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Visible Surface Reconstruction With Accurate
Localization of Object Boundaries

Federico Pedersini, Augusto Sarti, and Stefano Tubaro

Abstract—A common limitation of many techniques for 3-D re- Several methods have been developed for interpolating

construction from multiple perspecti\_/eviews i_sthe poo_rqualityof sparse 3-D data. Among such methods, it is important to
the r_esults “near the obje"ct boundarle“s. Thenlnterpolatlon process . tion [1], which implements a modification of the thin-

applied to “unstructured” 3-D data (“clouds” of non-connected . . . L -
3-D points) plays a crucial role in the global quality of the 3-D re- Plate spline algorithm. Through this methods it is possible

construction. In this paper, we present a method for interpolating to model “cuts” and “creases” of the plate. Surface cuts
unstructured 3-D data, which is able to perform a segmentation mode| depth discontinuities at the object's boundaries, while

of such data into different data sets that correspond to different : Lo ) L
objects. The algorithm is also able to perform an accurate localiza- creases model discontinuities of the first derivative of the

tion of the boundaries of the objects. The method is based on an Surfaces (edges and sharp rims). Terzopoulos [2], [3] pro-
iterative optimization algorithm. As a first step, a set of surfaces posed a method for jointly determining the best interpolating
and boundary curves are generated for the various objects. Then, gyrface and the location of a set of curves where cuts and

the edges of the original images are used for refining such bound- folds take place. This method. however. is based on the min-
aries as best as possible. Experimental results with real data are P ) ! !

presented for proving the effectiveness of the proposed algorithm. imization of a functional which requires a rather heavy com-
putational load. Furthermore, when the 3-D data is extracted

I. INTRODUCTION from strongly converging perspective views, the quality of

) ] the 3-D information near the objects boundaries turns out to
MONG the available methods for image-based 3-D SCRg jite poor. In this situation, this method does not have

reconstruction, a leading role is played by stereometré%gugh information to reconstruct the objects silhouette with

techniques based on feature correspondences. Such metf&% %dequate accuracy,
recover the 3-D coordinates of object features by detecting,In this paper, we présent a method for interpolating un-
matching and back-projecting homologous image features gn ’

. : : -~ structured 3-D data, which is able to segment the data into
two or more perspective views, taken from dlfferentwewpomtg. ts that correspond to different objects and, at the same time
One drawback of such methods, however, is that they are o f '

: . erform an accurate localization of the object boundaries.
able to reconstruct those portions of the surface that are visi ep )

from at least two viewpoints. If the acquisition system is plac Ur approach begins with an iterative optimization process,
. P L q y P hich maximizes a functional that is similar to the one de-
in front of the scene, it is reasonable to model the surfa

. . MaGHed by Terzopoulos [2], and returns a set of surfaces that
through a “depth map.” Thi(1/2)-D representation will model the objects and their boundaries. A segmentation al-

exhibit discontinuities in the proximity of surface occlusions ?rithm is then applied to the perspective projection of the

which normally correspond to the boundaries between d'ﬁere?ésulting surface. This algorithm partitions this surface into

objects. sub-surfaces of continuous depth, which are likely to cor-

If, on one hand, the depth map is expected to be dlscorré'spond to different objects and, for each one of them, it

tinuous at the object boundaries, on the other hand, cortgs . . . .
etermines a closed curve that encircles it and approximates

spondence-based reconstruction techniques often fail to PiQs boundaryof the object. The last step of the procedure

vide accurate information in the vicinity of such boundarlesu.Ses the luminance/color edges for refining the position of

g:);rizharneg'g?;’n'r;f::;té;hgyig n(ijfia::t:niu;?rsorzu;rgz Z(ratié ecrs ch boundaries. This is accomplished through a recursive
o . yundar Igorithm, wh im i “pull’ the cl
The poor characterization of 3-D data near the object boundou dary update algorithm, whose aim is to "pull” the closed

curves toward the image projection of the objects silhouettes

aries causes surface interpolators to perform poorly in are(a\f1ich are visible as luminance or color edges along the

where the accuracy is of utmost importance. In fact, even | ject boundaries).

the boundary regions are only a small portion of the WhoeThe paper is organized as follows. The next section de-

scene, their importance is crucial, as they carry the most . .
significant information on the object shape. scribes the adopted data representation and the general for

malization of the visible surface reconstruction problem. Sec-
tion lll describes the two functional blocks that constitute
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A 3

Il. PRELIMINARIES Scene X

A. Projective Representation of the Depth Map -
A stereometric imaging system that acquires the front views \
of a scene can determine the 3-D coordinates of a scene feature prso— \
only if it is visible from at least two viewpoints. As a conse- yiowpoint
quence, the surface regions that can be reconstructed are gen- Y / z
erally a subset of the visible regions. for this reason, the recon-
structed surface can be represented as an explicit function of
the formz = u(x,y), wherexz andy are the coordinates of a
reference planehat is usually chosen as parallel to one of the
image planes, andrepresents the distance of the surface from ()

the (z,y) plane or from a given viewpoint. Scene X /

A typical way to represent depth maps is thrthographic - >
representationshown in Fig. 1(a). The surface reference frame
O(z,y, z) is Cartesian and lies ideally behind the scene, while

z represents the “height” of the surface at the pd@inty) of i \
the reference plane. Such a representation turns out to be quite viewpoint R
intuitive, as the observed scene is represented like a 3-D high-re- Y z
lief, whose base coincides with the reference plane. We should

keep in mind, however, that the actual imaging process consists,
of a perspective projection of the scene. Consequently, the 3-D
shape of the visible scene surfaces would be better described by
a “projective” depth map originating from the reference view-
point. Such a depth map can be thought of as a bundle of depth (b)

rays_ that_ meet gt the camera’s optical center, each Om_a mHi:’d’.' 1. Traditional and proposed representation of the depth map. (a)
secting first the image plane and then the scene at a distad@fographic representatiorthe depthu is represented in a 3-D Cartesian

D (depth) from the optical center, as shown in Fig. 1(b). ThisferenceO(x, y. z) wherez = u(z,y) and(x,y) is parallel to the image
projective representationf depth maps has the advantage gjne. (Frkctye epresentatonhe depth = perspectvey mappeconte
guaranteeing a certain consistency between visible and rec@g-viewed surface from the projection center (the viewpoint) of the reference
structible surfaces, as the mapping between image points of Yiew.

