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Visible Surface Reconstruction With Accurate
Localization of Object Boundaries

Federico Pedersini, Augusto Sarti, and Stefano Tubaro

Abstract—A common limitation of many techniques for 3-D re-
construction from multiple perspective views is the poor quality of
the results near the object boundaries. The interpolation process
applied to “unstructured” 3-D data (“clouds” of non-connected
3-D points) plays a crucial role in the global quality of the 3-D re-
construction. In this paper, we present a method for interpolating
unstructured 3-D data, which is able to perform a segmentation
of such data into different data sets that correspond to different
objects. The algorithm is also able to perform an accurate localiza-
tion of the boundaries of the objects. The method is based on an
iterative optimization algorithm. As a first step, a set of surfaces
and boundary curves are generated for the various objects. Then,
the edges of the original images are used for refining such bound-
aries as best as possible. Experimental results with real data are
presented for proving the effectiveness of the proposed algorithm.

I. INTRODUCTION

A MONG the available methods for image-based 3-D scene
reconstruction, a leading role is played by stereometric

techniques based on feature correspondences. Such methods
recover the 3-D coordinates of object features by detecting,
matching and back-projecting homologous image features on
two or more perspective views, taken from different viewpoints.
One drawback of such methods, however, is that they are only
able to reconstruct those portions of the surface that are visible
from at least two viewpoints. If the acquisition system is placed
in front of the scene, it is reasonable to model the surface
through a “depth map.” This -D representation will
exhibit discontinuities in the proximity of surface occlusions,
which normally correspond to the boundaries between different
objects.

If, on one hand, the depth map is expected to be discon-
tinuous at the object boundaries, on the other hand, corre-
spondence-based reconstruction techniques often fail to pro-
vide accurate information in the vicinity of such boundaries.
In such regions, in fact, the 3-D data turns out to be very
sparse and often affected by significant errors and artifacts.
The poor characterization of 3-D data near the object bound-
aries causes surface interpolators to perform poorly in areas
where the accuracy is of utmost importance. In fact, even if
the boundary regions are only a small portion of the whole
scene, their importance is crucial, as they carry the most
significant information on the object shape.
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Several methods have been developed for interpolating
sparse 3-D data. Among such methods, it is important to
mention [1], which implements a modification of the thin-
plate spline algorithm. Through this methods it is possible
to model “cuts” and “creases” of the plate. Surface cuts
model depth discontinuities at the object's boundaries, while
creases model discontinuities of the first derivative of the
surfaces (edges and sharp rims). Terzopoulos [2], [3] pro-
posed a method for jointly determining the best interpolating
surface and the location of a set of curves where cuts and
folds take place. This method, however, is based on the min-
imization of a functional which requires a rather heavy com-
putational load. Furthermore, when the 3-D data is extracted
from strongly converging perspective views, the quality of
the 3-D information near the objects boundaries turns out to
be quite poor. In this situation, this method does not have
enough information to reconstruct the objects silhouette with
an adequate accuracy.

In this paper, we present a method for interpolating un-
structured 3-D data, which is able to segment the data into
sets that correspond to different objects and, at the same time,
to perform an accurate localization of the object boundaries.
Our approach begins with an iterative optimization process,
which maximizes a functional that is similar to the one de-
fined by Terzopoulos [2], and returns a set of surfaces that
model the objects and their boundaries. A segmentation al-
gorithm is then applied to the perspective projection of the
resulting surface. This algorithm partitions this surface into
sub-surfaces of continuous depth, which are likely to cor-
respond to different objects and, for each one of them, it
determines a closed curve that encircles it and approximates
the boundary of the object. The last step of the procedure
uses the luminance/color edges for refining the position of
such boundaries. This is accomplished through a recursive
boundary update algorithm, whose aim is to “pull’ the closed
curves toward the image projection of the objects silhouettes
(which are visible as luminance or color edges along the
object boundaries).

The paper is organized as follows. The next section de-
scribes the adopted data representation and the general for-
malization of the visible surface reconstruction problem. Sec-
tion III describes the two functional blocks that constitute
the core of the proposed technique: the combined interpola-
tion/segmentation algorithm and the accurate boundary local-
ization. In Section IV, the results of some experiments con-
ducted on real sequences (acquired with trinocular systems
based on standard TV-resolution cameras) are presented.

1051–8251/00$10.00 © 2000 IEEE
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II. PRELIMINARIES

A. Projective Representation of the Depth Map

A stereometric imaging system that acquires the front views
of a scene can determine the 3-D coordinates of a scene feature
only if it is visible from at least two viewpoints. As a conse-
quence, the surface regions that can be reconstructed are gen-
erally a subset of the visible regions. for this reason, the recon-
structed surface can be represented as an explicit function of
the form , where and are the coordinates of a
reference planethat is usually chosen as parallel to one of the
image planes, andrepresents the distance of the surface from
the plane or from a given viewpoint.

A typical way to represent depth maps is theorthographic
representation, shown in Fig. 1(a). The surface reference frame

is Cartesian and lies ideally behind the scene, while
represents the “height” of the surface at the point of

the reference plane. Such a representation turns out to be quite
intuitive, as the observed scene is represented like a 3-D high-re-
lief, whose base coincides with the reference plane. We should
keep in mind, however, that the actual imaging process consists,
of a perspective projection of the scene. Consequently, the 3-D
shape of the visible scene surfaces would be better described by
a “projective” depth map originating from the reference view-
point. Such a depth map can be thought of as a bundle of depth
rays that meet at the camera's optical center, each one inter-
secting first the image plane and then the scene at a distance

(depth) from the optical center, as shown in Fig. 1(b). This
projective representationof depth maps has the advantage of
guaranteeing a certain consistency between visible and recon-
structible surfaces, as the mapping between image points of the
reference view and depth points of the surface is one-to-one. As
we can see in Fig. 1(a), this consistency is generally not guaran-
teed by an orthographic depth map, as there could be portions
of the reconstruction's domain that correspond either to regions
that are not visible from the reference viewpoint or to more than
one region of the visible surface.

