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Abstract – In this article we present our global approach to the problem of accurate 3D measurement and reconstruction
of 3D works of art using a calibrated multi-camera system. In particular, we illustrate a simple and effective adaptive
technique for the self-calibration of CCD-based multi-camera acquisition systems with minimum a-priori information. We
also propose a general and robust approach to the problem of close-range partial 3D reconstruction of objects from
stereo-correspondences. Finally, we introduce a method for performing an accurate patchworking of the partial reconstruc-
tions, based on 3D curve matching. © 2000 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

Three-dimensional works of art are characterized
by such a diversity of shapes, materials and physical
structures that, as of now, their accurate 3D relief
can only be performed through expensive and time-
consuming ad-hoc methods. This fact, together with
the need of employing specialized personnel, reflects
negatively on the whole costs of the 3D modeling
process, which ends up being applied to the most
urgent cases only.

Due to the large number of historical objects and
monuments that need to be inspected, monitored,
modeled, restored, and protected, the need of devel-
oping low-cost, automatic, and accurate methods
for 3D modeling is becoming urgent. As a conse-
quence, one need that is becoming more urgent is
that of developing and implementing non-invasive
systems that allow non-expert users to construct a
3D model of a monument, a statue, a portion of a
building, or a medium/large-sized work of art, in an
automated fashion and with photogrammetric accu-
racy, through the analysis of images of the object
itself, acquired on-site.

The rush to develop methods for the 3D recon-
struction of objects from the analysis of camera
images has been particularly intense in the past two
decades. Particularly in the past few years, a large
number of these applications have been developed
with the goal to approach the problem of content
creation for the multi-media market. There is a
considerable number of applications, however, in
which the accuracy of the 3D reconstruction plays a
crucial role, especially those applications of close-
range digital photogrammetry aimed at the preserva-
tion and restoration of 3D works of art. Such
methods, require effective techniques for accurate,
quantitative, reproducible, and repeatable 3D recon-
struction. In fact, suitable 3D modeling methods
should be sufficiently accurate as to match the per-
formance of the methods that are commonly
adopted for the 3D relief of works of art; and to
guarantee that such measurements will be repro-
ducible and can be repeated a long time for moni-
toring purposes.

One aspect that heavily influences the types of
methods that can be used for 3D reconstruction
from images is the size of the object under examina-
tion. Usually, objects that are rather small in size
(fractions of a meter) exhibit peculiarities and com-
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plex characteristics of complexity that dramatically
differ from case to case. In order to model such
objects, a variety of systems that are not image-
based have been developed and can be used success-
fully in controled environments. Large-sized objects
(several meters or more), on the other hand, are
more difficult to model as they need to be imaged
from viewpoints that are sometimes far apart from
each other. On the other hand, such objects are
usually rather well-structured (e.g. architectural or
historical buildings), therefore they are best dealt
with by exploiting some a-priori knowledge on their
structure. In between these two extremes is a wide
variety of mid-sized objects (between some fractions
of a meter and several meters). Examples of 3D
objects that are usually within this range, and nor-
mally they very modestly structured, are historical
monuments and 3D works of art, for which we
cannot exploit a-priori information.

The most popular non-invasive approaches to 3D
reconstruction of mid-sized objects are based on
stereo-correspondences. Such methods consist of the
detection of special features (e.g. points, edges) on
the available images of the object. When the camera
parameters (position, orientation, and other intrinsic
physical parameters) are known (calibrated case),
the process of determining the correspondences is
helped by some rigidity constraints such as the
coplanarity of corresponding visual rays (epipolar
constraint), and the 3D coordinates of the features
can then be determined through geometric triangula-
tion [1, 2]. When, on the contrary, the camera
parameters are not known (uncalibrated analysis),
the determination of the feature correspondences
becomes more difficult. In this case, in fact, the
determination of the correspondences becomes a
statistical matching process based on heuristic rules,
while the epipolar constraints is now used for the
joint estimation of the camera pose and the 3D
coordinates of the features.

Another correspondence-based approach is stereo-
psys, i.e. on the matching of luminance profiles
that pertain to small image areas in the available
views [3]. Once again, the 3D coordinates of the
surface patch that originated the corresponding lu-
minance profiles are determined through geometric
triangulation, while the matching process is per-
formed by maximizing a similarity function between
the luminance profiles. These methods usually suffer
from problems of matching ambiguity when only
two views are employed, while they become more
accurate with more cameras, provided that geomet-
ric and radiometric distortions are taken into ac-
count [4, 5].