reference view and depth points of the surface is one-to-one. As

we can see in Fig. 1(a), this consistency is generally not guar&h- Problem Formalization

teed by an orthographic depth map, as there could be portiong et us consider the portio§, of the scene surfacs that is
of the reconstruction’s domain that correspond either to regigasible from the reference viewpoint. As explained in the pre-
that are not visible from the reference viewpoint or to more thajjous section,S, can be modeled with a projective depth map
one region of the visible surface. of the form~ = D(z, 1), wherez is the distance (from the ref-
Furthermore, a projective representation of the depth magence viewpoint) of a scene poifitthat projects onto the point
results to be particularly suitable in the case of trinocular V(m’ y) of a p|ane7r calledreference p|an_eThe extension of the
sion. In fact, when one of the three cameras of the aCQUiSitigBmain of(a;’ y) is chosen in such a way to cover the whole
system is placed approximately between the other two, eagBual field of the acquisition system. The visible surfaces
point of the surfaces that can be reconstructed through stegg@ibit discontinuities wherever the depth-ray of the projective
correspondences using any pair of cameras will be visible frafiapth map abruptly goes from one object to another one in a
this camera. For instance, if the three viewpoints were collinegfuation of partial occlusion. In this case, the occluding surface
the union of the surfaces regions that could be reconstructgm be conventionally referred to asreground while the oc-
from any pair of cameras would be contained in the set of siluded one will be considerdsackground The available input
faces visible from the middle viewpoift-or this reason, it is data is a set of 3-D measurements on the visible surfaces, which
particularly convenient to adopt a projective depth-map origtan be thought of as a sparse, irregular and noisy sampling of
nating from the optical center of the middle camera, which bg: . |n conclusion, a 3-D reconstruction of good quality should
comes theeference viewpoint be made of a set of surfaces, each of which interpolates as best
as possible the sparse 3-D data that pertain a different object of
the scene. The projective depth map will thus be partitioned in
such a way to exhibit discontinuities at the object's boundaries.
10ne case that could raise doubts on this statement is the one of two objeiach one of the surfaces, however, will be assumed smooth, un-
one of which occludes the other. In this case, the two side views could see [g8g the object that it represents exhibits a sharp edge, in which

occluded object while the middle one could not. However, ordering constraints th n il b I d t t pl 's di
in binocular-matching processes would always prevent the second surface iffr€ the surface will be allowed a crease ( angent plane's ais-

being reconstructed using feature matching. continuity).
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With the above requirements in mind, it is reasonable to thifdoth discontinuities and creases through the introduction of two
of a discontinuity-preserving thin-plate spline as the best agegularization terms
proach to solve the visible surface reconstruction problem. A
thin plate, in fact, is characterized by its own cohesion force ¢(y, w) // (2, ) {m(z,y) (U2, + 2uyy +UJJ)
and, when pulled toward the 3-D sparse data, tends to model
the visible surfaces in a physical fashion. However, in order to + [1 = 7(z,y)] (u + uy)} dz dy
model cuts (at object boundaries and occlusmn_s)_and creases +O‘Z Wi, ys) — di)? + D(w) )
(along sharp edges), we need to be able to defirténg and
foldingcontours on the thin plate. This approach was adopted by
Terzopoulos [2], Mallet [1] and Blake and Zisserman [3], wh®here u, uy, tzs, tyy, 4y are the first- and second-order
formalized the problem as a variational one. In [3], the concepartial derivatives of(z,y), p(z,y) is the discontinuity map,
of controlled-continuity interpolatowas introduced, which al- which is equal to one everywhere, except in correspondence
lowed the interpolating surface to be more elastic (smoother)@frsurface discontinuities, where it is set to zero and, similarly,
more rigid (more prone to tearing), depending on the naturedfz, ¥) represents the map of the surface creases, as it is set to
the data. The approach that we propose in this article, whichzgro in correspondence of them. Notice that, in order for this
presented in what follows, represents a generalization of [2].formulation to make sense, we need to assume that the curves of
Mathematical modekLet us consider acontinuous thin discontinuity have non-zero width, otherwise the set in which
plate represented by an explicit surfage= u(z,y), which [1 —7(z,y)] is non-zero in (2) would have zero measure. This
is “pulled” by a set of 3-D point?’;, = (z;,v;, zz) of known problem, however, has a trivial solution in the discrete domain,
coordinates. If we want this plate to minimize the mean squaaich is our case. The functional also presents an additional
distance from the 3-D data while minimizing its internal energyerm that depends ow, which is the set of discontinuities
then we can define a functional of the form and crease curves. The tel{w) actually measures the total
extension of the discontinuity curves. The introduction of this
term is necessary, as it prevents the functional from producing
_ // 2 4 g, +u§y) dz dy a dege_nerate solution, such as one in which all the_z points are
classified as cuts and creasgéi(, y) = 7(x,y) = 0, which are
+a Z Wz, y) —di)? (1) points where the surface is not defined), except for those of the
data set, where we havéz,y) = d(z,y). In other words, the
term D(w) prevents the interpolated surface from “collapsing”
where v, u., anduw,, are the second-order derivatives ofnto the point cloud. There are several ways to deflng.);
w(x,y), d, is the distance of’; from the surface (along the a very simple but efficient one is to choose it so that it will
axis). Through the first term of (1), which represents the internaideasure the total length of the discontinuities and crease lines.
energy of the interpolating surface, we control the local curva- Notice that the minimization of the functional (2) is made
ture, therefore its minimization tends to smoothen the surfasdth respect to both: andw, which means that the algorithm
[6]. The second term controls “how well” the 3-D data are horreturns the best surfaegx, ) that interpolates the assigned
ored. Such two normally contrasting needs are balanced throigg® points, as well as the maps of discontinuity and surface
the weight coefficientv. This continuous thin-plate modetp- creases(x,y) andr(x,y), respectively, which are assumed
resents a good solution to the 3-D data interpolation problerisible when the scene is observed fromrferenceviewpoint.
when the original surface does not exhibit either creases or depth
discontinuities. C. Computational Issues

In order to allow the surface to model creases, we should ig-The functional described in Section 1I-B addresses the
nore the internal energy term and allow discontinuities of thgyriational reconstruction problem in an accurate and elegant
surface gradient. A physical model suitable for the interpolggshion. Operatively speaking, however, a direct minimization
tion surfaces with creases is takastic membrandn this case, of this functional is not such a straightforward task. For
the regularization term of the corresponding functiarias ex-  example, the choice of the discrete operators to be used for
pressed as a function of the first-order derivatives ¢fagni- computing the first- and second-order derivativesut:, y)
tude of the gradient) gives rise to some difficulties in the discretization process.

Other problems are encountered with the definition of the
mapsp(z,y) andr(x,y), and of D(w) in the discrete domain.
= // (u2 + ) do dy + o Z(“(xi’ i) — d;)2. Another non-trivial complication arises from the nature of the
2 considered functional. In fact, (2) is a non-convex functional
with multiple relative minima, therefore its minimization
Similarly, as in the case of the thin-plate model, in order for anust necessarily be performed iteratively. Among the many
elastic membrane to be able to model also depth discontinuitieptimization algorithmssimulated annealingeems to be the
the regularization term of the functional should be neglectenhly one that could guarantee a successful global optimization.
along such lines. Considering the complexity of our problem, however, this

Taking into account for these considerations, Terzopoulos [@bproach is unfeasible due to the excessive computational cost.

has come to the definition of a functional which accounts fdt is thus necessary to develop an optimization technique that
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behavior can be controlled through a proper definition of the

l , kernels used near the discontinuities. The use of different and
properly shaped kernels in the different situations constitutes

& D — ©—o -O0—¢ the algorithmic device that allows modification of the “region
l of influence” of the interpolation, depending on the presence
and on the type of discontinuities. This is the key feature of any

