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Current physics-based synthesis techniques tend to synthesize the interaction between different functional elements of a 
sound generator by treating it as a single system. However, when dealing with the physical modeling of complex sound 
generators this choice raises questions about the resulting flexibility of the adopted synthesis strategy. One way to 
overcome this problem is to approach it by individually synthesizing and discretizing the objects that contribute to the 
generation of sounds. In this paper we address the problem of how to automatize the process of physically modeling the 
interaction between objects, and how to make it dynamical. We will show that this can be done through the automatic 
definition and implementation of a topology model that adapts to the contact and proximity conditions between the 
considered objects. We also approach the problem of how to interconnect wave digital structures with other physical 
structures that do not use scattering parameters. We propose this with reference to applications of musical acoustics. 

INTRODUCTION 
Sound synthesis through physical modeling [1][2] is 
usually done by modeling the interaction of functional 
blocks that play the role of excitators and resonators. 
This way of looking at physical model synthesis 
suggests an object-based approach to the modeling of 
sounds, which requires a strategy that allows us to 
manage all possible interactions between individually 
synthesized objects, by planning and implementing the 
interaction topology and solving all possible 
computability and stability problems beforehand. One 
major difficulty in this approach, however arises when 
we need to connect together two discrete-time models, 
each of which exhibits an instantaneous connection 
between input and output. In fact, the direct 
interconnection of the two systems would give rise to a 
delay-free loop (an implicit equation) in their 
implementation algorithm. This problem usually occurs 
when we try to connect together two individually 
discretized systems without taking into account any 
global interconnection constraint. Inserting a delay 
element in the non-computable loops (i.e. deciding an 
artificial ordering in the involved operations) or solving 
the relative implicit equation involves a certain cost or 
risk in the final digital implementation, especially when 
discontinuous nonlinearities are present in the model. In 
fact, too simple a solution will tend to modify the 
system’s behavior and, often time, to cause severe 
instability. Conversely, a more sophisticated iterative 
solution will dramatically increase the computational 
cost, as an implicit equation will have to be solved at 
each time instance. As a matter of fact, it would be 
highly desirable for a block-based synthesis strategy to 

be able to preserve the stability properties of the analog 
reference system. In fact, this would allow us to select a 
sampling frequency that is only related to the involved 
signal bandwidths, rather than to the adopted 
discretization strategy. In other words, we would like to 
keep the oversampling factor (of the temporal 
discretization) as low as possible, without giving up the 
physicality or the behavioral plausibility of the system. 
Unlike what it may seem, this problem is, in fact, quite 
critical when highly nonlinear elements are involved in 
the model implementation, which is our case not just 
because systems may be intrinsically nonlinear, but 
because contact conditions are modeled by step 
functions. 

1 A QUICK REVIEW ON WDS  
A physical structure (mechanical or fluidodynamical) 
can be described by an electrical equivalent circuit made 
of lumped or distributed elements. The equivalence can 
be established in a rather arbitrary fashion as a physical 
model is always characterized by a pair of extensive-
intensive variables (e.g. voltage-current, force-velocity, 
pressure-flow, etc.), and reciprocity principles can 
always be invoked. For example, if we wanted to model 
the hammer-string interaction in a piano we could first 
select a simplified model of the actual piano 
mechanism, and then adopt an electrical equivalent of it, 
as shown in Fig. 1. In this case the equivalence is 
established by having forces and velocities correspond 
to voltages and currents, respectively. 
Using the electrical equivalent of the sound-production 
mechanism provides us with a standard representation 
of physical models. However, this representation cannot 



