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In this paper we discuss two image-
based 3D modeling methods based on a
multi-resolution evolution of a
volumetric function's levelset. In the
former the role of the levelset implosion
is to fuse (“sew” and “stitch”) together
several partial reconstructions (depth
maps) into a closed model. In the latter
the levelset's implosion is steered
directly by the texture mismatch
between views. Both solutions share the
characteristic of operating in an adaptive
multi-resolution fashion, in order to
boost up computational efficiency and
robustness.

 3D modeling, volumetric
reconstruction.

A 3D manifold can be generally defined
and represented either  as an
atlas (juxtaposition of partially
overlapping local charts), or  as
the set of points that satisfy a nonlinear
constraint in the 3D space (level set of a
volumetric function). Similarly, image-
based modeling of 3D objects can be
envisioned as based on either one of the
above two representations. In the former
case, a global object model is obtained
as a complex “patchworking” of simple
local reconstructions (typically depth
maps), while in the latter the object
surface is described as a level set of an

appropriate volumetric function.

As we may expect, an atlas-based 3D
modeling method deals with topological
complexity with a “divide-and-conquer”
strategy, which simplifies the local
shape estimation process. The price to
pay for this simplification, however, is
in the complexity of the steps that are
necessary to fuse the local
reconstruction into a global closed one
(registration, fusion and hole-mending).
An implicit surface representation, on
the other hand, tends to be quite
insensitive to topological complexity, as
it may accommodate self-occluding
surfaces, concavities, surfaces of
volumes with holes (e.g. doughnuts,
objects with handles, etc.), or even
multiple objects. However, their
volumetric nature requires a more
redundant data structure.

In this paper we discuss two image-
based modeling methods that exploit the
key features of a levelset-based
approach to deal with complex
topological structures. The former
(“indirect modeling”) tries to overcome
intrinsic topological difficulties related
to an “atlas-based” approach using a
volumetric approach to surface fusion.
The latter (“direct method”) skips the
partial modeling step and uses the
images to steer the implosion of the
levelset in such a way to obtain the

pippo paperino




object model in a robust and fast way.

A closed surface γ can be expressed in
implicit form as

( ){ }0  == xx ψγ

where ( )xψ  is a volumetric function
whose absolute value in  is given the
distance  between  and the surface,
and its sign depends on whether the
point  is inside or outside the surface.
Adopting the signed distance as a
volumetric function is known to simplify
the computation of the surface's
differential properties of orders 1 and 2:

• the surface normal can be
computed as the gradient ψ ∇ and
is a unit vector;

• the surface curvature can be
computed as a divergence of the
form ψ ∇⋅∇ .

In order to model a surface in implicit
form, we can proceed [4] by defining a
temporally evolving volumetric function
whose levelset zero “sweeps” the whole
volume of interest until it takes on the
desired shape under the influence of
some properly defined “external action”.
The levelset evolution is defined by the
Hamilton-Jacobi PDE, which can be
discretized into the update equation

( ) tFtttt ∆∇−=∆+ )(,),(),( xxxx ψψψ  ,

where the velocity function ( ) is
bound to be orthogonal to the levelset
zero and can be quite arbitrarily defined
in order to steer the front propagation
toward a desired shape. Terms that may
appear into its expression are:

 – which promotes a
maximally smooth implosion of

the surface

 – which
promotes data fitting

 - which promotes topological
changes (object splitting or
generation of holes)

 – which maximizes
the similarity between the
appearence of the modeled surface
and its available views

Besides such terms, we are free to define
new velocity terms that attribute the
surface evolution some desired behavior.

A common way to build a complete 3D
object model consists of combining
several simpler surface patches through
a 3D “patchworking” process. In order
to do so, we need a preliminary
registration phase, in which all the
available surface patches are correctly
positioned and oriented with respect to a
common reference frame; and a fusion
process, which consists of merging all
surface patches together into one or
more closed surfaces. One rather
standard registration strategy is the
Iterative Closest Point [2] algorithm,
which consists of minimizing the mean
square distance between overlapping
portions of the surface, using an iterative
procedure. As for surface fusion, in this
Section we propose and test an approach
that is able to seamlessly “sew” the
surface overlaps together, and
reasonably “mend” all the holes that
remain after surface assembly (usually
corresponding to non-visible surface
portions).