’ T -] discontinuity-preserving interpolation scheme.
discontinuity Taking the above considerations into account, the discretized
@) () © version of the functionaf («, w) can be defined as

Fig. 2. Impulse-response masks for computing the first-order surface
derivatives. (a) Case of a continuous surface. (b) Neighboring dlscontlnwtyg‘lqu w)

the left. (c) Neighboring discontinuity on the right. o o o o o
DD ol (i 5) (W2, (i, 5) + 202, (i) + uly (6, 5)]

reaches a correct solution with a reasonable computational ¢ 7

effort. In this section, we present our approach to both the +ZZ ML= 7)) [W2 (i, 4) + ud (i, 5)]
discretization and the minimization problems.
1) Discretization of the Functionalin order to discretize +Z Wi, i) — di)? + D(w) ©)

the functional (2), we need to approximate integrals with sums

and derivatives with finite differences. As far as the integral

is concerned, its direct discretization would be quite straightthere the definition of the differential operators depends on the

forward if there were not the discontinuity curves to take intpresence of a discontinuity in its neighborhood, on its position

account. The simplest way to do so is to discretize the locand on its type. The first-order derivative operaig(s, j), for

tion of the discontinuities through the definition of two disexample, is defined as shown in the equation at the bottom of

crete (pixel-resolution) maps(<, j) and(¢, ). The choice of the page.

one-pixel-wide discontinuity curves greatly simplifies the mea- 2) Localization of the Discontinuity LinesThe goal of the

surement of the extension of the discontinuiti&g). In fact, as optimization process is to determine a surfa@nd a set of dis-

this measurement corresponds to the total length of such cunetinuity contourso that minimize the discrete functional (3).

it can be carried out in a rather accurate way by simply countifdptice that the localization of the discontinuities must use the

the number of pixels where the map is zero. 3-D point coordinates as the only source of information. Con-
The discretization of the derivatives, in case of smooth swgequently, although the variational problem could be solved just

faces, is quite a straightforward task. In the proximity of ththrough a direct search of the global minimum of the functional,

discontinuities, however, the situation becomes more complegasons of computational efficiency suggest to first roughly es-

On one hand, the discontinuity map&, 5) and+ (i, j) are de- timate the discontinuity contours, and then let the global opti-

fined in order to cancel the contribution of internal energy ternmization algorithm take care of refining this information.

(which are the only ones that depend on the surface derivativesf rough estimate of the discontinuity contours can be ob-

at the discontinuity curves. On the other hand, we should r&ined by determining those surface regions where the traction

member that the computation of the derivatives is implementéatce “exerted” by the 3-D data points is so strong as to “break”

through digital filters, whose impulse response tends to invatlee plate. The magnitude of the surface gradj®ni(z, )| can

the discontinuity when in its proximity. This often results in atvre considered as a reliable measure of this force, as it describes

incorrect response peak. Mallet [1] and Terzopoulos [2] prthe local surface slope. Criteria for the localization of probable

posed a modification of the difference operators near the discaliscontinuities, based on the localization of significant peaks in

tinuities, in such a way to evaluate curvatures and slopes with¢lwe magnitude of the gradient of the depth functigm, v), are

crossing the discontinuity line. Examples of impulse respongell known in literature. In fact, if we interpret =, i) as a lumi-

masks for such operators are shown in Fig. 2. For example niance profile, the problem becomes that of ¢age detection

the neighborhood of a depth discontinuity on the left, the maskhich has been abundantly studied in the literature.

(b) is applied instead of (a), when the discontinuity is on the As an immediate consequence of the above consideration, we

right, the mask (c) replaces (a). chose to perform a first rough localization of the discontinuities
The behavior of the interpolated surface near and on the dising Canny's edge-detection algorithm [17]. As this edge de-

continuities strongly depends on the choice of the kernels. tiector is designed for 2-D surfaces that take value on regular

the example of Fig. 2, for example, no depth value is definegtids, we use as input an interpolated version of the sparse 3-D

in the exact correspondence of the lines of discontinuity. Thiata. However, some variations on the classical Canny's edge-

w(i,j+ 1) —u(i,j), depthdiscontinuity on the lefi{:,j —1) =0
ug(,7) = < u(4,7) —u(é,5 — 1), depth discontinuity on the right(i,7 +1) =0 .
wlijt)=iGi=1) otherwise
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detection approach are necessary, due to the type of pre-pro-
cessing and the different nature of the input data. In particular,
in order to achieve a significant quality in the first discontinuity
detection, we introduced the following modifications:

1) As 2-D input profile is the result of an interpolation,
its spatial frequency content is very low pass and the
signal-to-noise ratio (SNR) is significantly higher than
in the case of luminance profiles. Consequently, the
Gaussian 2-D pre-filtering turned out to be unnecessary
or even disturbing, as it reduces the quality of the discon-
tinuity detection. The gradient operator is thus directly
applied to the unfiltered depth map.

2) If the detected edge contours exhibit an excessive cur-
vature in some points where the edge is expected to be
smooth, such irregularities are back-propagated onto the
depth map. The thin-plate interpolation will thus exhibit
annoying artifacts, such as jagged object boundaries (st
for example, Fig. 3). In order to avoid such problems, th
last step of the edge-detection algorithm consists of a s
phisticated recursive edge-following process [18], [21]
This operation is based on both the orientation of th
gradient maxima and on the already detected edges. T
global edge detection algorithm guarantees edges of cc
trolled smoothness, which it allows us to avoid the abov
artifacts.

Ill. THE ALGORITHM

As anticipated in the introduction, aim of the propose(
method is the interpolation of unstructured 3-D data, the
segmentation of the interpolated surfaces into parts, each repre-

(b)
senting a different object, and finally the accurate localizatiofiy. 3. (a) Original view. (b) Corresponding point-set. Where the detected

edges are jagged, the irregularities are propagated onto the depth map,

of the boundaries of such objects. 1ges ¢ . . ;
Pﬁgmatmg annoying artifacts at object borders.

The interpolation and segmentation is performed at the sa
time, through the maximization of the discrete functional (3), o . ) ) o
leading to a set of subsurfaces, where each sub-surface intefgtige projection of the objects silhouettes (which are visible as
lates the corresponding cloud of 3-D points. The algorithm pdkminance or color edges along the object boundaries).
titions this surface into sub-surfaces of continuous depth, which!n the following, these two steps are described in details.
are likely to correspond to different objects and, for each one of
them, it determines a closed curve that encircles it and approfi- Step 1: The Segmentation/Interpolation Algorithm
mates théooundaryof the object. Because of the usual poorness As a result of the above considerations, the segmentation/in-
of 3-D information in the vicinity of the boundaries of the obterpolation algorithm is organized as in the block diagram of
jects, these sub-surfaces generally present a quite rough angig: 4, which contains the following functional blocks.
regular bounc_iary, sometimes also significantly distant from the 1) Interpolation based on the minimization of the functional
actual occlusion boundaty. _ _ E(u,w) [see (3)], with respect ta. The first interpolation

In order to better localize such boundaries, the only infor- step is performed with a single thin plate with no discon-

mation that could be exploited is their actual visibility in the

tinuities.

original images of the scene. If a boundary is visually recogniz- 2) Rough estimation of the discontinuity contours

able in the images, it means that there is enough information, in
the luminance/chrominance profiles, to localize its projection.

w = {p,7}: estimation of p(¢,j) through Canny's
edge detection.