The problem of matching ambiguity is present in
all correspondence-based methods (feature, and area
matching) that use an uncalibrated approach or a
calibrated pair of cameras. In order to overcome this
difficulty, a calibrated set of three or more cameras
mounted on a rigid frame can be used. In fact, three
is the minimum number of views with which it is
possible to exploit the multi-ocular invariance [1],
i.e. the constraint according to which each one of
three corresponding points in three views is bound
to lie on the intersection of the epipolar lines (i.e.
the views of the optical rays) associated to the other
points. This is, in fact, quite a reasonably strong
constraint and can be used for all calibrated feature
matching methods. Other forms of multi-ocular in-
variance can be found, for example, for line match-
ing, and used for removing ambiguities in the
matching process [1].

In general, the 3D reconstruction methods based
on feature matching can be classified into two
categories:
� monocular approach: a series of uncalibrated

views are taken in as a sequence or randomly,
and then processed all together (global approach)
or in subgroups (local approach) in order to
jointly estimate camera motion and object’s struc-
ture. In the global approach, one or more cam-
eras are employed for acquiring a number of
images of the object from a variety of viewpoints
[6]. The pose of the cameras and the 3D coordi-
nates of the features are found through a joint
analysis of feature correspondences between all
available views. In the local approach a video
sequence of the object is acquired in such a way
to ‘cover’ all portions of the object. Then the
views are partitioned into groups to be processed
independently in the same way, using uncali-
brated methods and concepts of invariance
theory.

� multi-ocular approach: a set of cameras are
mounted on a rigid support and calibrated, so
that all camera parameters are known before-
hand. A number of medium-high resolution
multi-views of the object are acquired from a
variety of views. Each multi-view is analyzsed
individually and generates a ‘local’ surface. All
local reconstructions are then fused together into
a single surface, by using some global constraints
[6–8]
In general, the global monocular approach is the

one that estimates the 3D coordinates of some ob-
ject’s features with the best accuracy, as it is based
on a joint analysis of all available views. Due to its
global treatment of the data, however, this method
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produces a sparse set of 3D features that cannot
easily be interpolated into a global surface unless
some a-priori information on the object is available.
Partitioning the views into ‘good’ subsets for a more
‘local’ approach would result in a heavy reduction
of the accuracy and would be difficult to perform on
an automatic basis. This partitioning, however,
must be applied to the methods based on the analy-
sis of monocular sequences (local monocular ap-
proach). Consequently, the simplicity of the
acquisition process of such methods is paid for in
terms of a reduced optimal positioning of the views
that constitute the subgroup of images for the local
reconstruction. In fact, consecutive views of video
sequences are likely to be ‘aligned’ with each other
and, therefore, not optimally positioned for feature
matching purposes.

The local multi-camera approach, exhibits some
characteristics that make it quite interesting:
� the multi-camera acquisition system induces a

‘natural’ partition of the views; if the cameras are
well-positioned on the rigid frame (e.g. three
cameras at the vertices of a regular triangle), such
partitioning will be optimal;

� the acquisition system can be quite easily cali-
brated, and the estimated parameters can be used
for to safely determining feature correspondences
between the views through the epipolar con-
straint; furthermore the calibration can be made
adaptive in order to compensate for the drift of
the parameters throughout the acquisition
process;

� although the highest accuracy can only be
reached through a joint simultaneous analysis of
all available views, the local 3D reconstruction
accuracy resulting from the analysis of a well-cal-
ibrated triplet of views is very close to it (pho-
togrammetric accuracy);

� each calibrated triplet generates a partial 3D sur-
face model (patch) that corresponds to the im-
aged portion of the whole surface. This ‘local’ 3D
modeling approach is suitable for a high level of
automation as the 3D patches are topologically
easier to deal with than the whole surface. In fact,
once all 3D patches are available, the global
surface can be obtained through ‘patchworking’.
In this article we present a summary of the results

of our research activity on problems of 3D recon-
struction from multiple camera views, conducted
within projects related to the areas of cultural her-
itage and multi-media applications. In particular, the
most relevant results have been achieved within the
European ACTS-PANORAMA Project (Package for
New OpeRational Autostereoscopic Multiview sys-

tems and Applications), the strategic project
‘Conoscenza per immagini: un’applicazione ai beni
culturali’ (knowledge through images: an applica-
tion to cultural heritage) of the Italian National
Research Council, and the project ‘Elaborazione e
codifica di segnali per sistemi multidimensionali di
telecomunicazione’ (signal processing and coding for
multidimensional telecommunication systems) of the
MURST (Italian Ministry for the University and
Scientific and Technological Research).