This “atlas” approach to 3D modeling is
suitable for 2D1/2 modeling solutions
such as image-based depth estimation
techniques, range cameras, and laser-
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scanners. The depth maps produced by
such devices could be made of a several
non-connected surface patches, as
occlusions and self-occlusions tend to
generate depth discontinuities [1].

Such surfaces usually need a lengthy
assembly process in order to become a
complete and closed surface.

As anticipated in the previous Section,
our fusion process is based on the
temporal evolution of the zero level set a
volumetric function [3,4]. The velocity
function that steers the front evolution
accounts for two contrasting needs: that
of following the motion by curvature
and that of honoring the data (registered
surface patches).

A surface is said to follow the motion by
curvature when the velocity field that
describes the surface deformation is
normal to the surface itself and its
magnitude is proportional to the local
curvature (with sign). Indeed, if the
motion were purely by curvature, a
surface would tend to deflate completely
and disappear, while becoming
progressively smoother and smoother
(Fig. 1). The need to honor the available
range data prevents this complete
implosion from taking place.

In order to implement this implosion-
inhibition mechanism, we need to
redefine the velocity field associated to
the update equation that describes the
zero level-set propagation. This velocity
is bound to be orthogonal to the
propagating front, and its amplitude is
set to

( )( ) ( )
( ) ( )( )x
x
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where  is the levelset's local curvature,
 is the local curvature of the facing

surface;  is the distance (with sign)
between the propagating front and the
surface patch; and α is a parameter that
balances local smoothness and
proximity to the data. Indeed, this
formulation assumes that only one
surface patch is facing the propagating
front.

Notice that the above definition of
velocity holds valid only for the points
that lie on the propagation front,
therefore we need to extend its validity
in the whole volume (or at least in the
sorrounding points of the surface). The
extension of this function needs to be
done consistently with the front
propatation, meaning that the levelset
should evolve with no self-collisions.
This can be done quite easily [3] as
follows: given a generic point  not
lying on the surface γ, we can search for
the point  on γ that lies the closest to 
and let ( )= ( ).

Given a point on the propagating front,
the distance from a surface patch is
computed from the orthogonal
projection of that point onto the surface
patch itself (Fig. 2). If no point on the
surface patch faces the point on the
level-set orthogonally, then the distance
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function d is computed from the closest
point on the border of the patch (within a
pre-assigned range).

When more than one surface patches are
facing the propagation front, then the
distance function d is computed using
the distances from the point on the
propagating front and all the orthogonal
projections onto the surface patches that
face it; the surface orientation; the
closeness to the border of the patch (the
reliability tends to decrease in the
proximity of extremal boundaries); and
the mutual occlusion between surface
patches.

This approach to surface fusion exhibits
a number of desirable characteristics.
One of its most appealing features is the
fact that it is very robust against
topological complexity. In fact, a level-
set of a volumetric function is adequate
for describing multiple objects of rather
arbitrary topology. In addition, it
involves a fairly modest computational

cost. In fact, in order to obtain high
performance at low computational cost,
besides updating the volumetric function
just in a narrow region around the zero
level-set (narrow-band implementation),
we operate in a multiresolution fashion
(see Fig. 3). This can be achieved by
starting with a low-resolution voxset
(e.g. a voxset with 10 voxels per side)
and letting the front settle down. Then
we break down the voxels around the
propagating front and resume the front
propagation. The operation continues
until the final resolution is reached. A
key aspect of this process is in the fact
that the velocity field that drives the
implosion of the level set can be pre-
computed on the octree data structure
that best fits the available range data.

The resulting model is bound to be a set
of closed surfaces, therefore all the
modeling “holes” left after mosaicing
the partial reconstructions are closed in a
topologically sound fashion. In fact,
those surface portions that cannot be
reconstructed because they are not
visible, can sometimes be “patched up”
by the fusion process. This ability to
“mend” the holes can also be exploited
in order to simplify the 3D acquisition
session, as it allows us to skip the
retrieval of some depth maps.