Furthermore, a projective representation of the depth map
results to be particularly suitable in the case of trinocular vi-
sion. In fact, when one of the three cameras of the acquisition
system is placed approximately between the other two, each
point of the surfaces that can be reconstructed through stereo
correspondences using any pair of cameras will be visible from
this camera. For instance, if the three viewpoints were collinear,
the union of the surfaces regions that could be reconstructed
from any pair of cameras would be contained in the set of sur-
faces visible from the middle viewpoint.1 For this reason, it is
particularly convenient to adopt a projective depth-map origi-
nating from the optical center of the middle camera, which be-
comes thereference viewpoint.

1One case that could raise doubts on this statement is the one of two objects,
one of which occludes the other. In this case, the two side views could see the
occluded object while the middle one could not. However, ordering constraints
in binocular-matching processes would always prevent the second surface from
being reconstructed using feature matching.

(a)

(b)

Fig. 1. Traditional and proposed representation of the depth map. (a)
Orthographic representation: the depthu is represented in a 3-D Cartesian
referenceO(x; y; z) wherez = u(x; y) and(x; y) is parallel to the image
plane. (b)Projective representation: the depthu is perspectively mapped onto
the image plane. The depth value defined for each image point is the distance of
the viewed surface from the projection center (the viewpoint) of the reference
view.

B. Problem Formalization

Let us consider the portion of the scene surface that is
visible from the reference viewpoint. As explained in the pre-
vious section, can be modeled with a projective depth map
of the form , where is the distance (from the ref-
erence viewpoint) of a scene pointthat projects onto the point

of a plane calledreference plane. The extension of the
domain of is chosen in such a way to cover the whole
visual field of the acquisition system. The visible surfaces
exhibit discontinuities wherever the depth-ray of the projective
depth map abruptly goes from one object to another one in a
situation of partial occlusion. In this case, the occluding surface
will be conventionally referred to asforeground, while the oc-
cluded one will be consideredbackground. The available input
data is a set of 3-D measurements on the visible surfaces, which
can be thought of as a sparse, irregular and noisy sampling of

. In conclusion, a 3-D reconstruction of good quality should
be made of a set of surfaces, each of which interpolates as best
as possible the sparse 3-D data that pertain a different object of
the scene. The projective depth map will thus be partitioned in
such a way to exhibit discontinuities at the object's boundaries.
Each one of the surfaces, however, will be assumed smooth, un-
less the object that it represents exhibits a sharp edge, in which
case the surface will be allowed a crease (tangent plane's dis-
continuity).
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With the above requirements in mind, it is reasonable to think
of a discontinuity-preserving thin-plate spline as the best ap-
proach to solve the visible surface reconstruction problem. A
thin plate, in fact, is characterized by its own cohesion force
and, when pulled toward the 3-D sparse data, tends to model
the visible surfaces in a physical fashion. However, in order to
model cuts (at object boundaries and occlusions) and creases
(along sharp edges), we need to be able to definecutting and
foldingcontours on the thin plate. This approach was adopted by
Terzopoulos [2], Mallet [1] and Blake and Zisserman [3], who
formalized the problem as a variational one. In [3], the concept
of controlled-continuity interpolatorwas introduced, which al-
lowed the interpolating surface to be more elastic (smoother) or
more rigid (more prone to tearing), depending on the nature of
the data. The approach that we propose in this article, which is
presented in what follows, represents a generalization of [2].

Mathematical model—Let us consider acontinuous thin
plate represented by an explicit surface , which
is “pulled” by a set of 3-D points of known
coordinates. If we want this plate to minimize the mean square
distance from the 3-D data while minimizing its internal energy,
then we can define a functional of the form

(1)

where and are the second-order derivatives of
is the distance of from the surface (along the

axis). Through the first term of (1), which represents the internal
energy of the interpolating surface, we control the local curva-
ture, therefore its minimization tends to smoothen the surface
[6]. The second term controls “how well” the 3-D data are hon-
ored. Such two normally contrasting needs are balanced through
the weight coefficient . Thiscontinuous thin-plate modelrep-
resents a good solution to the 3-D data interpolation problem
when the original surface does not exhibit either creases or depth
discontinuities.

In order to allow the surface to model creases, we should ig-
nore the internal energy term and allow discontinuities of the
surface gradient. A physical model suitable for the interpola-
tion surfaces with creases is theelastic membrane. In this case,
the regularization term of the corresponding functionalis ex-
pressed as a function of the first-order derivatives of(magni-
tude of the gradient)

Similarly, as in the case of the thin-plate model, in order for an
elastic membrane to be able to model also depth discontinuities,
the regularization term of the functional should be neglected
along such lines.

Taking into account for these considerations, Terzopoulos [2]
has come to the definition of a functional which accounts for

both discontinuities and creases through the introduction of two
regularization terms

(2)

where are the first- and second-order
partial derivatives of is the discontinuity map,
which is equal to one everywhere, except in correspondence
of surface discontinuities, where it is set to zero and, similarly,

represents the map of the surface creases, as it is set to
zero in correspondence of them. Notice that, in order for this
formulation to make sense, we need to assume that the curves of
discontinuity have non-zero width, otherwise the set in which

is non-zero in (2) would have zero measure. This
problem, however, has a trivial solution in the discrete domain,
which is our case. The functional also presents an additional
term that depends on, which is the set of discontinuities
and crease curves. The term actually measures the total
extension of the discontinuity curves. The introduction of this
term is necessary, as it prevents the functional from producing
a degenerate solution, such as one in which all the points are
classified as cuts and creases ( , which are
points where the surface is not defined), except for those of the
data set, where we have . In other words, the
term prevents the interpolated surface from “collapsing”
into the point cloud. There are several ways to define ;
a very simple but efficient one is to choose it so that it will
measure the total length of the discontinuities and crease lines.

Notice that the minimization of the functional (2) is made
with respect to both and , which means that the algorithm
returns the best surface that interpolates the assigned
3-D points, as well as the maps of discontinuity and surface
creases and , respectively, which are assumed
visible when the scene is observed from thereferenceviewpoint.