All calibrated 3D reconstruction methods are crit-
ically dependent on the accuracy with which the
camera parameters, i.e. the geometrical, optical and
electric characteristics of the camera system (camera
position and orientation, focal length, pixel size,
location of the optical center, nonlinear distortion
coefficients, etc.) are known.

In the past few years several approaches to the
calibration problem have been proposed. Such
methods apply to electronic cameras the same tech-
niques that were traditionally used for the calibra-
tion of photogrammetric cameras [9–11]. The
camera characteristics are, in fact, computed
through a proper processing of the image of a test
object (calibration target-frame) placed in the scene.
The accuracy of the camera model can be arbitrarily
improved by employing an adequate number of
parameters, therefore, when the goal is that of im-
proving the calibration accuracy as much as possi-
ble, the pattern’s accuracy becomes the major
bottleneck. For this reason, we developed an ad-
vanced photogrammetric method that jointly esti-
mate the camera parameters and the geometry of the
calibration target-set in a more accurate fashion.
This method is based on a multi-camera, multi-view
calibration approach, and performs an accurate esti-
mation of the parameters of the multi-camera sys-
tem from the analysis of several views of a simpler
calibration target-frame, such as a marked planar
surface (a printed sheet of paper glued on a glass
surface) or some other even simpler structure. In
fact, not only is this technique able to estimate the
camera parameters, but it can also determine the 3D
position of the targets on the calibration frame,
which can be just roughly known or, in some situa-
tions, not known at all. Since the methods performs
a refinement of the 3D coordinates of the targets, we
will refer to it as a self-calibration method. Finally,
we developed a method for making the calibration
robust against the inevitable parameter drift that
takes place during the acquisition process. Such
method detects and tracks some ‘safe’ features that
are naturally present in the scene, and use their
image coordinates for making the calibration pro-
cess adaptive.
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Among the numerous approaches to close-range
photogrammetry available today, those that are
based on stereo matching seem to be particularly
promising. Such methods, however, can usually
provide a reconstruction of just a portion of the
scene surfaces, while it would be desirable to recon-
struct the surfaces of the whole scene. As a matter of
fact, automatic 3D reconstruction systems based on
stereo-matching can only reconstruct the visible por-
tion of the surface. Such systems, in fact, typically
provide a description of just the front side of the
imaged scene or, when the surface is too large to fit
simultaneously in all views, of just a limited portion
of it. In conclusion, in order to obtain a complete
scene reconstruction through stereometry, it is nec-
essary to observe the scene from several significant
viewpoints and put together the final reconstruction
like a patchwork of partial reconstructions.

In order to be able to merge 3D data coming from
different reconstructions, we need to accurately esti-
mate the rigid motion that the acquisition system
undergoes between two partial reconstructions. In
order to do so, one could employ high-precision
mechanical devices for positioning the camera sys-
tem (or the object) before acquiring a multi-view.
This a-priori solution of the ego-motion problem,
however, is usually quite expensive and not very
flexible. In alternative, one can perform detection
and tracking of some image features throughout the
acquisition process, and use the location of such
features for estimating the camera motion. This last
approach becomes particularly interesting when the
features to be extracted are part of the scene to be
reconstructed rather than being artificially added to
it. Adding special markers to the imaged scene is, in
fact, common practice in photogrammetry but, be-
sides making the egomotion retrieval more invasive,
it requires a certain expertise and slows down the
acquisition process [8]. Scene features that can be
quite safely detected and are commonly present in
natural scenes are luminance edges [6]. These fea-
tures are more likely to be naturally present in the
scene and rather easy to detect, which makes them
good candidate features for egomotion estimation.

In order to safely perform patchworking, we de-
veloped a method for estimating the egomotion of a
multi-camera system from the analysis of 3D con-
tours in the imaged scene. Being as the method is
based on a calibrated multi-ocular camera system [9,
11], the estimation is performed entirely in 3D
space. In fact, all edges of each one of the multi-
views are previously localized, matched and back-
projected onto the object space [12]. Roughly
speaking, the method searches for the rigid motion

that best merges the sets of 3D edges that are
extracted from each one of the multiple views

2. Materials and methods

2.1. Calibration

Camera calibration is usually carried out through
the analysis of the views of a test object (calibration
target-set), which usually consists of a set of fiducial
marks (targets), positioned within the 3D volume
that is being imaged by the camera system. If the
geometrical characteristics of this target-set are only
partially known or not known at all, then the cali-
bration process must include the refinement or the
blind estimation of the 3D coordinates of the
targets.