For this reason, the second step of the procedure uses the lumizy adjustment of the detected discontinuity curves to the

nance/color edges for refining the position of such boundaries.

boundaries of the corresponding foreground objects.

This is accomplished through a recursive boundary update al-4y segmentation into subsurfaces corresponding to different

gorithm, whose aim is to “pull” the closed curves toward the

2Since the position of occlusion boundaries is viewpoint-dependent, the
boundary seen from theeference viewpoinis considered, if not otherwise
specified.

objects, followed by a separate interpolation of each one
of them, using the boundaries determined at Step 3.

We will now discuss each one of the above steps in detail.
Surface Initializatior—In order for the interpolator to work,
the depth map must be defined over the whole domain (refer-
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Initial 3-D data

+ 2pi15Tio1, (tim2,g + wi g — 2uio1 )
= 4pi j7i (=i = Vit 41 F Uil + Uio1j)

—4pi 1 1711 (U151 — Uiy

Interpolation step

i+ ui—g 1) +4pij—17Ti j—1

Estimation of ( 4,J—1 i+l T Wi Ui 1)

+4pit1,iTit 1,5 (= Uit1,; — itz j41

J +uit1,541 + Ufi,j) + 206(11,1‘7]' — diyj).
' Discontinuity processini‘
l The termX decides on the convergence speed and on the ac-
Sub-surfaces classificaction curacy of the final solution. A small value dfresults in a slow
and interpolation convergence while a higher value causes the vector to be not so
l l accurately updated in the vicinity of the optimal solution, which

reduces the accuracy of the estimate. Because of that, we made
A change adaptively during the minimization process. Initially,
Fig. 4. Flow chart of the proposed algorithm. A is assigned a rather high value in order to speed up the con-
vergence. During the minimization processis progressively
ence plane). In order to do so, we fit a single rigid and contiff€creased in order to adapt the magnitude of the update step to
uous thin plate over the point-set. This operation is easily pdR€ Size of the search space. This step adaptation leads to im-
formed through the minimization of the functional (3), assuminigfoVed results with a modestly higher computational effort.
p(i,5) = 7(4,5) = 1, Vi, j (smooth surface). _ Locahzaﬂon—The first rough Io_callzatlon _of discontinuities
One other important reason for performing pre-interpolatidi done by searching for the gradient's maxima over the surface
is that it allows us to easily detect and eliminate any outlief§ovided by the interpolation step, similarly to Canny's edge de-
in the input point-set. Such points, in fact, are normally presefgction. This is done by searching for those points whose gra-
in point-sets that are obtained with automatic 3-D reconstryd€nt has an amplitude that exceeds an assigned threshold and
tion procedures. In fact, matching errors typically result in 3-f§ Maximum along the gradient's orientation; such points are
points of unpredictable coordinates, which can be easily d@arked asdge pointsThe threshold is computed in an auto-
tected while fitting the thin plate. matp and adaptw_e fashion, while taking the status of t_he inter-
Interpolation—As already stated above, the interpolatioR©lation process into account. More precisely, atiha iter-
step consists of the minimization of the functional (3), with re2tion, the gradient; ; in the point(i, j) is compared with a
spect tou(7, 7). Apart from the first iteration, the discontinuitythresmldsk('LvJ) that |ks) proporuo'nal to its average value in a
mapsp(i, j) andr (i, j) are given as an input. The minimizationSquare neighborhoatf" of the point(i, j)
is carried out through relaxation, by iteratively updating each

Interpolated surfaces  Discontinuity maps

point as follows: Sk(t,7) =a- E’?'?['G(x’y)”
n) (1) AOE(w,w) 4 where E;[-] denotes the mean operator over the seAs the
ij =Wy T du; ) number of iterations increases, the size of this neighborhood de-

creases. This way, only the most significant discontinuities (with

- biggest size and depth difference) are detected at the beginning,

used for cqmpujun@g(u,w_)/aui,j. _ while the minor ones are detected in the following steps of the
As described in last section, the gradient téi@itu, w)/9ui;  interpolation process. Moreover, the coefficiefmicreases with

and, of course7', differ from point to point depending on theie number of discontinuities that have already been detected.

configuration of the discontinuities in the point's neighborhoog,g progressive increase of the threshold compensates the in-

When no discontinuities are in the neighborhood of the poipfease of the gradient variance due to the decrease in size of
u;,j, the gradient of the function&l(u, w) with respecttou(i, j)  the neighborhoodi(';), and has shown to effectively improve

assumes the form the ability to reject ioeaks of gradients which do not correspond
0E(u,w) 9p: (1 v N to discontinuities. This adaptive thresholding is necessary as,
i, pig (L= 7i) (v ) — wijen) during the initial steps, the oscillations of the surface due to the
—2pi i1 (1 — i1 (i 1 — wij) relaxat!on process are still pf &gmfpgnt magnitude and could
otherwise be detected as discontinuities.
The location of the discontinuity curves obtained so far still

where the weighi is normalized by the numbé&r of samples

+2pi5(1 = 7i ) (i j — wi1,5)

= 2pit1,5(1 = Tig1,) (Uit — i j) needs refinement, as the obtained contours are still jagged or
—4p; 7 (Wi o1 F U 1 — 20 ) interrupted here and there. This problem typically occurs with
+ 2pi 4171 (i + i 2 — 25 1) pixel-based edge-detection methods, where the correlation be-

tween neighboring edge pixels is not taken into account. For

this reason, the above edge detector is followed by a process
= 4pi i (Wi, + i1,y — 2ui ;) of edge analysis and classification, which scans the edge con-
+ 20541, Tiq1, (Wi + Uig2; — 2uiy1 ;) tour and defines a chain of segments that connect only a subset

+20; 517 jo1 (Wi j_o + Ui j — 2u; j_1)
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of the edge points, chosen in such a way to maximize the con-
tour's smoothness. The selection of points is done recursively.
From the last selected edge point, the next one is chosen as the
nearest edge point that lies approximately on the same direction
as the last detected points [18]. This operation is performed very
efficiently by using asearch maskvhich decides the order of
preference among neighboring points. This mask is positioned
on the current edge point and oriented in the “dominant” direc-
tion of the last detected points. The edge point with the highest
weight within the search mask is taken as the next point of the
processed chain of segments. If no edge points are found within
the search mask, the search is stopped, so that it can start with
another segment. This approach allows us to freely adjust the
edge post-processing algorithm by simply changing the weights
of the search mask, so that the method will be able to correct
irregularities and make bridges over interruptions in a wide va-
riety of conditions.