An interesting aspect of our fusion
method is in the possibility to modify
the surface characteristics through a
processing of the volumetric function.

For example, filtering the volumetric
function results in a smoother surface
model. Finally, the method exhibits a
certain robustness against orientation
errors, as the non perfect matching of
surface borders can be taken care of by
the fusion process through a careful
definition of the distance function used
in the specification of the volumetric
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motion field.

In order to test the effectiveness of the
proposed technique, we applied it to a
variety of study cases. A particularly
interesting experiment was conducted on
an object with a particular topology (a
bottle with a handle) that could easily
create problems of ambiguities. Any
traditional surface fusion approach
would, in fact, encounter difficulties in
deciding how to complete the surface in
the missing regions. Furthermore,
besides exhibiting self-occlusion
problems, this object puts the multi-
resolution approach under a severe test.
We acquired six depth maps and
assembled them together using an ICP
algorithm (see Fig 4. The result was an
incomplete model with some accuracy
problems in the overlapping regions (at
the boundaries of the depth maps). The
front evolution is shown in Fig. 5, which
results in the (topologically correct) final
model of Fig. 6.
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In alternative to using 3D data for the
generation of the complete closed object
surface, we can use directly the available
images. An image-based 3D modeling
method that uses an implicit
representation of surfaces was recently
proposed by Faugeras and Keriven [5].
This modeling approach is based on the
temporal evolution of a volumetric
function whose zero level-set is a closed
surface that represents the surface model
as it tends to approximate the imaged
object. This surface, which initially
contains the imaged object, evolves by
following a motion that is always locally
normal to the surface, with a speed that
depends on the local surface curvature
and to a measurement of the local
“texture mismatch” between imaged and
“transferred” textures. Transferring an
imaged texture onto another view means
back-projecting it onto the model and re-
projecting it onto the other view. In
order to keep the computational
complexity at a manageable level, the
updating of the volumetric function is
only performed within a “narrow band”
[3] around the current surface. Our
solution, however, significantly
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generalizes this approach, as it operates
in an adaptive multi-resolution fashion,
which boosts up the computational
efficiency. Multi-resolution, in fact,
enables us to quickly obtain a rough
approximation of the objects in the
scene at the lowest possible voxset
resolution. Successive resolution
increments allow us to progressively
refine the model and add details. In
order to do so, we introduce “inertia” in
the level-set evolution, which tends to
favor topological changes (e.g. the
creation of doughnut-like holes in the
structure).

Finally, through a careful control of the
components that steer the level-set
evolution (hysteresis, biased
quantization, etc.), we are able to
recuperate details that were lost at lower
resolution levels (surface creases, ridges,
etc.).

One of the terms that contribute to
steering the level-set evolution is the
“texture mismatch” between imaged and
“transferred” textures [1], which is a
function of the correlation between
homologous luminance profiles [5]. The
texture mismatch is
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where σ= dwdvwv   ss × is the
infinitesimal area element of the surface

, associated to the local surface
parametrization ( , ) induced by the
image coordinate chart;  is the surface
normal; and ( ) is the luminance of

pixel  in the -th image. This
definition of σ guarantees that the
surface representation will be
independent of the variables ( ). The
surface patch  through which the
luminance transfer occurs is assumed to
be a locally planar approximation of the
propagating front. Indeed, in order to
guarantee that this approximation will
mantain a constant quality, the size of
this planar patch will change according
to the local curvature of the levelset.

The inner product (correlation) between
the pair of subimages  and  is defined
as follows:
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where 1m  e 2m  are homologous
image points (i.e. image points that
correspond to the same point of the
surface model), and
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Although the correlation could be
computed between all the viewpoints
where there is visibility, only the pair of
views with the best visibility is
considered. Visibility can be easily
checked through a ray-tracing algorithm
and measured as a function of the angle
between visual ray and surface normal.
Notice that normalizing the correlation
has a twofold purpose: to limit its range
between 0 and 2; and to guarantee that
low-energy areas (smooth texture) will
have the same range of high-energy
(rough texture) areas. Finally,
subtracting the average from a
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luminance profile tends to compensate a
non-lambertian behavior of the imaged
surfaces.