We developed an advanced calibration method
that, besides estimating the parameters of the multi-
camera acquisition system, is able to refine a rough
a-priori estimate of the geometry of the calibration
target-set to produce accurate 3D coordinates of the
targets (self-calibration). The method is based on
the analysis of several views of a simple (planar or
even linear) calibration target-frame, which is
moved throughout the scene in order to emulate a
3D target-frame, and is robust against the inevitable
parameter drift that takes place during the acquisi-
tion process. In fact, detects and tracks some ‘safe’
features that are naturally present in the scene, and
use their image coordinates for making the calibra-
tion process adaptive.

2.2. Calibration strategy

The calibration target-set that we use for calibra-
tion is planar as the pixel size is assumed to be
known [9]. A planar target-set is much simpler to
build with respect to a 3D target-frame as it can be
easily constructed, for example, by gluing a laser-
printed sheet of paper on a rigid planar surface. This
procedure also gives us some a-priori information
on the coordinates of the targets (and their uncer-
tainty), relative to a frame attached to the surface. A
3D calibration target-frame, on the other hand,
would require an accurate 3D measurement of the
coordinates of the targets (generally through some
photogrammetric technique [11]).

The main drawback of 2D target-sets is the fact
that they can only occupy a rather limited volume of
the 3D scene. It is well known, in fact, that a
reliable camera calibration can only be performed if
the targets are not only numerous enough, but also
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Figure 1. General scheme for the multi-view multi-camera approach to self-calibration.

well distributed in the 3D space that will later be
occupied by the object to be measured. In order to
overcome this limitation, we proceeded by virtually
enlarging the planar target-set through the acquisi-
tion of several of its views (see figure 1). The poses
of the target-frame are chosen in such a way that the
union of all targets will fill-up the volume of interest
in a rather uniform fashion. This strategy, quite
clearly, modifies the calibration problem as the rela-
tive motion that the target undergoes between ac-
quisitions is not known and needs to be a-posteriori
determined. In order to do so, the position and the
orientation of the target-set (relative to the world
reference frame) will be added to the model parame-
ters that need to be estimated for each pose of the
target-frame. An example of the application of our
parameter estimation approach is reported in figure
2, where a laser-printed sheet of paper, glued to a
flat surface, is imaged by our multi-camera system.
The targets (printed circular dots) are only known in
their nominal 2D coordinates, which are then cor-
rected a-posteriori by the self-calibration method.
The orientation of the (magnified) correction vectors
denotes the deformation of the sheet of paper due to
the action of the dragging mechanism of the laser
printer.

2.3. Adaptive calibration

In order to extract 3D information from the scene
views, the camera parameters must be known with
good accuracy throughout the whole acquisition

campaign procedure. As camera calibration is per-
formed before the beginning of an acquisition ses-
sion, problems of parameter drift may occur. In fact,
when long video sequences are acquired, the stabil-
ity of the camera parameters measured at the begin-
ning becomes a crucial problem as mechanical
shocks, vibrations or thermal effects on cameras and

Figure 2. A-priori coordinates of the fiducial points of the
target-set (laser-printed circles on a sheet of A4 paper,
glued to a flat surface) and corresponding a-posteriori
corrections estimated through self-calibration. The orien-
tation of the (magnified) correction vectors denotes the
deformation of the sheet of paper due to the action of the
dragging mechanism of the laser printer.
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supports, can cause small variations of the initial
camera set-up. This drift of the camera parameters
leads to significant 3D reconstruction errors, as
the 3D back-projection is rather ill-conditioned with
respect to the camera parameters. In order to
overcome this problem, we detect and track any
changes in the acquisition system and, whenever
possible, we apply an on-the-fly correction of the
camera parameters. By doing so, the calibration
holds remains accurate throughout the acquisition
campaign.