A. Sarti, S. Tubaro Dynamic Modeling of Physics-Based Interactions in Musical Acoustics 

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 2 

be digitally implemented using a local approach, as a 
direct interconnection of individually discretized 
elements would give rise to problems of computability. 
This is to be attributed to the fact that, when using 
extensive-intensive (voltage- current) pairs of variables, 
a direct interconnection of the blocks will not account 
for global constraints such as Kirchhoff laws. One way 
to overcome this difficulty is to describe the system by 
means of scattering parameters. This allows us to 
exploit the concept of adaptation in order to avoid 
computability problems. A well-known “local” method 
for designing filters after linear circuits, which is based 
on this approach, is that of Wave Digital Filters 
(WDF’s) [3]. The method consists of adopting a 
different pair of “wave” variables a=v+Ri and           
b=v-Ri, for each element of the circuit, R being a free 
parameter called “reference resistance”. This 
corresponds to a linear change of reference frame, from 
a (v,i) pair to an (a,b) pair, performed with a linear 
transformation with one degree of freedom (reference 
resistance R). The global constraints (Kirchhoff laws) 
are modeled in the interconnection phase, using multi-
port series and parallel adaptors, which also account for 
all the changes in the reference frames from point to 
point. The degree of freedom in the specification of the 
reference frame can be exploited to satisfy an adaptation 
condition on one of the ports of each adaptor. An 
adapted port, in fact, will not exhibit a local 
instantaneous wave reflection, thus guaranteeing that no 
computability problems will take place. 
One key aspect of WDF’s is the fact that they preserve 
many properties of the analog filters that are used as a 
reference, such as passivity and losslessness [3]. 
Because of that, in the past few years we witnessed 
renewed interest in WDF’s as the research in musical 
acoustics started to turn toward synthesis through 
physical modeling. This interest in WDF’s is also due to 
the popularity gained in the past few years by Digital 
WaveGuides (DWG’s) [8], which are close relatives of 
WDF’s. Such structures, in fact, are suitable for 
modeling resonating structures in a rather versatile and 
simple fashion. 
The similarity between DWG’s and WDF’s is not 
incidental, as the former represent the distributed-
parameter counterpart of WDF’s. In fact, they both use 
(incident and reflected) waves and scattering junctions. 
Thanks to such similarities, WDF’s and DWG’s turn out 
to be fully compatible with each other. However, while 
DWG’s waves are defined with reference to a physical 
choice of wave parameters such as propagation velocity 
and characteristic impedance, the reference parameters 
for WDF’s waves represents a degree of freedom to be 
used to avoid computability problems. 
It is quite clear that hybrid WDF/DWG structures seem 
to offer a flexible solution to the problem of sound 
synthesis through physical modeling. One should keep 
in mind, however, that both the classical WDF theory 

and the DWG theory are inherently linear, which raises 
the problem of how to incorporate nonlinearities into a 
generic Wave Digital (WD) structure, as they are 
predominant in musical acoustics. Nonlinear elements 
can be quite easily incorporated in WDF structures by 
exploiting that one degree of freedom that WDF 
structures have in the combination of reference 
resistances. In fact, this allows us to adapt the port 
where the nonlinear element needs to be connected to. 
Since the wave variables are either voltage or current 
waves, nonlinear elements that can be incorporated in 
classical WDF structures are resistors, and their wave 
nonlinearity (a b-a curve) can be obtained from the 
Kirchhoff characteristic (a v-i curve) using the 
transformation that defines wave pairs (a,b) in terms of 
Kirchhoff pairs (v,i). Nonlinear resistors, however, are 
only a subset of the nonlinearities encountered in 
musical acoustics. Among the simplest ones are those 
nonlinearities are that have a nonlinear capacitors or a 
nonlinear inductors as their electrical equivalent. 
Modeling such nonlinearities with classical WDF 
principles is known to give rise to problems of 
computability, since closed loops without delays cannot 
be avoided in the resulting WD structure. In order to 
avoid such problems, a solution for a wave 
implementation that includes reactive nonlinearities was 
proposed in [6]. In this solution, new waves were 
defined in order to be suitable for the direct modeling of 
algebraic nonlinearities such as capacitors and 
inductors. In fact, with respect to the new waves, the 
description of the nonlinear element became equivalent 
to that of a resistor. In order to adopt such new waves, a 
special two-port element that performs the change of 
variables is defined and implemented in a computable 
fashion. The reactive nonlinear element is thus modeled 
in a new WD domain, where its description becomes 
memoryless. Roughly speaking, with respect to the new 
wave variables, the behavior of the nonlinear bipole 
becomes resistor-like, therefore the two-port junction 
that performs the change of wave variables plays the 
role of a device that transform the reactance into a 
resistor. 
A further extension of these ideas can be found in [7], 
where a more general family of digital waves is defined, 
which allow us to model a wider class of nonlinearities. 
This generalization of WDF principles include dynamic 
multiport junctions and adaptors, which synergically 
combine ideas of nonlinear circuit theory (mutators) and 
WDF theory (adaptors). This generalization provides us 
with a certain degree of freedom in the design of WD 
structures. In fact, not only can we design a dynamic 
adaptor in such a way to incorporate the whole 
dynamics of a nonlinear element into it, but we can also 
design a dynamic adaptor that will incorporate an 
arbitrarily large portion of a linear structure. It can be 
easily proven [7] that, under mild conditions on their 
parameters, such multiport adaptors are nonenergetic, 
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therefore the global stability of the reference circuit is 
preserved by the wave digital implementation. For this 
reason, such multiport junctions can be referred to as 
dynamic adaptors. 
The class of digital waves that we use for modeling a 
“port” in the WD domain is basically of the form 
 