The velocity function associated to the
front propagation is here defined with
the twofold need of guaranteeing surface
smoothess and consistency between
images and final model

( ) ( ) Φ+∇⋅Φ∇+∇⋅∇= kCF ψψxx ,

(2)

The first term ( ) ψ∇⋅∇xC represents
the texture-curvature action and favors a
maximally smooth implosion toward a
shape that agrees with the available
textures. The presence of the texture
mismatch cost C, in fact, tends to slow
down areas with modest cost, and speed
up areas of high cost. Ideally, one would
be lead to think that the first term is
sufficient to correctly steer the model's
evolution, as correct surface regions
should have a zero cost, while other
regions are left free to evolve. This,
however, is not really true as the cost is
rarely equal to zero due to a non-perfect
luminance transferal and a non-
lambertian radiometric behavior. This
causes the front propagation to
“trespass” the correct surface. The
second term of eq. (2) will tend to
contrast this behavior. In fact, in the
proximity of the actual surface, the local
cost gradient Φ∇  is almost parallel
(although oppositely oriented) to the
propagation front's normal = ψ∇  As a
consequence, ψ∇⋅Φ∇ < 0 tends to
discourage the front from propagating
beyond the actual surface. Finally, the
third element of eq. (2) acts an “inertial”
term in order to favor concavities in the
final model, provided that a proper
dynamic adaptation of  is performed.

If the volumetric function that
characterizes the level-set is defined on a
static voxset of NNN ××  voxels, the
computational complexity of each front
propagation step is proportional to 

2N ,
as it is proportional to the surface of the
level-set (narrow-band computation).
Furthermore, since the velocity  is
multiplied by ψ∇  (which is equal to
the sampling step), the number of
iterations turns  out to be proportional to

, with a resulting algorithimc
complexity  that is proportional to 3.

In order to dramatically reduce this
complexity, we developed a multi-
resolution approach to level-set
evolution. The algorithm starts with a
very low resolution level (a voxset of
10-15 voxel per side). When the
propagation front converges, the
resolution increases and the front
resumes its propagation. The process is
iterated until we reach the desired
resolution. A progressive resolution
increment has the desired result of
minimizing the amount of changes that
each propagation step will introduce in
the model, with the result of achieving a
better global minimum of the cost
function. Furthermore, the number of
iterations will be dramatically reduced
(from  to log ) with respect to a
fixed-resolution approach, with an
algorithmic complexity that turns out to
be proportional to 2log .

Indeed, starting from a low-resolution
voxset, we need to prevent the algorithm
from losing details at that resolution or
to make sure that the algorithm will be
able to recover the lost details. In fact,
one has to keep in mind that the motion
by curvature tends to dominate over the
other terms, therefore some of the details
of the object may totally disappear. In
order to prevent this from happening, we
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use a method based on thresholding the
local curvature with a hyperbolic tangent
function. This guarantees a smoother
behavior than a simpler clipping
function.

In spite of this smooth thresholding
mechanism, in some cases it is not
possible to prevent some of the smaller
details from disappearing. For this
reason, we developed a technique that
enables the recovery of lost details
before the resolution is increased, which
is based on a mechanism of hysteresis in
the surface implosion. The idea is to
keep track of all the voxels on the zero
level-set whose cost Φ is below a certain
threshold. After the “implosion” of the
level-set, we let the propagation front
evolve while driven by a different cost
function that depends on the distance
between the surface and such points.
This operation makes the surface
litterally “climb up” the lost details. As
an example of applications, see Fig. 7.

We tested our approach on several
subjects acquired with a camera moving
around them. The method proved to be
remarkably robust against topological
complexity and lack of segmentation
(see Figs. 8 to 14).
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In this paper we discuss two image-
based 3D modeling methods based on a
multi-resolution evolution of a
volumetric function's levelset. The
former consists of fusing (“sewing” and
“stitching”) numerous partial
reconstructions (depth maps) into a
closed model, while the latter consists of
steering the levelset's implosion with
texture mismatch between views. Both
solutions share the characteristic of
operating in an adaptive multi-resolution
fashion, which boosts up computational
efficiency and robustness.
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