Our approach does not need any targets to be
placed in the scene or any a-prioria knowledge, but
exploits luminance features that are already present
in the scene (e.g. corners and spots) which can be
located placed in the image with high precision.
After the localization process, which is performed
with sub-pixel accuracy, a matching operation is
performed among the n sets (n being the number of
cameras) of feature points, which returns a set of
n-tuples of homologous points. The matched n-tu-
ples will then be back-projected into the 3D scene
space. If the camera parameters change, then the
back-projection will be affected by larger errors,
with respect to the predicted pre-calibration accu-
racy. A proper analysis of the magnitude and the
temporal changes of the back-projection error al-
lows us to reveal and characterize any incidental
modifications of the camera parameters. Further-
more, if the set of matched n-tuples is informative
enough, the proposed technique allows to accurately
measure the occurred modification and, therefore, to
re-calibrate the system.

Our approach can be seen as composed of two
main steps:
� check on the validity of the current camera

parameters through the estimation of the back-
projection’s accuracy

� analysis of the temporal changes of the back-pro-
jection’s accuracy, in order to reveal increments
in the reconstruction error that could likely de-
note a change in the system parameter
The first step of the algorithm consists in the

detection of the significant image features that will
be used as control points. Our method is based on
the techniques presented in [13–15]. In order to
obtain super-resolution in the image localization
accuracy, an algorithm for the local modeling of the
image Laplacian function has been developed and
employed in the localization procedure. The ob-
tained results show that the introduced improve-
ments has allowed to reach a localization accuracy
better greater than 0.2 pixel [16].

Over the obtained sets of image points, a n-partite
matching algorithm is applied, in order to find the
stereo-corresponding n-tuples. The matching crite-
rion is based not only on the epipolar geometry
defined by the current calibration, as the calibration
is not considered as reliable in this application, but
also on the similarity of the local luminance profiles.
All the matched n-tuples are then back-projected in
the 3D scene space, and an ‘accuracy index’ is
computed for each match, based on the back-projec-
tion error. The statistical distribution of this index
over the matched points and its temporal behavior is
then analyzed, in order to reveal any increment of
the accuracy index that could very likely denote a
change in the system parameters. Moreover, at the
beginning of the sequence, the back-projected points
that are most accurate and are fixed in the scene are
selected as control points. These are the points that
could then be used as 3D fiducial points for the
re-calibration of the system. In fact, if the number of
matched points is sufficient, it is possible to perform
a reliable re-calibration of the system. When a
change in the camera system has been detected, the
current set of matched n-tuples of image features is
exploited, in order to recover the new camera
parameters.

The proposed technique was tested on real se-
quences acquired with different trinocular camera
systems, with both simulated and real variations of
the camera parameters. In all experimental situa-
tions, the algorithm was able to detect the modifica-
tion of the camera parameters. Moreover, after
artificial modifications of the camera system, of the
same characteristics and entity of accidental ones
(artificial shocks, change of focal length, etc.), the
algorithm was able to measure the drift of the
parameters, thus allowing the re-calibration of the
system. The results showed that the accuracy of the
re-calibration, in all cases, reached the same accu-
racy as the original calibration.

3. Results

3.1. Local reconstruction

The availability of accurate camera parameters,
guaranteed by the above adaptive calibration pro-
cess, allows us to perform a series of ‘local’ multi-
camera acquisitions of the object to be recon-
structed. Such local multiple views are taken from
different viewing angles, so that all portions of the
object surfaces will be visible on at least one of
them. Each multiple view will contribute with a
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‘local’ patch of surface, and all local reconstructions
will then be glued together in a sort of a global
patchwork. In this Section we will illustrate our
approach to local reconstruction which, in order to
produce accurate results, is based on feature
correspondences.

Image features that are most often used for 3D
reconstruction are points, luminance edges, and lu-
minance patches. These two types of features tend
to provide information of a different nature. The
edge matching/backprojection process is generally
very precise and reliable, but it usually results in a
sparse set of 3D points. Conversely, the matching/
back-projection of the luminance profile of small
image patches tends to provide much denser sets of
3D points but it is rather sensitive to the unavoid-
able viewer-dependent perspective/radiometric dis-
tortions, therefore this approach tends to be less
stable and reliable. For this reason we developed a
general and robust solution to the problem of 3D
reconstruction from stereo correspondence of lumi-
nance patches. The method is largely independent
on the camera geometry, and employs a calibrated
set of three or more standard TV-resolution CCD
cameras, which provides enough redundancy for
removing possible matching ambiguities. The ro-
bustness of the approach can also be attributed to
the physicality of the matching process, which is
actually performed in the 3D space rather than on
the image plane. In order to do so, besides the 3D
location of the surface patches, it estimates their
local orientation in 3D space as well, so that the
geometric distortion of the luminance patch can be
included in the model. Finally, the method takes
into account the viewer-dependent radiometric
distortion.