C. Computational Issues

The functional described in Section II-B addresses the
variational reconstruction problem in an accurate and elegant
fashion. Operatively speaking, however, a direct minimization
of this functional is not such a straightforward task. For
example, the choice of the discrete operators to be used for
computing the first- and second-order derivatives of
gives rise to some difficulties in the discretization process.
Other problems are encountered with the definition of the
maps and , and of in the discrete domain.
Another non-trivial complication arises from the nature of the
considered functional. In fact, (2) is a non-convex functional
with multiple relative minima, therefore its minimization
must necessarily be performed iteratively. Among the many
optimization algorithms,simulated annealingseems to be the
only one that could guarantee a successful global optimization.
Considering the complexity of our problem, however, this
approach is unfeasible due to the excessive computational cost.
It is thus necessary to develop an optimization technique that
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(a) (b) (c)

Fig. 2. Impulse-response masks for computing the first-order surface
derivatives. (a) Case of a continuous surface. (b) Neighboring discontinuity on
the left. (c) Neighboring discontinuity on the right.

reaches a correct solution with a reasonable computational
effort. In this section, we present our approach to both the
discretization and the minimization problems.

1) Discretization of the Functional:In order to discretize
the functional (2), we need to approximate integrals with sums
and derivatives with finite differences. As far as the integral
is concerned, its direct discretization would be quite straight-
forward if there were not the discontinuity curves to take into
account. The simplest way to do so is to discretize the loca-
tion of the discontinuities through the definition of two dis-
crete (pixel-resolution) maps and . The choice of
one-pixel-wide discontinuity curves greatly simplifies the mea-
surement of the extension of the discontinuities . In fact, as
this measurement corresponds to the total length of such curves,
it can be carried out in a rather accurate way by simply counting
the number of pixels where the map is zero.

The discretization of the derivatives, in case of smooth sur-
faces, is quite a straightforward task. In the proximity of the
discontinuities, however, the situation becomes more complex.
On one hand, the discontinuity maps and are de-
fined in order to cancel the contribution of internal energy terms
(which are the only ones that depend on the surface derivatives)
at the discontinuity curves. On the other hand, we should re-
member that the computation of the derivatives is implemented
through digital filters, whose impulse response tends to invade
the discontinuity when in its proximity. This often results in an
incorrect response peak. Mallet [1] and Terzopoulos [2] pro-
posed a modification of the difference operators near the discon-
tinuities, in such a way to evaluate curvatures and slopes without
crossing the discontinuity line. Examples of impulse response
masks for such operators are shown in Fig. 2. For example, in
the neighborhood of a depth discontinuity on the left, the mask
(b) is applied instead of (a), when the discontinuity is on the
right, the mask (c) replaces (a).

The behavior of the interpolated surface near and on the dis-
continuities strongly depends on the choice of the kernels. In
the example of Fig. 2, for example, no depth value is defined
in the exact correspondence of the lines of discontinuity. This

behavior can be controlled through a proper definition of the
kernels used near the discontinuities. The use of different and
properly shaped kernels in the different situations constitutes
the algorithmic device that allows modification of the “region
of influence” of the interpolation, depending on the presence
and on the type of discontinuities. This is the key feature of any
discontinuity-preserving interpolation scheme.

Taking the above considerations into account, the discretized
version of the functional can be defined as

(3)

where the definition of the differential operators depends on the
presence of a discontinuity in its neighborhood, on its position
and on its type. The first-order derivative operator , for
example, is defined as shown in the equation at the bottom of
the page.

2) Localization of the Discontinuity Lines:The goal of the
optimization process is to determine a surfaceand a set of dis-
continuity contours that minimize the discrete functional (3).
Notice that the localization of the discontinuities must use the
3-D point coordinates as the only source of information. Con-
sequently, although the variational problem could be solved just
through a direct search of the global minimum of the functional,
reasons of computational efficiency suggest to first roughly es-
timate the discontinuity contours, and then let the global opti-
mization algorithm take care of refining this information.

A rough estimate of the discontinuity contours can be ob-
tained by determining those surface regions where the traction
force “exerted” by the 3-D data points is so strong as to “break”
the plate. The magnitude of the surface gradient can
be considered as a reliable measure of this force, as it describes
the local surface slope. Criteria for the localization of probable
discontinuities, based on the localization of significant peaks in
the magnitude of the gradient of the depth function are
well known in literature. In fact, if we interpret as a lumi-
nance profile, the problem becomes that of theedge detection,
which has been abundantly studied in the literature.

As an immediate consequence of the above consideration, we
chose to perform a first rough localization of the discontinuities
using Canny's edge-detection algorithm [17]. As this edge de-
tector is designed for 2-D surfaces that take value on regular
grids, we use as input an interpolated version of the sparse 3-D
data. However, some variations on the classical Canny's edge-

depth discontinuity on the left:
depth discontinuity on the right:
otherwise
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detection approach are necessary, due to the type of pre-pro-
cessing and the different nature of the input data. In particular,
in order to achieve a significant quality in the first discontinuity
detection, we introduced the following modifications:

1) As 2-D input profile is the result of an interpolation,
its spatial frequency content is very low pass and the
signal-to-noise ratio (SNR) is significantly higher than
in the case of luminance profiles. Consequently, the
Gaussian 2-D pre-filtering turned out to be unnecessary
or even disturbing, as it reduces the quality of the discon-
tinuity detection. The gradient operator is thus directly
applied to the unfiltered depth map.

2) If the detected edge contours exhibit an excessive cur-
vature in some points where the edge is expected to be
smooth, such irregularities are back-propagated onto the
depth map. The thin-plate interpolation will thus exhibit
annoying artifacts, such as jagged object boundaries (see,
for example, Fig. 3). In order to avoid such problems, the
last step of the edge-detection algorithm consists of a so-
phisticated recursive edge-following process [18], [21].
This operation is based on both the orientation of the
gradient maxima and on the already detected edges. The
global edge detection algorithm guarantees edges of con-
trolled smoothness, which it allows us to avoid the above
artifacts.

III. T HE ALGORITHM

As anticipated in the introduction, aim of the proposed
method is the interpolation of unstructured 3-D data, the
segmentation of the interpolated surfaces into parts, each repre-
senting a different object, and finally the accurate localization
of the boundaries of such objects.