Even after the above contour refinement process, the obtained
discontinuity curves still do not satisfy some properties that
characterize the object boundaries. In fact, they do not lie ex-
actly on the visible boundary of the foreground object; and they
are usually not closgéThe reason why only roughly do they ap-
proximate the shape of the foreground objects is that they lie in
regions where 3-D data is usually not available. In fact, the dis-
continuity contours are located at the outermost boundaries of b)
occluding objects, where stereometric principles often fail (lack
of stereo correspondences). In principle, using only the avedlg. 5. An example of pre-segmentation of the interpolated scene. All
able depth information, there is not much else we can doin ordiscontinuities are expan_ded by the alg_orithm until a complete separation

. . - . ... _between surfaces with different depth is complete. Each subsurface, here
to improve the discontinuity location, unless we use addition aracterized by a different grey level, represents a different object. (a) Original
sources of information, such as the original reference image iia&ge, middle viewpoint (reference). (b) Partition into sub-surfaces.
described in the next section.

Segmentation into ObjeetsAs already stated above, the
edge detection process does not guarantee that the discontin

contours will be closed. In particular, in case of wide occlusiotllﬁ“?/boundarles within the blind regions until we are left with
gll—connected sub-surfaces.

regions and small depth differences between facing surfac¥ hi ki lished b f . .

the gradient of the interpolated surface from one object to th |_shtas |s|_agcompr:s %. y means fo r? reglc;n growing

other will exhibit a rather modest peak. This makes the obje?: orithm appiie _to the _|nar|zat|on 0 .t € surlace map,
ere the binary information means thdindness that is

separation a hard task. Typical consequence of this probleny)
b yp g b e absence of surface in that point. More specifically, the

the generation of interrupted discontinuity curves, which lea ith ¢ di L int® and K
the surfaces still connected. In order to recover the corrétgO"'t _m stgrts rom(la; |scont|QU|ty pol an mar_ S
of its neighborsp;™ as candidatesfor the expansion

topology of the discontinuity map and, therefore, to separeﬁ‘g >Eq : ) )
occludingfrom occludedobjects, it is necessary to partition the?f the boundary within the blind region. If the poin{
interpolated surface into sub-surfaces that represent differ@i© Pelongs to the blind region and has been marked as
objects. This surface segmentation process should deternfid@didate for the boundary expansion by a sufficient number
“well-connected” surface regions, and should eliminate thoSé d'SCO”“”lU'ty points, then the boundary is expanded to
thin strips of surface that still connect different regions becauite pointp;. The process is repeated as long as there is
of boundary interruptions. boundary growth. In this way, isolated points and thin strips
As already stated above, the regions near object bounda@éssurface are included in the blind region. At the end, all
are usually characterized by an absence of 3-D data, as surfé€ connection strips between surfaces that do not contain
self-occlusions prevent boundary features from being sterédy input 3-D point, have been separated. An example of
corresponding. The thickness of sudhliid” regions depends the resulting segmentation is shown in Fig. 5.
on how far apart the cameras are, with respect to their dis-
tance from the scene. In order to determine close boundar@sStep 2: Shape Refinement at Object Boundaries

and complete a preliminary segmentation, we can thus “thicken” ) ) i ) .
As explained above, the interpolation provides us enough in-
3Tr_1is is true un(_jer t_he assumpti_on tha_lt thg border of the refere_nce Vi_eW_f%rmation to determine the topology of the discontinuities, but
considered a closing line for the discontinuities. In other words, discontinuif . . . . . .
lines that begin and end at the image border because the enclosed object is@/f'?lg/ their exact location, as the 3-D Input points-set Is not In-
partially visible in the reference view, are considered closed. formative enough. On the other hand, an accurate localization
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of the object boundaries in the reconstructed scene is of cdiscontinuity curvec, the optimal boundary curve,,; can be
cial importance for the final quality of the reconstruction. Theetermined as
object boundaries, in fact, can provide a human observer a great
deal of information about the object shape. In order to accurately Copt = arg min |F(c)|
localize the object boundaries, a most significant additional in- ¢
formation source is represented by the luminance profile of thgere
original images, as theccluding contoursiormally originate
luminance edges. Itis important to point out that the perspectivej:(c) = kg feontrast (€) + ks fahape(€) + kD fupdate(c)  (5)
projection onto the reference image and the previously defined
perspective depth-map share the same geometry, thereforew@re f.......s:(c) is a measure of the image contrast along the
should expect a one-to-one correspondence between occlu@digfsidered contourf,y,.p.(c) measures the shape regularity of
edge contours (in the reference view) and object boundariesi@ curve; and,,qa:.(c) is a function of the distance between
the reconstructed surface. The luminance edges contained iR contour: and its original location before the update. Such
image, however, can be classified into three classes: terms are weighed by the coefficierits, ks andkp. A brief
1) texture edgeswhich are either a characteristic of the sydiscussion on each one qf the above terms follows. .
face reflectivity or caused by the illumination condition$1 Image Cor_ltrast—The aim Of. the ope_ratof contrast(€) 1S 10
(shadows, structured light, specular reflections, etc.); ave t,he Iummz_;mce edge tha"[‘ IS mos”t likely to corres_pon_d to the
2) sharp edgeswhich are associated to surface creases; object's occlusmn_ boun_dar_y attract” the curzyqunS|der|ng
3) occlusion edgeswhich are the outermost boundaries o]‘he fact that the d|scont[nU|ty contous, as determined by the
the object, where the visual rays are tangent to their sﬂl'?-ter.p olation/ segmeqtat|on procedgrg, is already a good approx-
face. imation of the occluding boundary, it is reasonable to expect the
true boundary to be located in its proximity and to be approxi-
As what we are looking for are edges of the third type, textureately oriented in the same direction. The luminance gradient's
and sharp edges can be a source of problems. A significant hat@gnitude is thus likely to exhibit a peak in correspondence to
however, is given by oua priori knowledge of the approximate the optimal boundary,,,;, where the gradient is oriented about
position and orientation of the occluding contours, which is pr@erpendicularly taz. Consequently, in order to shifttoward
vided by the preliminary interpolation/segmentation procedur&,., the termfeonirasi(c) is defined in such a way to comply
Some methods, in which luminance edges are used for an aith these expectations
curate localization of the object discontinuities, have been pro-
posed in the literature [12], [20]. This problem can be considfeonirasi(c) = Y [Vi(z,y)sin{elc(z,y), Vi(z, »)]}| (6)
ered, in fact, as a special case of the more general edge local- (z,y)cc
ization problem, with soma-priori knowledge on the approxi-
mate edge location or on the shape of the encircled objects [@herel(z, y) is the luminance profile of the reference view and
[13], [22]. Similarly to the above-cited methods, our approach(c(z, y), VI(z,y)] is the angle formed by the local tangent to
to an accurate localization of the object boundaries is here farin (z,y) with the direction of the luminance gradient vector,
mulated as an optimization problem. In order to do so, we d&<, in the same poirt.
fine amerit functionF(w) of the discontinuity contours, which  When color images are available, the localization of oc-
we want to maximize as the configuration of the discontinuitgluding edges can become much more effective. The gradient
curvesw varies. The merit function incorporates the distanggf the hue color component, for example, is often much
from a luminance edge and accounts for the smoothness of there informative than the luminance gradient. Shadows, for
discontinuity contour. example, originate undesired luminance edges, but they cause
As the emphasis of this work is on the computational effiegligible changes in the hue component.
ciency, we developed a particularly fast and effective strategy forSeveral experiments have been carried out over a number
iteratively updating the shape of the discontinuitieduring the of different color scenes, using different color spaces and dif-
optimization process. In our approach, the points of the discderent definitions of the color gradient in each case. We ob-
tinuity contours are shifted in such a way to increase the gloldalned the most significant results with the RGB and the YUV
merit factor and to minimize the likelihood of further shifts ofcolor spaces. In particular, we achieved our best results in the
the same point, with the result of minimizing the number of itRGB space by defining the color gradient vec¥of'(z,y) as
erations. The details this minimization procedure are discusgbeé color component of maximum magnitude
in the following.
1) The Merit Function: As anticipated above, the merit |VC(z,y)| = max{|VR(x,y)|,|VG(z,y)|,|VB(z,y)|}
function is defined as a linear combination of two terms: one, vz, y) = /{i € {R, @, B} : |Vi(x,y)| = |[VC(x,9)|}
that measures proximity to luminance edges that are likely )
to represent the occlusion boundaries, and the other one that
meas-ures- the smoothness of the contour. The use o-f a— Iine(:j‘ll{’loticethatthevertices of the discontinuity curve are defined on a continuous
combination has _the two-fold advantage _01_‘ necessitating, &, ain " which justifies the use of the notation 0.
modest computational effort and of deciding which term 5This is true under the assumption that the scene is illuminated by white light
to favor in quite a straightforward fashion. Given a closesburces only.
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R(z,y), G(x,y) andB(z, y) being the three color components. Representation of the Boundaried he boundaries must be
As a consequence, we obtain described in such a way that the update process will be able
to handle them. Our choice is to use clogeylines which
feontrast(€) = > [VC(z,y)sin{ale(z,y), VC(z, )]} are piecewise linear contours (chains of vertices connected by
(zy)€e segments). A boundary is then represented by an ordered list of
Shape Regularit-The goal of the shape reguIarity(%rmVerticeS{PJLPQ ---P; -~ P} each of which is described by the
in the merit function is to get rid of local irregularities in thelriplet (¢, j, dir), where(z, j) are the coordinates of the vertex
boundary shape, as they are unlikely to correspond to tAeddir is the orientation of the segment that connects the vertex
real object shape. Such irregularities in the boundary contouith the following one (this last piece of information is clearly
appear as small “dents” caused by the vicinity of other contougdundant, but it enables a much faster implementation).
(usually textural edges) that cannot be easily told apart. InThe generation of the polyline is done in such a way to min-
order to prevent the formation of such artifacts, we can try tBhize the distance from the original boundary. For this reason,