3.2. Edge-based approach

As a preliminary step we perform partial recon-
struction from the edge matching, in order to obtain
reliable and accurate 3D data to begin with. Fur-
thermore we can use the same type of features for
egomotion estimation as well. In fact, partial recon-
struction is based on 2D edge matching (stereo
correspondence on the image planes) [1, 2, 4, 5],
while motion estimation is based on 3D contour
matching (edge correspondence in object space) [6,
8]. It is important to emphasize the fact that, in
order to be able to use edges for accurate egomotion
estimation, we need them to be detected with great
accuracy. We do this by first using a traditional edge
detector, we then retrieve the subpixel location of
the edge points through an interpolation process

which takes the luminance gradient into account.
Finally, a rule-based contour tracking method is
employed for determining the correct connection
between edge points.

The search for homologous edges on different
views is performed along epipolar lines. Notice that
using more than two cameras allows us to avoid
problems of matching ambiguity. For example, with
three cameras, not only can we always select the
best pair of views for a specific stereo-correspon-
dence (sharp intersection between edge and epipolar
lines), but we can validate the matching through a
check on the third view. In fact, the edge point must
lie on the intersection of the two epipolar lines
associated to the homologous edge points on the
other views. Once the stereo correspondences are
found, each set of corresponding contours is back-
projected onto the 3D scene space by looking for the
point at minimum distance from the three ho-
mologous visual rays.

3.3. Area-based approach

The luminance patches used by most area-match-
ing techniques are normally assumed to have the
same shape in all views. It is quite clear, however,
that this hypothesis is acceptable only when the
angles between the viewing directions of the three
cameras are not too wide, which is not our case. As
a consequence, we need to take into account the
perspective distortion of the shape of the patch,
when back-projected onto the object surface and
then re-projected onto the other image plane. In
order to do so, we assume the 3D surface to be
locally flat, which means that it can be approxi-
mated by a plane within the back-projected surface
patch.

In the other view we search, along the distorted
(due to radial distortion) epipolar line, for the patch
that best matches the first one. The projective distor-
tion of the patch is accounted for by estimating,
together with the position of the patch, the normal
to the object surface, according to which the shape
and texture of the patch are most likely to be
warped. In practice, the minimum of a similarity
function between a patch of the actual image and a
re-projected patch after perspective warping is
searched for as a function of position and local
orientation of the tangent plane of the object sur-
face. As far as the radiometric distortion is con-
cerned, an additional pair of variables (luminance
offset and gain) is included in the similarity
function.



F. Pedersini et al. / J. Cult. Heritage 1 (2000) 301–313308

If a reference patch produces reliable 3D informa-
tion, then it can be used for 3D surface reconstruc-
tion. Once all reference regions have been
considered, surface interpolation is carried out and
the area matching process can start over with a
smaller patch size. In this case the previously esti-
mated surface can be used for initializing the search
in the next step and speeding up the process.

As a general rule, we need to make sure that the
maximum size of the patch is small enough to
guarantee a limited matching error. On the other
hand, we know that the area matching process is
based on the minimization of a highly nonlinear
similarity function, therefore we can expect the pro-
cess to be quite sensitive to local minima. In order to
avoid such a problem, we can use an initial guess of
the surface shape, which helps the minimization
process converge to a global minimum and dramati-
cally speeds up the matching process by reducing the
size of the search space.

In principle, any method can be used for obtain-
ing a first guess of the surface shape. In our imple-
mentation we opted for an edge-based approach [1,
2], whose reliability is guaranteed by the accuracy of
the camera model and the calibration procedure. We
adopted a calibrated trinocular camera system [2, 9,
11], which allowed us to select the best pair of views
for a specific edge correspondence and validate it
through a check on the third view. As the result of
the edge-matching approach is usually a sparse,
though accurate, set of 3D points. Such data must
be interpolated in order to obtain a first guess of the
surface to be reconstructed. We interpolated the 3D
data by means of a modified and optimized version
of the edge-preserving discrete smooth interpolator
(DSI) [17]. This interpolation process is used at each
step of the surface refinement as well.