The interpolation and segmentation is performed at the same
time, through the maximization of the discrete functional (3),
leading to a set of subsurfaces, where each sub-surface interpo-
lates the corresponding cloud of 3-D points. The algorithm par-
titions this surface into sub-surfaces of continuous depth, which
are likely to correspond to different objects and, for each one of
them, it determines a closed curve that encircles it and approxi-
mates theboundaryof the object. Because of the usual poorness
of 3-D information in the vicinity of the boundaries of the ob-
jects, these sub-surfaces generally present a quite rough and ir-
regular boundary, sometimes also significantly distant from the
actual occlusion boundary.2

In order to better localize such boundaries, the only infor-
mation that could be exploited is their actual visibility in the
original images of the scene. If a boundary is visually recogniz-
able in the images, it means that there is enough information, in
the luminance/chrominance profiles, to localize its projection.
For this reason, the second step of the procedure uses the lumi-
nance/color edges for refining the position of such boundaries.
This is accomplished through a recursive boundary update al-
gorithm, whose aim is to “pull” the closed curves toward the

2Since the position of occlusion boundaries is viewpoint-dependent, the
boundary seen from thereference viewpointis considered, if not otherwise
specified.

(a)

(b)

Fig. 3. (a) Original view. (b) Corresponding point-set. Where the detected
edges are jagged, the irregularities are propagated onto the depth map,
originating annoying artifacts at object borders.

image projection of the objects silhouettes (which are visible as
luminance or color edges along the object boundaries).

In the following, these two steps are described in details.

A. Step 1: The Segmentation/Interpolation Algorithm

As a result of the above considerations, the segmentation/in-
terpolation algorithm is organized as in the block diagram of
Fig. 4, which contains the following functional blocks.

1) Interpolation based on the minimization of the functional
[see (3)], with respect to. The first interpolation

step is performed with a single thin plate with no discon-
tinuities.

2) Rough estimation of the discontinuity contours
: estimation of through Canny's

edge detection.
3) Adjustment of the detected discontinuity curves to the

boundaries of the corresponding foreground objects.
4) Segmentation into subsurfaces corresponding to different

objects, followed by a separate interpolation of each one
of them, using the boundaries determined at Step 3.

We will now discuss each one of the above steps in detail.
Surface Initialization—In order for the interpolator to work,

the depth map must be defined over the whole domain (refer-
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Fig. 4. Flow chart of the proposed algorithm.

ence plane). In order to do so, we fit a single rigid and contin-
uous thin plate over the point-set. This operation is easily per-
formed through the minimization of the functional (3), assuming

(smooth surface).
One other important reason for performing pre-interpolation

is that it allows us to easily detect and eliminate any outliers
in the input point-set. Such points, in fact, are normally present
in point-sets that are obtained with automatic 3-D reconstruc-
tion procedures. In fact, matching errors typically result in 3-D
points of unpredictable coordinates, which can be easily de-
tected while fitting the thin plate.

Interpolation—As already stated above, the interpolation
step consists of the minimization of the functional (3), with re-
spect to . Apart from the first iteration, the discontinuity
maps and are given as an input. The minimization
is carried out through relaxation, by iteratively updating each
point as follows:

(4)

where the weight is normalized by the number of samples
used for computing .

As described in last section, the gradient term
and, of course, , differ from point to point depending on the
configuration of the discontinuities in the point's neighborhood.
When no discontinuities are in the neighborhood of the point

, the gradient of the functional with respect to
assumes the form

The term decides on the convergence speed and on the ac-
curacy of the final solution. A small value ofresults in a slow
convergence while a higher value causes the vector to be not so
accurately updated in the vicinity of the optimal solution, which
reduces the accuracy of the estimate. Because of that, we made

change adaptively during the minimization process. Initially,
is assigned a rather high value in order to speed up the con-

vergence. During the minimization process,is progressively
decreased in order to adapt the magnitude of the update step to
the size of the search space. This step adaptation leads to im-
proved results with a modestly higher computational effort.

Localization—The first rough localization of discontinuities
is done by searching for the gradient's maxima over the surface
provided by the interpolation step, similarly to Canny's edge de-
tection. This is done by searching for those points whose gra-
dient has an amplitude that exceeds an assigned threshold and
is maximum along the gradient's orientation; such points are
marked asedge points. The threshold is computed in an auto-
matic and adaptive fashion, while taking the status of the inter-
polation process into account. More precisely, at the-th iter-
ation, the gradient in the point is compared with a
threshold that is proportional to its average value in a
square neighborhood of the point

where denotes the mean operator over the set. As the
number of iterations increases, the size of this neighborhood de-
creases. This way, only the most significant discontinuities (with
biggest size and depth difference) are detected at the beginning,
while the minor ones are detected in the following steps of the
interpolation process. Moreover, the coefficientincreases with
the number of discontinuities that have already been detected.
This progressive increase of the threshold compensates the in-
crease of the gradient variance due to the decrease in size of
the neighborhood , and has shown to effectively improve
the ability to reject peaks of gradients which do not correspond
to discontinuities. This adaptive thresholding is necessary as,
during the initial steps, the oscillations of the surface due to the
relaxation process are still of significant magnitude and could
otherwise be detected as discontinuities.

The location of the discontinuity curves obtained so far still
needs refinement, as the obtained contours are still jagged or
interrupted here and there. This problem typically occurs with
pixel-based edge-detection methods, where the correlation be-
tween neighboring edge pixels is not taken into account. For
this reason, the above edge detector is followed by a process
of edge analysis and classification, which scans the edge con-
tour and defines a chain of segments that connect only a subset
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of the edge points, chosen in such a way to maximize the con-
tour's smoothness. The selection of points is done recursively.
From the last selected edge point, the next one is chosen as the
nearest edge point that lies approximately on the same direction
as the last detected points [18]. This operation is performed very
efficiently by using asearch maskwhich decides the order of
preference among neighboring points. This mask is positioned
on the current edge point and oriented in the “dominant” direc-
tion of the last detected points. The edge point with the highest
weight within the search mask is taken as the next point of the
processed chain of segments. If no edge points are found within
the search mask, the search is stopped, so that it can start with
another segment. This approach allows us to freely adjust the
edge post-processing algorithm by simply changing the weights
of the search mask, so that the method will be able to correct
irregularities and make bridges over interruptions in a wide va-
riety of conditions.