minimize its perimeter. In order to do so, we can define our approach is to follow the boundary and place the vertices,
whenever possible, in correspondence of corners and points of
ferape(c) = —L(c) (9) high curvature.
whereZ(c) is the total length of the object boundary Boundary Modificatior-The updating strategy basically

Some other smoothness operators have been defined in@fBSists of a progressive deformation of each boundary through
literature, which provide a better measurement of the shape régocal shift of each vertex. One key feature of this approach
ularity. An example is in [13], which is based on the radius df that a change in the location of one vertex, gaywill only
the local osculating circle. However, in all the experiments thaffect a limited portion of the boundary, i.e., the two adjacent
we conducted over a number of test scenes, no significant I§§gMentst;_, I and F; F ;. As a consequence, the merit
could be detected when using the definition (9) instead of mafténction will only change in the chaif;_, ;1 of such two
complex ones. Our choice, in fact, has the advantage of requirg@gments, while it will remain unchanged everywhere else.
a very limited computational effort. This allows us to update the merit function, after the motion of

Update Distance-Let us consider an object whose boundary’s: in a differential fashion, which is clearly very efficient from
is not completely visible as, for example, part of it lies in &€ computational standpoint. The update will be given by the
shaded area. Thienage contrasterm is thus unable to shift difference between the new and the old merit function over the
the boundary toward any edge, while #tepe regularitgerm chain F;_, i, of two segments. In order to maximize the
would have the boundary completed with the shortest path tiHagrit function, the optimization process makes sure that the
connects the extremes of the interruption. For this reason, a tifflue of fue:ic (¢) increases at each iteration, by looking at the
term was introduced in the merit function, which is meant 89N Of & fuerit.
keep the updated boundary as close as possible to its origindf order to efficiently computel fie.it, we can derive the
location, by acting like “springs” placed between boundary verpdates of each one of the three terms of the merit function
tices and corresponding starting points. This update distance
factor was expressed in terms of the mean square distance be- ~ SJfmerit = Afcontrast + Afshape + A fupdate
tween updated and original vertices, as projected onto the imgggere
plane

Fupdate() == > _ d (Pi("), Pio)

A feontrast(€) = feontrast (Pi(")) — Fromtenst (Pi(nfl))

= = ‘vc (P™)sina (P™)
-5 (- (-’ o T
P;Ce

(10) C(P,) being the color component of the maximum gradient's

) .~ magnitude, as defined in (7
whereP; = (z;,y;) are the coordinates of thieth vertex point 9 (7)

of the polyline{P,} that represents the boundaryP? is the Afuape(©)

original location of the vertexPi(") is its location at the-th e (n) (n—1)

iteration of the optimization process; artp; , p») is the Eu- = fsuape ('Pi )_fshape (Pi )

clidean distance between two points. Through the introduction _ _ [ﬁ (c<">) _r (c<"*1))}

of this last term, the update algorithm will only smoothen the

boundary where it is not visible. - (R(n)B_1+R(n)B+1 P Yp_, _ﬁ)
2) The Optimization Strategytn principle, the optimization . . . .

problem, which consists of maximization of the merit function 12)

(5), could be solved through an exhaustive search. However, Hig)

number of unknowns makes this approach unfeasible. More-

over, as one the main goals of this work is to maximize the A f,,date(¢) = fupdate (Pi("’)) — fupdate (Pi("’_l))

computational efficiency, the definition of a good optimization ") 1o (1) 10

strategy becomes of utmost importance. =d (‘Pi b ) —d (‘Pi B ) - (13)
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Fig. 6. Possible candidates for updating a boundary vertex. Fig. 7. A synthetic input 3-D point-set.

All such terms can be computed by using no more than three : _— . _

. . . : - so, the algorithm insists on the same vertices, each time
adjacent vertices, which makes the method particularly efficient . Lo : .

