the coordinates of
its projection in the image. In this model, both
the 2D image coordinates and the 3D scene
coordinates are expressed as homogeneous
coordinates. Although such a parametrization
is far not so intuitive as the former one, it has
the advantage that the relationship between
scene points and image points is linear. For
each point, the scene coordinates PW and the
corresponding image coordinates PI, are
related as follows:
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Considering the above equation, all the calibration
problems can be seen as the problem of
determining the projection matrix P, given the
image coordinates PI of the calibration points and
some information about their world coordinates PW
in the external coordinate frame. Depending on the
degree of knowledge about the world coordinates
PW, the calibration techniques can be actually
classified into:
• Traditional calibration approaches, where the

calibration pattern is completely known, that
is, the 3D coordinates of all the fiducial points
PW are given. The only unknown is the
projection matrix.

• Self-calibration approaches, the complemen-
tary case, as in such problems no information
is given about the position of the fiducial
points PW. Given the image points, both the
projection matrices and the scene structure
have to be determined. In the general case,

such a problem can be solved up to a scale
factor on the reconstruction.

The idea of this work is therefore to develop a
calibration scheme that, at first, adopts a self-
calibration approach to solve the problem in the
projective space, using no knowledge about the
world-coordinates of the fiducial marks. After then,
the remaining uncertainty is solved for, by properly
exploiting the constraints introduced by the
available 3-D information of the fiducial marks.
The main advantage of this approach is the total
flexibility of the algorithm with respect to the
knowledge about the fiducial mark. The algorithm
is capable to solve the calibration problem even
with the minimum degree of knowledge about the
fiducial marks.
Aim of this work is to exploit this flexibility in
order to simplify as much as possible the structure
of the calibration pattern and the procedure for its
acquisition.

THE PROPOSED ALGORITHM

The flow diagram of the proposed algorithm is
shown in figure 1. As the diagram shows, the
estimation procedure is divided in two parts. The
linear part of the model, which is determined in
closed form, and the non-linear part which is
iteratively estimated, through minimization of a
cost function. This algorithmic structure has the
advantage that the search space through iterative
minimization is greatly reduced, while most of the
parameters are estimated in closed form. This leads
the necessary computation time to be reduced up to
2 orders of magnitude, with respect to traditional
calibration procedures [2].
The estimation of the linear part of the model is
based on a self-calibration approach [3,4] and has
been optimized in order to maximize the
computational efficiency.

Estimate
Distortion & O.C.

Estimate the Trifocal tensor T

Compute projection matrices P

Compute the focal lengths

Compute fundamental matrix F

Compute R , T

Compute the Scale Factor

Evaluate cost function

Conv. test

END

Figure 1. Flow diagram of the proposed technique.

Since a trinocular camera systems is considered, it
is particularly efficient to exploit the trifocal
constraint, applied to the matched triplets of



calibration points, in order to estimate the trifocal
tensor of the system, T. From T, the projection
matrices Pi can be computed by exploiting the
invariance of the absolute conic with respect to the
perspective projection [5]. For each couple of
projection matrices {Pi,Pk}, the corresponding
fundamental matrix Fik is obtained and, from Fik, it
is possible to compute the effective focal lengths fi
and fj. This allows to derive from F the extrinsic
and the intrinsic calibration parameters through
singular value decomposition, by exploiting the
following relationships:
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where R is the rotation matrix, T the translation
vector and Ki is the matrix containing the intrinsic
parameters of camera i, being f the focal length and
{cx,cy} the image position of the optical center.
At this point, the calibration problem is solved, up
to an unknown scale factor that affects f, T and, of
course, the reconstructed scene. In order to solve
for the scale, the available 3D information of the
calibration pattern is exploited. Through the
constraints introduced by the given 3D coordinates,
or just with given distances among points, the scale
factor can be easily determined by solving an over-
determined linear system.
The estimation of the non-linear part of the model
is performed by iterative minimization of a cost
function, which measures both the 3D
reconstruction error in the scene and the projection
error on the image plane. The estimated parameters
are the position of the optical center and two
coefficients of the radial lens distortion. In order to
obtain a high computation speed, the minimization
strategy is based on an optimized genetic
algorithm, which has provided comparable
robustness but much higher convergence speed,
with respect to traditional deterministic approaches.

In order to increase the computation efficiency, the
minimization is applied to a reduced data-set,
which is obtained through random selection of the
available fiducial points. The random selection is
repeated at each iteration, in order to avoid any
polarization of the estimate. Moreover, as long as
the estimate gets more and more accurate, the
search space is progressively reduced, in order to
further increase the computational efficiency (see
figure 2).

EXPERIMENTAL RESULTS

The presented technique has been tested for
calibrating a trinocular camera system. Two
different calibration patterns have been adopted
and tested: a planar surface with a set of fiducial
marks on the surface, whose coordinates are known
in the frame of the pattern, and a rigid bar, with two
fiducial points, of known distance, situated at the
two extremities. The experiments have been carried
out with the following aims: on one hand, the
evaluation of the performance of the calibration
procedure, in terms of accuracy and computation
time. On the other hand, an analysis devoted to find
the best configuration for the calibration pattern,
that is, to find the minimum number of fiducial
points necessary to obtain accurate results and their
best distribution in the scene space, in order to
maximize the accuracy.

Figure 2 The evolutive strategy of the optimization
algorithm. As the estimate becomes more accurate,

the search space is correspondingly reduced.

Figure 3 The 3D reconstruction errors, as function
of: a) the number of points on a planar pattern (top);

b) the number of views of a rigid bar (bottom).
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The plot in Figure 3a shows the mean 3D-
reconstruction error, as a function of the number of
fiducial points employed for the calibration. The
different lines in the diagram correspond to
different spatial distribution of the points: next to
the image center (dashed line), far away from it
(dotted) and randomly chosen (solid). The plot in
fig. 3b shows the performance obtained using a
rigid bar as pattern. The results show that the
procedure is able to work with very simple
patterns, providing the same accuracy.
From the above plots, it can be derived the
following:
• The algorithm allows to reach an accuracy of

0.1 mm in the scene space, corresponding to a
relative precision of 150 parts per million, that
is the same accuracy provided by calibration
with perfectly known 3D calibration patterns.

• A good accuracy can be already obtained with
a total number of fiducial points of 100 (4
views with 28 points on the planar pattern; 56
views of the bar).

• The comparison of the two plots in figure 2
shows that the algorithm has been able to
obtain, for the same total number of calibration
points, the same accuracy, with the bar, as with
the planar pattern. This confirms that the
proposed technique is effectively able to obtain
accurate calibrations with any amount of a-
priori 3D information, up to the minimum
necessary, thus allowing easy acquisition
procedures and the use of very simple and non-
critical calibration patterns.

CONCLUSIONS

This paper presents an efficient technique for
camera calibration, characterized by fast
computation times and maximal simplification of
the structure of the calibration pattern and the
procedure for its acquisition.
The experiments have shown the proposed
technique to be able to generate, with very simple
calibration patterns, as accurate results as those
obtained by acquiring big (“scene-sized”) 3-D
patterns.
In particular, quite accurate results and a very
simple acquisition procedure have been achieved
using the bar as calibration pattern, even if slightly
poorer results have been obtained in the estimation
of the radial distortion.
A high computational efficiency (up to 2 orders of
magnitude, with respect to traditional techniques)
has been reached. This is mainly due to the
following reasons:
1. The high efficiency of the genetic strategy in

the non-linear optimization algorithm.

2. The non-linear part of the problem is limited to
its minimum dimensionality, solving the other
unknowns in a linear way.
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