Even after the above contour refinement process, the obtained
discontinuity curves still do not satisfy some properties that
characterize the object boundaries. In fact, they do not lie ex-
actly on the visible boundary of the foreground object; and they
are usually not close.3 The reason why only roughly do they ap-
proximate the shape of the foreground objects is that they lie in
regions where 3-D data is usually not available. In fact, the dis-
continuity contours are located at the outermost boundaries of
occluding objects, where stereometric principles often fail (lack
of stereo correspondences). In principle, using only the avail-
able depth information, there is not much else we can do in order
to improve the discontinuity location, unless we use additional
sources of information, such as the original reference image, as
described in the next section.

Segmentation into Objects—As already stated above, the
edge detection process does not guarantee that the discontinuity
contours will be closed. In particular, in case of wide occlusion
regions and small depth differences between facing surfaces,
the gradient of the interpolated surface from one object to the
other will exhibit a rather modest peak. This makes the object
separation a hard task. Typical consequence of this problem is
the generation of interrupted discontinuity curves, which leave
the surfaces still connected. In order to recover the correct
topology of the discontinuity map and, therefore, to separate
occludingfrom occludedobjects, it is necessary to partition the
interpolated surface into sub-surfaces that represent different
objects. This surface segmentation process should determine
“well-connected” surface regions, and should eliminate those
thin strips of surface that still connect different regions because
of boundary interruptions.

As already stated above, the regions near object boundaries
are usually characterized by an absence of 3-D data, as surface
self-occlusions prevent boundary features from being stereo-
corresponding. The thickness of such “blind” regions depends
on how far apart the cameras are, with respect to their dis-
tance from the scene. In order to determine close boundaries
and complete a preliminary segmentation, we can thus “thicken”

3This is true under the assumption that the border of the reference view be
considered a closing line for the discontinuities. In other words, discontinuity
lines that begin and end at the image border because the enclosed object is only
partially visible in the reference view, are considered closed.

(a)

(b)

Fig. 5. An example of pre-segmentation of the interpolated scene. All
discontinuities are expanded by the algorithm until a complete separation
between surfaces with different depth is complete. Each subsurface, here
characterized by a different grey level, represents a different object. (a) Original
image, middle viewpoint (reference). (b) Partition into sub-surfaces.

the boundaries within the blind regions until we are left with
well-connected sub-surfaces.

This task is accomplished by means of a region growing
algorithm applied to the binarization of the surface map,
where the binary information means theblindness, that is
the absence of surface in that point. More specifically, the
algorithm starts from a discontinuity point and marks
all of its neighbors as candidates for the expansion
of the boundary within the blind region. If the point
also belongs to the blind region and has been marked as
candidate for the boundary expansion by a sufficient number
of discontinuity points, then the boundary is expanded to
the point . The process is repeated as long as there is
boundary growth. In this way, isolated points and thin strips
of surface are included in the blind region. At the end, all
the connection strips between surfaces that do not contain
any input 3-D point, have been separated. An example of
the resulting segmentation is shown in Fig. 5.

B. Step 2: Shape Refinement at Object Boundaries

As explained above, the interpolation provides us enough in-
formation to determine the topology of the discontinuities, but
not their exact location, as the 3-D input points-set is not in-
formative enough. On the other hand, an accurate localization
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of the object boundaries in the reconstructed scene is of cru-
cial importance for the final quality of the reconstruction. The
object boundaries, in fact, can provide a human observer a great
deal of information about the object shape. In order to accurately
localize the object boundaries, a most significant additional in-
formation source is represented by the luminance profile of the
original images, as theoccluding contoursnormally originate
luminance edges. It is important to point out that the perspective
projection onto the reference image and the previously defined
perspective depth-map share the same geometry, therefore we
should expect a one-to-one correspondence between occluding
edge contours (in the reference view) and object boundaries in
the reconstructed surface. The luminance edges contained in an
image, however, can be classified into three classes:

1) texture edges, which are either a characteristic of the sur-
face reflectivity or caused by the illumination conditions
(shadows, structured light, specular reflections, etc.);

2) sharp edges, which are associated to surface creases;
3) occlusion edges, which are the outermost boundaries of

the object, where the visual rays are tangent to their sur-
face.

As what we are looking for are edges of the third type, texture
and sharp edges can be a source of problems. A significant help,
however, is given by oura priori knowledge of the approximate
position and orientation of the occluding contours, which is pro-
vided by the preliminary interpolation/segmentation procedure.

Some methods, in which luminance edges are used for an ac-
curate localization of the object discontinuities, have been pro-
posed in the literature [12], [20]. This problem can be consid-
ered, in fact, as a special case of the more general edge local-
ization problem, with somea-priori knowledge on the approxi-
mate edge location or on the shape of the encircled objects [9],
[13], [22]. Similarly to the above-cited methods, our approach
to an accurate localization of the object boundaries is here for-
mulated as an optimization problem. In order to do so, we de-
fine amerit function of the discontinuity contours, which
we want to maximize as the configuration of the discontinuity
curves varies. The merit function incorporates the distance
from a luminance edge and accounts for the smoothness of the
discontinuity contour.

As the emphasis of this work is on the computational effi-
ciency, we developed a particularly fast and effective strategy for
iteratively updating the shape of the discontinuitiesduring the
optimization process. In our approach, the points of the discon-
tinuity contours are shifted in such a way to increase the global
merit factor and to minimize the likelihood of further shifts of
the same point, with the result of minimizing the number of it-
erations. The details this minimization procedure are discussed
in the following.

1) The Merit Function: As anticipated above, the merit
function is defined as a linear combination of two terms: one
that measures proximity to luminance edges that are likely
to represent the occlusion boundaries, and the other one that
measures the smoothness of the contour. The use of a linear
combination has the two-fold advantage of necessitating a
modest computational effort and of deciding which term
to favor in quite a straightforward fashion. Given a closed

discontinuity curve , the optimal boundary curve can be
determined as

where

(5)

where is a measure of the image contrast along the
considered contour; measures the shape regularity of
the curve; and is a function of the distance between
the contour and its original location before the update. Such
terms are weighed by the coefficients and . A brief
discussion on each one of the above terms follows.

