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ABSTRACT 
In this paper we present a general and robust approach to 
the problem of close-range partial 3D reconstruction of ob- 
jects from multi-resolution texture matching. The method is 
based on the progressive refininement of a parametric sur- 
face, which is described using an increasing number of ra- 
dial functions. 

1. INTRODUCTION 

Typical stereometric methods for 3D data extraction from 
multiple views are based on the detection, matching and 
backprojection onto the object space of viewer-invariant fea- 
tures such as corner points and sharp edges. Such meth- 
ods, unfortunately, are unable to produce dense clouds of 
3D data, therefore it is usually quite difficult to interpolate 
them into a global surface that resembles that of the im- 
aged object. Another approach towereometric reconstruc- 
tion that produces dense depth maps is stereopsis, which 
consists of the matching of the luminance profiles of small 
image areas of the available views [ 13.  The 3D coordinates 
of the surface patch that originated the corresponding lumi- 
nance profiles are determined through geometric triangula- 
tion, while the matching process is performed by maximiz- 
ing a similarity function between the luminance profiles. A 
generalized version of this approach has been proposed in 
the literature [2,3], which is able to perform area matching 
while accounting for geometric and radiometric distortions 
of the luminance profiles. The object, in fact, is modeled as 
a bundle of tangent planes, whose position and orientation 
in the 3D space is determined in such a way to maximize 
the similarity (correlation) between the luminance profiles 
projected onto them from the available views. Such solu- 
tions, however, need an initial approximation of the object 
surface to begin with, in order to prevent the algorithm from 
encountering relative minima. 

The 3D modeling approach that we present in this able, 
on the contrary, is able to effectively and efficiently perform 
an accurate area matching from scratch (modeling bootstrap), 
with virtually no outliers. In order to do so, we adopt a 
multi-resolution strategy for shaping the surface. At each 

resolution level, we determine the surface shape that max- 
imizes the correlation between the original image and the 
luminance profile of the other views, as transferred through 
the 3D surface model. The object surface is modeled as a 
hierarchical radial basis function (RBF) network [4], i.e. as 
an array of gaussian functions scattered on regular hexago- 
nal grids of progressively increasing density (see Fig. 1). 

2. COMPARING LUMINANCE PROFILES 

The shape estimation procedure proposed in this paper is 
based on an optimization whose cost function compares the 
original luminance profile on an image and the luminance 
profiles that are “transferred” from the other images. Lu- 
minance transferral consists of a back-projection onto the 
surface model, followed by re-projection onto the destina- 
tion image plane. 

Let us consider a smooth surface modeled as an un- 
known function (depth-map)of the form d(x, y), where (2, y) 
are the image coordinates of a point as seen on one of its 
views (reference view), and d is the “depth’ (distance be- 
tween this point and optical center of the reference view- 
point). Estimating the surface shape means determining the 
coordinates (x, y, d(z,  y)) of a generic point of the imaged 
surface. If what we have is a pair of images, then the map- 
ping between the projections s1 and s~ of the same 3D point 
onto the two image planes will be of the form s2 = K(s l ) ,  
where the mapping K depends on the shape of the surface 
and on the projection matrices P1 and PZ associated to the 
two views [3]. When the surface is planar, the mapping be- 
comes a linear projective transformation [3]. If Il(s1) and 
1, (SZ) are corresponding luminances and the surface reflec- 
tivity is perfectly Lambertian, then we have 

the cost function to be minimized to estimate the surface 
shape is of the form 
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where 1 2 ( K ( s l ) )  depends on the depth function d (surface 
shape) and on the projection matrices P 1  and P 2 .  The cost 

We can thus estimate the value of d(s)  by using a RBF 
network 

A 2  ( 1s ;:k 1 2 )  function, of course, can only be computed for all the points K 

that are visible on both images. = d(sk).,,a2 exp 
In several applications the depth function d is expressed k = l  

in parametric form, therefore it depends on the reference im- A being the grid step of the RBF network. In order to speed 
age ‘‘Ordinates (z, 31) and On a set Of parameters (a  17 . . . 7 a N ) -  up the interpolation process, we can use a multi-resolution 

approach based on aHRBF network 
- . ~. 

The cost function, in this case, depends on such parameters 
and the best estimate of the surface is given by 

3. PARAMETRIC SURFACE MODEL 

Our shape estimation process requires a parametric model 
for the reconstructed surfaces. In order to do so, we model 
d(s, y) as a Radial Basis Function (RBF) [4], i.e. as a grid 
of radially symmetric Gaussian functions 

m= 1 

where M is the total number of Gaussians, while w m ,  s, 
and um represent their weight, location and standard devi- 
ation, respectively. Usually the Gaussians are placed on a 
regular square grid, while their number is chosen in such a 
way as to cover the whole area of interest. The surface pa- 
rameters are thus given by the sole weights. The RBF rep- 
resentation can be constructed in a multi-resolution fashion 
by organizing the surface in layers of Gaussians, laying on 
regular grids of increasing resolution (at constant std devia- 
tion). In this case the RBF is said to be hierarchical (HRBF) 
and its representation is given by 

L Ki 

d(s)  = W l k G  ( S ;  s l k ,  ul) > 
1=1 k l = l  

where L is the number of RBF layers and K l  is the number 
of Gaussians of the I-th layer. Such Gaussians have all the 
same standard deviation ( ~ 1 .  In order to obtain a good sur- 
face representation the value of ( T I  needs to be linked to the 
grid density. A good choice is ( ~ 1  = 1.465&, where A, is 
the grid stepsize [4]. 