. . adding a modest random contribution to the merit function.
from the computational standpoint. oS . X
, . This gives the algorithm a chance of escaping from secondary
As far as our strategy for the contour's shape refinement is . o ; s
. . local maxima, while improving the localization's accuracy.

concerned, since a vertex shift along the boundary would no
significantly change the contour's shape, we chose to move
the vertices perpendicularly to the boundary itself. However, V. EXPERIMENTAL RESULTS

as each _vertex (.)”gmates t\.NO polyllne_ segments,_ two d|fferent|n order to test and validate the proposed technique, we con-
perpendicular directions will be considered. Having two can;

n . ; .
) . . ) ) ucted two types of experiments. The first series of tests was
didate directions instead of one (e.g. the perpendicular to tggnducted on synthetically generatad hoc3-D input data.

average local orientation of the boundary) makes the contaopr . di h ke it Vi
more likely to fit the boundary edges, particularly in regions gEhe point-sets were generated in suc away to_ make It vis-
' Ible when the reconstructed surface deviates fronidbal re-

hI%scfzrrvztsuiﬁéari;ur:iizt; gfn tLeealcjiSscelgin?er:?r\r/thor is COcr:]onstructlon The aim of such tests is to confirm the absence
. 9 ) b Of systematic reconstruction errors and to evaluate the asymp-
cerned, it is necessary to find a tradeoff between two contrastin . . )
) tofic accuracy of the algorithm. A second series of experiments
needs. On one hand, a small vertex shift leads to a more accurate : . :
, L T : . ~“were conducted on real scenes acquired with multiple camera
boundary's repositioning on the object's edge, with a certain ris

. . . ) stems and processed by automatic 3-D reconstruction algo-
of being attracted by the wrong edge if the boundary is reIanveF(hmS [29] Tr?e adopted s)t/ereometric techniques are basedgon
far apart from the correct one. On the other hand, larger displa i

ments allow the boundary to be repositioned on more disteign{e automatic detection, matching and back projection of image

edges, but the positional accuracy is, in fact, reduced. Furth ergtures, each generating one of the 3-D points of point-cloud.

more, the update of the vertex location could start oscillatingo LSS 9enerated with matching-based reconstruction algo-
g upaat #hms have common properties, for that regards the reliability
during the iterations. In order to take advantage of both pos

|- .. . . . .
- . . ghdnoisinessof the points, as explained in the following. For
b.'“t'es’ we ad'opted anultl—step searctapproach, which con- this reason, the experiments with real scenes were aimed at con-
sists of selecting several candidaté’, , P;s, - - -, ;) for the

shifted location ofF;, scattered along the two specified directlrrnlng the capability of our technique, with such 3-D input

. : . data, to successfully segment the 3-D scene into the different
tions at a progressively larger distance frétn For each one of biects and determine the obiects' boundaries with hiah
such points, the luminance/color gradient is computed. Amors1§ene Obects . ) 9
those points that exhibit a gradient of significant magnitude tﬁ curacy. Besides, am of th.e. experiments was.also the evalua-

! i  "¥%n of the computational efficiency of our technique.
one with the best contrast factor is selected, and the vertex is up-

dated with the minimum step along its direction. With reference ) ,
to Fig. 6, if the best Value Of.ouiras S the one that corresponds’™ Reconstruction from Synthetic Data
to P4, then theP,; is shifted toF;;. Through this approach, we One of the considered data sets represents a surface character-
obtain an accurate vertex positioning even when the edges iaetl by a closed square depth discontinuity contour with a crease
quite far away from the original boundary. in the middle (like a roof). The surface contains both depth dis-

Process RandomizatieAThe proposed localization ap-continuities and gradient discontinuities (creases), which meet
proach, like any iterative optimization procedure with & two points. Inside the smooth areas the surface is expected to
complex merit function, could converge to a maximum thdte planar. The 3-D point-set is made of a number of coplanar
does not correspond to the global optimum. In order fmoints, which are scattered only in the close proximity of the
minimize the risk of encountering a relative maximum, weiscontinuity contours (see Fig. 7). This particular test surface
introduce a partial randomization in the optimization processonstitutes a rather difficult test for the detection of disconti-

in a similar fashion as in methods simulated annealing nuities and provides us with a good benchmark for testing the
This improves the likelihood of a correct convergence, at tlsenoothing capacity of the interpolator within a continuous re-
cost of a moderately higher number of iterations. In order tgion.
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Fig. 8.
present.

Pre-interpolation of the data set, assuming that no discontinuities are

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 2, MARCH 2000

5 10 15 20 25 30 35 40 45 80

Fig. 11. The obtained depth discontinuity ma, j ).

with the desired one. Furthermore, as shown in Fig. 11, the depth
discontinuity contours were exactly localized as well.

In order to evaluate the accuracy of the interpolation, the
obtained surfaces have been compared with the corresponding
ideal reconstructions and the depth differences have been mea-
sured throughout the domain. With all the tested data sets, the
difference was generally negligible, and, in the neighborhood of
the discontinuities, it never exceeded one part over 1000.

B. Reconstruction from Real Data

Fig. 9. Surface interpolation under the assumption of continuity but with a The synthetically generated 3-D point-sets have been used

modest cohesion force.

only to test the first part of our technique, which is the interpola-

tion/segmentation algorithm. When dealing with a multi-camera

IS
NS
”///"/'I/O/

1)

Fig. 10. Surface obtained with the proposed controlled-continuity interpolator.

Fig. 8 shows the result of the pre-interpolation, which gen- 2)
erates a single continuous surface, as expected. As we can see,
the pre-interpolator behaves exactly as a rigid thin-plate fitting
algorithm. Fig. 9 shows the surface obtained using the same
procedure, but where only the continuity constraint on the sur-
face gradient has been removed. This way, only the continuity
of the surface is preserved. By removing the rigidity constraint,
the interpolator emulates a thin plate under tension, which ap-
proximates the desired surface much better, thanks to a better
behavior at the discontinuities. On the other hand, a non-rigid
thin plate could easily lead to results of poor quality, if the input
point-set were noisy. This is a situation that typically occurs with
3-D point-sets obtained from real images.

acquisition system and real scenes, however, the 3-D point-sets
obtained through stereo-reconstruction methods present some
typical problems:

The 3-D points are generally affected by a small, normally
negligible, position error, except for a little part of them,
calledoutliers, whose position is macroscopically wrong
(normally caused by a matching error), and whose dis-
tance from the ideal interpolating surface is much larger
than the standard deviation of the whole point-set. Be-
cause of this significant deviation from the overall sta-
tistical behavior, sucbutlierscan be easily individuated
and eliminated during the interpolation step, by means of
statistical analysis of the distance from the currently in-
terpolating surface.

There are significantly wide regions in which it is impos-
sible to retrieve reliable 3-D information. This problem
is to be attributed to a lack of stereo-correspondences be-
cause of surface self-occlusions, and is particularly severe
when the distance between cameras is comparable with
the distance from the scene. Such “blind” regions are, in
fact, positioned at the extreme boundaries of the objects,
which makes itimpossible to determine the exact location
of the discontinuity curves from depth information only.
For this reason, the performance of this second part of the
technique that is the image-based accurate boundary lo-
calization becomes of utmost importance.