Image Contrast—The aim of the operator is to
have the luminance edge that is most likely to correspond to the
object's occlusion boundary “attract” the curve. Considering
the fact that the discontinuity contour, as determined by the
interpolation/segmentation procedure, is already a good approx-
imation of the occluding boundary, it is reasonable to expect the
true boundary to be located in its proximity and to be approxi-
mately oriented in the same direction. The luminance gradient's
magnitude is thus likely to exhibit a peak in correspondence to
the optimal boundary , where the gradient is oriented about
perpendicularly to . Consequently, in order to shift toward

, the term is defined in such a way to comply
with these expectations

(6)

where is the luminance profile of the reference view and
is the angle formed by the local tangent to

in with the direction of the luminance gradient vector,
, in the same point.4

When color images are available, the localization of oc-
cluding edges can become much more effective. The gradient
of the hue color component, for example, is often much
more informative than the luminance gradient. Shadows, for
example, originate undesired luminance edges, but they cause
negligible changes in the hue component.5

Several experiments have been carried out over a number
of different color scenes, using different color spaces and dif-
ferent definitions of the color gradient in each case. We ob-
tained the most significant results with the RGB and the YUV
color spaces. In particular, we achieved our best results in the
RGB space by defining the color gradient vector as
the color component of maximum magnitude

(7)

4Notice that the vertices of the discontinuity curve are defined on a continuous
domain, which justifies the use of the notation(x; y).

5This is true under the assumption that the scene is illuminated by white light
sources only.
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and being the three color components.
As a consequence, we obtain

(8)Shape Regularity—The goal of the shape regularity term
in the merit function is to get rid of local irregularities in the
boundary shape, as they are unlikely to correspond to the
real object shape. Such irregularities in the boundary contour
appear as small “dents” caused by the vicinity of other contours
(usually textural edges) that cannot be easily told apart. In
order to prevent the formation of such artifacts, we can try to
minimize its perimeter. In order to do so, we can define

(9)

where is the total length of the object boundary.
Some other smoothness operators have been defined in the

literature, which provide a better measurement of the shape reg-
ularity. An example is in [13], which is based on the radius of
the local osculating circle. However, in all the experiments that
we conducted over a number of test scenes, no significant loss
could be detected when using the definition (9) instead of more
complex ones. Our choice, in fact, has the advantage of requiring
a very limited computational effort.

Update Distance—Let us consider an object whose boundary
is not completely visible as, for example, part of it lies in a
shaded area. Theimage contrastterm is thus unable to shift
the boundary toward any edge, while theshape regularityterm
would have the boundary completed with the shortest path that
connects the extremes of the interruption. For this reason, a third
term was introduced in the merit function, which is meant to
keep the updated boundary as close as possible to its original
location, by acting like “springs” placed between boundary ver-
tices and corresponding starting points. This update distance
factor was expressed in terms of the mean square distance be-
tween updated and original vertices, as projected onto the image
plane

(10)

where are the coordinates of the-th vertex point
of the polyline that represents the boundary is the
original location of the vertex; is its location at the -th
iteration of the optimization process; and is the Eu-
clidean distance between two points. Through the introduction
of this last term, the update algorithm will only smoothen the
boundary where it is not visible.

2) The Optimization Strategy:In principle, the optimization
problem, which consists of maximization of the merit function
(5), could be solved through an exhaustive search. However, the
number of unknowns makes this approach unfeasible. More-
over, as one the main goals of this work is to maximize the
computational efficiency, the definition of a good optimization
strategy becomes of utmost importance.

Representation of the Boundaries—The boundaries must be
described in such a way that the update process will be able
to handle them. Our choice is to use closedpolylines, which
are piecewise linear contours (chains of vertices connected by
segments). A boundary is then represented by an ordered list of
vertices each of which is described by the
triplet dir , where are the coordinates of the vertex
anddir is the orientation of the segment that connects the vertex
with the following one (this last piece of information is clearly
redundant, but it enables a much faster implementation).

The generation of the polyline is done in such a way to min-
imize the distance from the original boundary. For this reason,
our approach is to follow the boundary and place the vertices,
whenever possible, in correspondence of corners and points of
high curvature.

Boundary Modification—The updating strategy basically
consists of a progressive deformation of each boundary through
a local shift of each vertex. One key feature of this approach
is that a change in the location of one vertex, say, will only
affect a limited portion of the boundary, i.e., the two adjacent
segments and . As a consequence, the merit
function will only change in the chain of such two
segments, while it will remain unchanged everywhere else.
This allows us to update the merit function, after the motion of

, in a differential fashion, which is clearly very efficient from
the computational standpoint. The update will be given by the
difference between the new and the old merit function over the
chain of two segments. In order to maximize the
merit function, the optimization process makes sure that the
value of increases at each iteration, by looking at the
sign of .

In order to efficiently compute , we can derive the
updates of each one of the three terms of the merit function

where

(11)

being the color component of the maximum gradient's
magnitude, as defined in (7)

(12)

and

(13)
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Fig. 6. Possible candidates for updating a boundary vertex.

All such terms can be computed by using no more than three
adjacent vertices, which makes the method particularly efficient
from the computational standpoint.

As far as our strategy for the contour's shape refinement is
concerned, since a vertex shift along the boundary would not
significantly change the contour's shape, we chose to move
the vertices perpendicularly to the boundary itself. However,
as each vertex originates two polyline segments, two different
perpendicular directions will be considered. Having two can-
didate directions instead of one (e.g. the perpendicular to the
average local orientation of the boundary) makes the contour
more likely to fit the boundary edges, particularly in regions of
high curvature, as our tests on real scenes confirm.