RBFs and HRBFs can also be used as surface interpo- 
lators. Given the magnitude of a (continuous and smooth) 
depth function d(s) on an arbitrary set of points, it is possi- 
ble to estimate its value at an unknown point Fas follows 

where, in practice, the summation is usually extended to 
only a neighborhood of S. 

h 

where the residuals T l k  are defined as T l ( s k )  = d ( s k )  - 
d l - l ( s k ) ,  1 # 1, and T 1 ( S k )  = d ( s k ) .  Therefore the surface 
is built, level by level, increasing its local detail. 

4. 3D RECONSTRUCTION 

The approach to 3D modeling that we propose in this pa- 
per is based on the minimization of the mean square error 
betwen original and transferred luminance profiles, while 
modeling the surface with an HRBF network. The values of 
the parameters that describe this surface are estimated by a 
comparison of the luminance profiles of the three available 
images. 

Although the Gaussian functions of an HRBF network 
are usually arranged on a regular square grid, we adopted 
a set of hexagonal grids of increasing density (see Fig. I) ,  
which ensures a slightly better packing of the Gaussian func- 
tions with respect to an equivalent square grid. Furthermore, 
this choice ensures that, especially at low resolutions, some 
Gaussian functions will be placed at the center of the region 
of interest. 

Fig. 1. The resolution increases through a densification fo 
the hexagonal reference grid. 

The adopted HRBF network is organized in 8 layers. 
The resolution doubles (along an axis) from one layer to the 
next. There is also a layer 0, made of a single Gaussian 
radial function with (T -+ 00. 

The function d(z, y) is defined as a “projective” depth 
map referred to the image coordinates z and y (the change 
of angular density of the grid is assumed as negligible). 
This choice tends to make the reconstruction consistent with 
what is viewed. 
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4.1. Global modeling 

In order to model the surface at the lowest levels of res- 
olution (low-density RBF) we perform a global optimiza- 
tion of all surface parameters, using a modified version of 
eq. (2) as a cost function. The most relevant changes con- 
cern the fact that all luminance transfers between views are 
simultaneously considered; and the fact that the luminance 
transfer incorporates a gain factor (to be estimated in the 
optimization process) in order to model the electro-optical 
differences between cameras. In order to avoid problems 
of luminace offsets between views, the average luminance 
is previously subtracted from each image. As the resulting 
cost function is highly nonlinear, the global optimization 
process is based on a simplex algorithm. 

4.2. Local modeling 

The global minimization process described in the previous 
subsection works well as long the number of parameters of 
the minimization problems is modest. Unfortunately, as the 
resolution of the model increases, the number of Gaussians 
to be adjusted soon becomes unmanageable. In fact, the 
RBF layers are initially made of a reasonable number of 
radial functions: 5 for level 1, 13 for level 2, 41 for level 
3, and 145 for level 4. Beyond level 4, however, the num- 
ber of Gaussians becomes unreasonably high, therefore the 
proposed algorithm is forced to switch to a “local mode”, in 
which only a small image region is considered at each time. 

On the reference image, square patches that include five 
Gaussians each are selected. For each patch, the five Gaus- 
sian weights are estimated through optimization. What we 
obtain is a number of individually estimated patches that lo- 
cally improve the resolution of the previous HRBF layer. 
Although the analysis windows relative to each patch over- 
lap with each other, the small surface patches, as we may 
expect, do not match at the borders. As a consequence, 
only the coordinates of the central point of each window can 
be used. The global shape of the new HRBF layer is then 
built through interpolation based, once again, on a HRBF 
approach. 

It is important to notice that, as the resolution increases, 
the generation of outliers becomes more frequent because of 
smaller analysis region; small luminance gradient; specular- 
ities on the surface; occlusions, etc. Such problems, how- 
ever, are usually characterized by high values of the cost 
function andor by large depth corrections on the previous 
layer. It is thus possible to eliminate such outliers through a 
proper thresholding process. In fact, the lack of incremen- 
tal depth information on some regions of the network layer 
does not constitute a problem as the correction is incremen- 
tal and the interpolation is done at the end of the layer’s 
construction process. 

The local optimization is also characterized by a further 

improvement of the cost function, which now uses the orig- 
inal luminance profiles (instead of the deviations from their 
averages), and incorporates an unknown luminance trans- 
fer offset (to be estimated through optimization) in order to 
model reflections that are modestly non-lambertian. 

The organization of the algorithm, when working in lo- 
cal mode, is shown in Fig. 2. 

5. CONCLUSIONS 

In this paper we proposed a general and robust method for 
the close-range 3D reconstruction of surfaces through multi- 
resolution area matching. The method is based on the pro- 
gressive refinement of a parametric surface, which is de- 
scribed by increasing number of radial functions organized 
in an HRBF network. This solution enables the 3D surface 
reconstruciton without any initial model. 

The algorithm has been tested on different real image 
triplets obtaining significant results (see Figs. 3 , 4  and 5). 

Fig. 2. Global schemt of the reconstruction algorithm when 
working in “local mode” 
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Fig. 3. Example of 3D reconstruction of a teleconferencing 
scene from three calibrated views. From top to bottom: one 
of the original views; progressive refinement of the recon- 
structed surface, final cloud of points after outlier threshold- 
ing. 

Fig. 4. Progressive surface reconstruction of a face using 
multi-resolution area matching. 

Fig. 5. Example of 3D reconstruction of a face. From top to 
bottom: final reconstruction with texture mapping. 
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