In order to show the performance of the proposed technique

In Fig. 10, the results of the interpolation/segmentation algwedth such data sets, two examples are presented, in which the
rithm are shown. As we can see, the obtained surface coincidiega sets present different quality. The first case is quite a simple
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The middle view is taken as reference viewpoint.

s
= A

Fig. 13.  The 3-D point cloud obtained from the three images, used as N4 14 Map of the segmented sub-surfaces, referred to the reference

data set. viewpoint. Each sub-surface actually corresponds to a different object (the
surfaces representing the table and the background has been rejected).

scene, in which the reconstruction of the 3-D points has been
helped by illuminating the scene with a structured light sourcabout 30 cm above the other two, therefore this camera was
The augmented texture on the object surfaces allows to obttaken ageference viewpoint
a denser 3-D point cloud together with a much tinier quantity As we can see from Fig. 19, the interpolation/segmentation
of outlier points. On the other hand, the second example canfrecess was able to determine a set of correct and closed discon-
considered a challenge for the proposed method: it representimaity contours that encircle the various scene objects, using the
typical videoconferencing scene, which has been acquired waD point cloud of Fig. 20 as the only input. Nonetheless, the ab-
athree-cameras system. The surfaces in the scene are more e@mee of 3-D points in the occlusion regions does not allow the
plex in this case, and the available 3-D points are obtaineadgorithm to locate the object boundaries with sufficient accu-
through area-matching, just by exploiting the intrinsic textumacy. The discontinuity contours are, in fact, placed somewhere
on the object surfaces. inside the occlusion regions, as shown in Fig. 20. Such discon-
Fig. 12 shows the three original images of the first scene. Thiruity contours are the approximate boundaries that are passed
middle view is taken ageference viewpoiniThe area-matching to the accurate boundary localization algorithm, together with
algorithm applied to these images has provided the point clotig original reference view.
shown in Fig. 13, which also is used as initial surface for the The final result of the boundary localization is shown in
interpolation/segmentation algorithm whose results are showiy. 21. Compared with the initial boundaries of Fig. 20, the
in Figs. 14 and 15. As the figure shows, the segmentation atcuracy improvement is quite visible. In fact, if a segmented
gorithm was able to determine one sub-surface for each objsab-surface is smooth and its boundary is visible (typically a
visible in the scene. Starting from these data, the boundary f&wene object), the discontinuity curves will be refined up to
calization step has produced the results shown in Fig. 16, wheimeel accuracy. With reference to Fig. 21, for example, for some
the detected boundaries has been projected onto the referesusme objects such as the speaker's head, the ball and most of
image. All the objects have been separated and the boundarigh@ speaker's body, the distance between the initial boundary
foreground have been accurately localized, except for the uppad the actual one, is never more than 3 pixels. Furthermore,
part of the pump, which was too thin for the area-matching at-is worth emphasizing the importance aindomizationin
gorithm to be able to recover its shape. the optimization strategy. In fact, a mild randomization of the
Fig. 17 shows the original images of the video-conferencingerit function, combined with a repetition of the iteration step,
scene, acquired with a trinocular system using a set of thrieened out to introduce significant improvements, particularly
CCIR-601 standard (726 576 pixel) color cameras. Thewhere the information provided by the 3-D point-set is poor,
camera system was positioned approximately 2 m from thed in the proximity oSpurious edgesSuch problems, in fact,
speaker; the distance between the left and the right cametersd to generate local sub-maxima of the merit function (see,
was approximately 80 cm; and the middle camera was pladed example, the upper part of the speaker's head).
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Fig. 15. The 3-D point cloud resulting from the interpolation/segmentation procedure.
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Fig. 17. Original images of the scene “Gwen” (left, middle, and right views). The middle view is takefeeence viewpoint

V. CONCLUSION Our approach consists of two main steps: a pre-interpola-
tion/segmentation phase, and a boundary refinement process.
In this paper, we proposed a method for accurately recofne pre-interpolation/segmentation algorithm segments the ob-
structing scene surfaces through a segmentation-based in{gfyeq scene into separate surfaces that pertain different objects,
polator @l;lble-surface regonstructlc)n_based on the a_naly3|sb using the depth map only. Object-boundary refinement is
of 3-D point-sets and luminance profiles of perspective Sceﬂlgen performed using luminance and/or color information, as

views. ided by the original i The method turned
Key features of this work are the computational efficienc;‘;frov' edbythe original images. The method we propose turne

the robustness of the procedure and the reliability of the resuffdt 10 outperform purely variational techniques, especially in

when dealing with real data. Our technique, in fact, is partigje accuracy at the object boundaries. This can be attributed
ularly suitable for sparse 3-D data, obtained from automafie the adoption of a projective depth-map (instead of an ortho-
stereo-matching methods applied to sets of views acquired ¢r@phic one) and to the fact that luminance/color edges have
a trinocular camera system. been exploited as well.
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Fig.18. Two views of the 3-D point-set used by the pre-interpolation/segmentation algorithm. The points were generated by a combined edgeréadmsadd
3-D reconstruction technique.

Fig. 21. Final result of the boundary refinement.

to the time required for a resolution of the functionals with a
robust optimization technique, such asimulated annealing
approach, which would require a computation time at least one
order of magnitude bigger.

In order to further improve the performance of the proposed
technique, we are currently working on an extension of our ap-
proach to implicit surfaces, which cannot be described by a
depth map. We are also working on issues of temporal con-
sistency, in order to exploit the correlation between segmen-
tations at different time instances. The final goal is to imple-
ment an automatic processing chain, which able to generate ac-
Fig. 20. Lines of depth discontinuity generated by the interpolatiofurate, topologically correct, 3-D, and temporally consistent re-
segmentation algorithm. constructions of all the object of the imaged scene.

As far as the computational efficiency is concerned, the re-
quired computing effort strongly depends on the size of the in-

terpolation domain, as well as on the number of 3-D points of thell] J- L. Mallet, “Discrete smooth interpolationXCM Trans. Graph.vol.
dat t. E le. th : t of Fi 17-21 (TV 8, no. 2, pp. 121-144, 1989.
ata set. For example, the experiment of Figs. 17-21 ( -1€S012] D. Terzopoulos, “The computation of visible-surface representation,”

lutionimages, same resolution for the interpolation domain) was  IEEE Trans. Pattern Anal. Machine Intgliol. 10, July 1988.

based on a data set of about 9 000 points. In this case, the pre-in3l /,\*AI?'S'::SES"‘? ?gf'ssermaﬁﬂsua' Reconstructian Cambridge, MA:

terpolation/segmentation algorithm took approxmately 10 min [4] W. E. L. G’rimson. and T. Pavlidis, “Discontinuity detection for visual

to be completed on an SGI R-10000 workstation. As far as  surface reconstructionComput. Vis., Graph. Image Processing!.

the boundary refinement is concerned, the computational time_ 30, no. 3, pp. 316-330, June 1985. .
ied f less than one minute to some minutes. de endiné‘r’] V. Caselles, R. Kimmel, and G. Sapiro, “Minimal surface-based object

varied irom ’ p segmentation,TEEE Trans. Pattern Anal. Machine Intellol. 19, pp.

on the situation. Such computation times have to be compared 394-398, Apr. 1997.
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