As far as the magnitude of the displacement vector is con-
cerned, it is necessary to find a tradeoff between two contrasting
needs. On one hand, a small vertex shift leads to a more accurate
boundary's repositioning on the object's edge, with a certain risk
of being attracted by the wrong edge if the boundary is relatively
far apart from the correct one. On the other hand, larger displace-
ments allow the boundary to be repositioned on more distant
edges, but the positional accuracy is, in fact, reduced. Further-
more, the update of the vertex location could start oscillating
during the iterations. In order to take advantage of both possi-
bilities, we adopted amulti-step searchapproach, which con-
sists of selecting several candidates for the
shifted location of , scattered along the two specified direc-
tions at a progressively larger distance from. For each one of
such points, the luminance/color gradient is computed. Among
those points that exhibit a gradient of significant magnitude, the
one with the best contrast factor is selected, and the vertex is up-
dated with the minimum step along its direction. With reference
to Fig. 6, if the best value of is the one that corresponds
to , then the is shifted to . Through this approach, we
obtain an accurate vertex positioning even when the edges are
quite far away from the original boundary.

Process Randomization—The proposed localization ap-
proach, like any iterative optimization procedure with a
complex merit function, could converge to a maximum that
does not correspond to the global optimum. In order to
minimize the risk of encountering a relative maximum, we
introduce a partial randomization in the optimization process,
in a similar fashion as in methods ofsimulated annealing.
This improves the likelihood of a correct convergence, at the
cost of a moderately higher number of iterations. In order to

Fig. 7. A synthetic input 3-D point-set.

do so, the algorithm insists on the same vertices, each time
adding a modest random contribution to the merit function.
This gives the algorithm a chance of escaping from secondary
local maxima, while improving the localization's accuracy.

IV. EXPERIMENTAL RESULTS

In order to test and validate the proposed technique, we con-
ducted two types of experiments. The first series of tests was
conducted on synthetically generatedad hoc3-D input data.
The point-sets were generated in such a way to make it vis-
ible when the reconstructed surface deviates from theideal re-
construction. The aim of such tests is to confirm the absence
of systematic reconstruction errors and to evaluate the asymp-
totic accuracy of the algorithm. A second series of experiments
were conducted on real scenes acquired with multiple camera
systems and processed by automatic 3-D reconstruction algo-
rithms [29]. The adopted stereometric techniques are based on
the automatic detection, matching and back projection of image
features, each generating one of the 3-D points of point-cloud.
Point-sets generated with matching-based reconstruction algo-
rithms have common properties, for that regards the reliability
andnoisinessof the points, as explained in the following. For
this reason, the experiments with real scenes were aimed at con-
firming the capability of our technique, with such 3-D input
data, to successfully segment the 3-D scene into the different
scene objects and determine the objects' boundaries with high
accuracy. Besides, aim of the experiments was also the evalua-
tion of the computational efficiency of our technique.

A. Reconstruction from Synthetic Data

One of the considered data sets represents a surface character-
ized by a closed square depth discontinuity contour with a crease
in the middle (like a roof). The surface contains both depth dis-
continuities and gradient discontinuities (creases), which meet
in two points. Inside the smooth areas the surface is expected to
be planar. The 3-D point-set is made of a number of coplanar
points, which are scattered only in the close proximity of the
discontinuity contours (see Fig. 7). This particular test surface
constitutes a rather difficult test for the detection of disconti-
nuities and provides us with a good benchmark for testing the
smoothing capacity of the interpolator within a continuous re-
gion.
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Fig. 8. Pre-interpolation of the data set, assuming that no discontinuities are
present.

Fig. 9. Surface interpolation under the assumption of continuity but with a
modest cohesion force.

Fig. 10. Surface obtained with the proposed controlled-continuity interpolator.

Fig. 8 shows the result of the pre-interpolation, which gen-
erates a single continuous surface, as expected. As we can see,
the pre-interpolator behaves exactly as a rigid thin-plate fitting
algorithm. Fig. 9 shows the surface obtained using the same
procedure, but where only the continuity constraint on the sur-
face gradient has been removed. This way, only the continuity
of the surface is preserved. By removing the rigidity constraint,
the interpolator emulates a thin plate under tension, which ap-
proximates the desired surface much better, thanks to a better
behavior at the discontinuities. On the other hand, a non-rigid
thin plate could easily lead to results of poor quality, if the input
point-set were noisy. This is a situation that typically occurs with
3-D point-sets obtained from real images.

In Fig. 10, the results of the interpolation/segmentation algo-
rithm are shown. As we can see, the obtained surface coincides

Fig. 11. The obtained depth discontinuity map�(i; j).

with the desired one. Furthermore, as shown in Fig. 11, the depth
discontinuity contours were exactly localized as well.

In order to evaluate the accuracy of the interpolation, the
obtained surfaces have been compared with the corresponding
ideal reconstructions and the depth differences have been mea-
sured throughout the domain. With all the tested data sets, the
difference was generally negligible, and, in the neighborhood of
the discontinuities, it never exceeded one part over 1000.

B. Reconstruction from Real Data

The synthetically generated 3-D point-sets have been used
only to test the first part of our technique, which is the interpola-
tion/segmentation algorithm. When dealing with a multi-camera
acquisition system and real scenes, however, the 3-D point-sets
obtained through stereo-reconstruction methods present some
typical problems:

1) The 3-D points are generally affected by a small, normally
negligible, position error, except for a little part of them,
calledoutliers, whose position is macroscopically wrong
(normally caused by a matching error), and whose dis-
tance from the ideal interpolating surface is much larger
than the standard deviation of the whole point-set. Be-
cause of this significant deviation from the overall sta-
tistical behavior, suchoutlierscan be easily individuated
and eliminated during the interpolation step, by means of
statistical analysis of the distance from the currently in-
terpolating surface.

2) There are significantly wide regions in which it is impos-
sible to retrieve reliable 3-D information. This problem
is to be attributed to a lack of stereo-correspondences be-
cause of surface self-occlusions, and is particularly severe
when the distance between cameras is comparable with
the distance from the scene. Such “blind” regions are, in
fact, positioned at the extreme boundaries of the objects,
which makes it impossible to determine the exact location
of the discontinuity curves from depth information only.
For this reason, the performance of this second part of the
technique that is the image-based accurate boundary lo-
calization becomes of utmost importance.

In order to show the performance of the proposed technique
with such data sets, two examples are presented, in which the
data sets present different quality. The first case is quite a simple
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Fig. 12. The three original images of the scene BOXES. The middle view is taken as reference viewpoint.