Some experiments of 3D scene reconstruction
have been carried out on a number of test scenes.
The first test presented in this paper concerns the
measurement of the accuracy of the area matching
using a flat object placed at a distance of about 1.2
m from the camera system. The surface reconstruc-
tion resulted to be flat with 0.1 mm of standard
deviation (see figure 3) [4].

Another reconstruction experiment concerned a
large stone (about 1×1 m) of the Roman Am-
phitheater of Aosta, Italy (see figure 4). Due to the
size of the object, a patchworking of several partial
reconstructions was performed. We also performed
a comparative evaluation of the quality of the re-
sults and found our local reconstruction results to
agree with the measurements taken with classical
photogrammetric methods. Notice, however, that

the nature of our reconstruction is quite different
from that obtained with a photogrammetric relief.
In fact, the photogrammetric data were much
sparser than ours (our final mesh consisted of ap-
proximately 400 000 triangles), therefore a quantita-
tive comparison between the two reconstructions
could be misleading. In order to give an idea of the
accuracy of the reconstruction, a close inspection of
the resulting surface mesh shows that even the bor-
ders of the round paper stickers of figure 4a, b, and
c, applied to the surface of the stone for the pho-
togrammetric survey, are accurately reconstructed. It
is important to notice that the cameras employed for
this 3D reconstruction are standard TV-resolution
CCD cameras. Using higher resolution digital
photo-camera the accuracy of the results would
greatly improve.

4. Global reconstruction

The fusion of partial reconstructions into a global
3D model can be performed by estimating the rigid
motion of the camera system between acquisitions,
and by referring all 3D data to a common global
frame. We perform this operation by looking for the
rigid camera motion that best merges the 3D data
that are in common between views.

The egomotion estimation method that we devel-
oped and implemented for accurate patchworking
purposes is organized in two mains steps. After
having partitioned the available 3D contours in lines
and curves, we proceed as follows:
1. rough egomotion estimation from straight

contours:
� matching of straight contours
� motion estimation through minimization of

the distance between homologous contours
2. egomotion refinement using curved contours:

� matching of curved contours
� motion estimation through a minimization of

the distance between homologous curved
contours.

Notice that, as a first approximation of the ego-
motion is already available, the matching of curved
contours is a rather simple operation compared with
the matching of straight lines.

4.1. Egomotion from straight lines

Line matching in a 3D space is performed through
a hypothesize-and-test type of procedure [18]. The
first step of this method procedure consists of for-
mulating hypotheses on the possible couplings by
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Figure 3. Original views of the newspaper’s page (glued to a planar surface) and 3D points reconstructed through area
matching.

selecting all those that do not violate some rules of
congruence based on a set of geometrical con-
straints. By doing so, we drastically reduce the
search space over which to test for matching cor-
rectness. At this point we can proceed with an
exhaustive search through the above reduced set of
hypotheses and select the match that maximizes an
appropriate measurement of the matching quality.

Once the matching process is complete, the ego-
motion estimation can be performed rather easily by
searching for the rigid motion that minimizes an
appropriate merging cost function between two sets
of 3D lines that pertain to two different partial
reconstructions. Notice that 3D contours are gener-
ally reconstructed as chains of segments whose
length and fragmentation may vary quite drastically
from multi-view to multi-view. We thus proceed by
first determining the 3D line portions that best fit

(through linear regression) the chains of fragments
of edges that have been recognized as straight. Then
instead of measuring the distances between extremal
points of two segments, we measure the distance
between the extremal points of one segment and the
line that the other segment lies upon (see figure 5).
Such distances are used for defining the merging cost
as follows:

Cs= %
N

i=1
[(di

b)2+ (di
e)2] (1)

In fact, the orientation of edges is usually less
sensitive to fragmentation problems than their loca-
tion in the 3D space [1, 18].

4.2. Egomotion refinement from curved contours

As already said above, curved contours are used
to improve the accuracy of the egomotion’s
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Figure 4. (a–c) One of the available triplets of views of a large stone of the Roman amphitheater of Aosta. The added
targets (circular stickers) are used for photogrammetric comparison and for the estimation of the egomotion through 3D
point matching. (d) Perspective view of the global merging of all 3D points reconstructed through 3D area matching. (e)
Perspective view of the reconstructed global surface.
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Figure 5. Evaluation of the merging cost of two straight
3D contours.

4.3. Examples of application

The method has been extensively tested against
convergence problems and has been applied to a
series of trinocular acquisitions of real images in
order to evaluate qualitatively and quantitatively the
accuracy of the results and the speed of conver-
gence. Furthermore, the performance of the pro-
posed method has been compared with that of a
previously studied method [2, 8] based on point
correspondences between artificially added markers.
Quantitative results have been obtained by measur-
ing the maximum thickness of the bundles of edges
when superimposing different sets of them with the
estimated motion parameters. The performance of
the proposed method has been proven to be equal to
or better than that of the point-based approach,
resulting in a maximum bundle size of about 100
ppm in all tests (after merging all 3D edges coming
from 20 multi-views).

In figure 7, the results on 3D data merging are
reported for an object of complex shape, in both
cases of egomotion estimated through point and line
correspondences. In the first case the cost function is
a rigidity constraint based on the distance between
reconstructed 3D points of different 3D data sets.
Such points are markers that have been artificially
added to the scene (white dots placed on the object’s
support). In the second case the egomotion is com-
puted with the method proposed in this paper. Even
though no artificially added markers have been used
for the estimation, the accuracy of the estimate is
comparable with that obtained through point-
matching.

5. Conclusions

In this paper we presented our global approach to
accurate 3D reconstruction with a calibrated multi-
camera system. In particular, we presented a simple
and effective technique for calibrating CCD-based
multi-camera acquisition systems. The proposed
method was proven to be capable of highly-accurate
results even when using very simple calibration
target-sets (with little or no a-prioria information on
it) and low-cost imaging devices, such as standard
TV-resolution cameras connected to commercial
frame-grabbers. We also showed our approach to
adaptive calibration, which proved effective for
keeping track of camera parameter drift through
natural feature tracking.

We also proposed and illustrated a general and
robust approach to the problem of close-range par-

estimate. Although a matching process is required in
this case too, this step is now simplified by the
knowledge of a first approximation of the camera
motion, determined from straight edges. In fact, by
applying the pre-determined rigid motion to the set
of curved edges, we can decide whether two curved
edges are matched, depending on their global dis-
tance, which can be measured, with reference to
figure 6, as:

dg=
1
2
[d(C,C %)+d(C %,C)] (2)

where

d(C,C %)=
1
N

%
i

d(Ei,C %)=
1
N

%
i


EiEi%
 (3)

The global cost function for motion refinement is
of the form C=Cs+kCc, where Cs and Cc are the
merging costs associated to straight and curved con-
tours, respectively, and k is weight for balancing the
two contributes.

Figure 6. 3D curve matching: evaluation of the distance
between two polylines.
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Figure 7. One of the original views of the object, fusion of all 3D edge sets through 3D point correspondences (marks
added on the object’s support), fusion of all 3D edge sets through 3D contour matching (natural edge features).

tial 3D reconstruction of objects from stereo-corre-
spondences. The method is independent of the ge-
ometry of the acquisition system which can be a set of
n cameras with strongly converging optical axes. The
robustness of the approach can be mainly attributed
to the physicality of the matching process, which is
virtually performed in the 3D space. In fact, both 3D
location and local orientation of the surface patches
are estimated, so that the geometric distortion can be
accounted for. The method takes into account the
viewer-dependent radiometric distortion as well.

Finally, we presented a method for performing an
accurate patchworking of the partial reconstructions,
through 3D feature matching. The method, based on
the best fusion of 3D curves, provides very accurate
results even when using standard TV-resolution CCD
cameras.

The global approach that we propose offers good
characteristics of non-invasiveness, flexibility and
accuracy that make it suitable for a variety of appli-
cations in the field of the preservation and restora-
tion of the Cultural Heritage. In general, the
availability of non-invasive automatic methods for
the 3D reconstruction of ‘unstructured’ objects may
dramatically reduce the costs of the automatic sur-
veying of monuments and works of art. This will
have an immediate impact on the feasibility of effec-
tive protection plans for the cultural heritage. Some
of the potential applications that would become
available at low costs are:
� the creation of a database of accurate models of

3D works of art
� restoration planning
� fast documentation of the restoration process (in-
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expensive reconstruction of portions of large
objects)

� accurate 3D registration for planning the recon-
struction of works of art in case of accidental
damage, building copies, etc.
In addition, effective methods for the quantitative

evaluation of the kinematics of the environmental
impact (erosion, damage, etc.) or the prediction of
fractures or structural failures would help us prevent
the damage from taking place at all.
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