Fig. 13. The 3-D point cloud obtained from the three images, used as input
data set.

scene, in which the reconstruction of the 3-D points has been
helped by illuminating the scene with a structured light source.
The augmented texture on the object surfaces allows to obtain
a denser 3-D point cloud together with a much tinier quantity
of outlier points. On the other hand, the second example can be
considered a challenge for the proposed method: it represents a
typical videoconferencing scene, which has been acquired with
a three-cameras system. The surfaces in the scene are more com-
plex in this case, and the available 3-D points are obtained,
through area-matching, just by exploiting the intrinsic texture
on the object surfaces.

Fig. 12 shows the three original images of the first scene. The
middle view is taken asreference viewpoint. The area-matching
algorithm applied to these images has provided the point cloud
shown in Fig. 13, which also is used as initial surface for the
interpolation/segmentation algorithm whose results are shown
in Figs. 14 and 15. As the figure shows, the segmentation al-
gorithm was able to determine one sub-surface for each object
visible in the scene. Starting from these data, the boundary lo-
calization step has produced the results shown in Fig. 16, where
the detected boundaries has been projected onto the reference
image. All the objects have been separated and the boundaries in
foreground have been accurately localized, except for the upper
part of the pump, which was too thin for the area-matching al-
gorithm to be able to recover its shape.

Fig. 17 shows the original images of the video-conferencing
scene, acquired with a trinocular system using a set of three
CCIR-601 standard (720 576 pixel) color cameras. The
camera system was positioned approximately 2 m from the
speaker; the distance between the left and the right cameras
was approximately 80 cm; and the middle camera was placed

Fig. 14. Map of the segmented sub-surfaces, referred to the reference
viewpoint. Each sub-surface actually corresponds to a different object (the
surfaces representing the table and the background has been rejected).

about 30 cm above the other two, therefore this camera was
taken asreference viewpoint.

As we can see from Fig. 19, the interpolation/segmentation
process was able to determine a set of correct and closed discon-
tinuity contours that encircle the various scene objects, using the
3-D point cloud of Fig. 20 as the only input. Nonetheless, the ab-
sence of 3-D points in the occlusion regions does not allow the
algorithm to locate the object boundaries with sufficient accu-
racy. The discontinuity contours are, in fact, placed somewhere
inside the occlusion regions, as shown in Fig. 20. Such discon-
tinuity contours are the approximate boundaries that are passed
to the accurate boundary localization algorithm, together with
the original reference view.

The final result of the boundary localization is shown in
Fig. 21. Compared with the initial boundaries of Fig. 20, the
accuracy improvement is quite visible. In fact, if a segmented
sub-surface is smooth and its boundary is visible (typically a
scene object), the discontinuity curves will be refined up to
pixel accuracy. With reference to Fig. 21, for example, for some
scene objects such as the speaker's head, the ball and most of
the speaker's body, the distance between the initial boundary
and the actual one, is never more than 3 pixels. Furthermore,
it is worth emphasizing the importance ofrandomizationin
the optimization strategy. In fact, a mild randomization of the
merit function, combined with a repetition of the iteration step,
turned out to introduce significant improvements, particularly
where the information provided by the 3-D point-set is poor,
and in the proximity ofspurious edges. Such problems, in fact,
tend to generate local sub-maxima of the merit function (see,
for example, the upper part of the speaker's head).
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Fig. 15. The 3-D point cloud resulting from the interpolation/segmentation procedure.

Fig. 16. Scene BOXES: The object boundaries, localized by the boundary refinement procedure, superimposed to the reference image.

Fig. 17. Original images of the scene “Gwen” (left, middle, and right views). The middle view is taken asreference viewpoint.

V. CONCLUSION

In this paper, we proposed a method for accurately recon-
structing scene surfaces through a segmentation-based inter-
polator (visible-surface reconstruction), based on the analysis
of 3-D point-sets and luminance profiles of perspective scene
views.

Key features of this work are the computational efficiency,
the robustness of the procedure and the reliability of the results
when dealing with real data. Our technique, in fact, is partic-
ularly suitable for sparse 3-D data, obtained from automatic
stereo-matching methods applied to sets of views acquired by
a trinocular camera system.

Our approach consists of two main steps: a pre-interpola-
tion/segmentation phase, and a boundary refinement process.
The pre-interpolation/segmentation algorithm segments the ob-
served scene into separate surfaces that pertain different objects,
by using the depth map only. Object-boundary refinement is
then performed using luminance and/or color information, as
provided by the original images. The method we propose turned
out to outperform purely variational techniques, especially in
the accuracy at the object boundaries. This can be attributed
to the adoption of a projective depth-map (instead of an ortho-
graphic one) and to the fact that luminance/color edges have
been exploited as well.
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Fig. 18. Two views of the 3-D point-set used by the pre-interpolation/segmentation algorithm. The points were generated by a combined edge-based andarea-based
3-D reconstruction technique.

Fig. 19. Map of the segmented object surfaces in the “Gwen” scene.

Fig. 20. Lines of depth discontinuity generated by the interpolation/
segmentation algorithm.

As far as the computational efficiency is concerned, the re-
quired computing effort strongly depends on the size of the in-
terpolation domain, as well as on the number of 3-D points of the
data set. For example, the experiment of Figs. 17–21 (TV-reso-
lution images, same resolution for the interpolation domain) was
based on a data set of about 9 000 points. In this case, the pre-in-
terpolation/segmentation algorithm took approximately 10 min
to be completed on an SGI R-10000 workstation. As far as
the boundary refinement is concerned, the computational time
varied from less than one minute to some minutes, depending
on the situation. Such computation times have to be compared

Fig. 21. Final result of the boundary refinement.

to the time required for a resolution of the functionals with a
robust optimization technique, such as asimulated annealing
approach, which would require a computation time at least one
order of magnitude bigger.

In order to further improve the performance of the proposed
technique, we are currently working on an extension of our ap-
proach to implicit surfaces, which cannot be described by a
depth map. We are also working on issues of temporal con-
sistency, in order to exploit the correlation between segmen-
tations at different time instances. The final goal is to imple-
ment an automatic processing chain, which able to generate ac-
curate, topologically correct, 3-D, and temporally consistent re-
constructions of all the object of the imaged scene.
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