A(z)=V(z)+R(z)I(z) ,   B(z)=V(z)-R(z)I(z) 
 
where R(z) is a “reference transfer function” (RTF). 
With this choice, the class of nonlinearities that can be 
modeled in the WD domain is, in fact, that of all 
algebraic bipoles of the form 
 

p=g(q) ,  P(z)=Hv(z)V(z) ,  Q(z)=Hi(z)I(z) , 
 
where p and q are related to v and i, respectively, 
through a finite difference equation, while 
R(z)=Hv(z)/Hi(z). 
The above choice of digital waves allows us to model a 
wide class of nonlinear dynamical elements, such as 
nonlinear reactances (e.g. nonlinear springs) or, more 
generally, linear circuits containing a lumped 
nonlinearity. The memory of the nonlinear element is, in 
fact, incorporated in the dynamic adaptor or in the 
mutator that the nonlinearity is connected to. As a 
consequence, our adaptors cannot be memoryless, as 
they are characterized by reflection filters instead of 
reflection coefficients. 
With this more general definition of the digital waves, 
we can define the adaptation conditions for any linear 
bipole by selecting the reference transfer function in 
such a way as to eliminate the instantaneous 
input/output connection in its WD implementation 
(instantaneous adaptation). An “adapted” bipole will 
thus be modeled in the WD domain as                         
B(z)=z-1K(z)A(z), where the delayed reflection filter 
K(z) can also be identically zero. 
The interconnection between WD elements is 
implemented through a network of elementary (series or 
parallel) dynamic adaptors, as shown in Fig. 2. These 
adaptors take care of the necessary transformation (with 
memory) between variables, as each wave pair is 
referred to a different RTF. This network of elementary 
adaptors constitutes a dynamic macro-adaptor that can 
be proven to be nonenergetic [7]. This is an important 
feature of such elements as it allows us to guarantee that 
the passivity properties of the individual elements of the 
reference analog circuit be preserved by their WD 
counterpart. In fact, we have already verified that 
parallel and series multiport junctions are intrinsically 
nonenergetic provided that the port RTF’s be stable. A 
computable interconnection through nonenergetic 
junction of elements having the same passivity 
properties as the reference ones will preserve the 
stability properties of the reference analog circuit. 
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Figure 1: Construction of the electrical 
equivalent of a piano model. When the hammer 
is in contact with the string, the velocities of 
hammer and string are the same at the contact 
point, therefore the contact junction is a series 
junction (current corresponds to velocity, voltage 
corresponds to force). 
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Figure 2: the main role of macro-adaptor is to 
implement the interconnection topology between 
blocks in compliance of the laws of continuity 
(a). Macro-adaptors in extended WDF structures 
are obtained by arbitrarily interconnecting 
together a number of dynamic adaptors (b). 
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2 IMPLEMENTING MACRO-ADAPTORS 
An N-port macro-adaptor is a non-energetic N-port with 
a twofold role: 
• to implement the laws of continuity between 

interacting subsystems; 
• to model changes in the wave RTFs. 
In general, a non-energetic N-port adaptor can always 
be implemented as an interconnection of 3-port 
adaptors. In turn, any 3-port adaptor that implements the 
generic transformation between waves can be 
implemented as an interconnection between elementary 
3-port wave mutators and standard WDF adaptors. In 
fact, a 3-port dynamic adaptor is characterized by the 
fact that it may only involve an order-1 integration or 
differention per port [6]. Since a generic wave is a linear 
combination of integrals or derivatives of the basic 
order-0 extensive/intensive wave pair, it is always 
possible to build higher-order differentiations or 
integrations by iterating order-1 mutators.  
Another interesting property is that a 3-port adaptor can 
always be implemented as a standard WDF adaptor 
whose ports may be connected to 2-port mutators [6].  
Such properties help us reduce the variety of basic 
blocks that may be involved in the construction of a 
generic WD structure. In fact, a generic macroblock can 
always be implemented using standard 3-port WDF 
adaptors and simple 2-port WD mutators. 
Of course, as we will see, this increased flexibility does 
not come for free, as it makes a Tableau representation 
of the whole system over-redundant. This would 
directly translate into a reduced computational 
efficiency if the final implementation is, in fact, based 
on a Tableau representation [5]. 
 
In general, we can infer three simple rules for 
connecting together 3-port adaptors without violating 
computability rules: 

1. two MA ports may be directly connected with each 
other if their RTFs are the same; 

2. a non-adapted port must be connected to an 
adapted one; 

3. the NLE must be connected to an adapted port. 
Given such rules, and considering that an adaptor can 
only have one adapted port, it should be quite clear that 
a macro-adaptor can only accommodate up to one 
nonlinear element. 

2.1 Wave Tableau implementation 
An N-port macro-adaptor can be automatically built 
through a tableau-based approach, specifically designed 
for WD structures [4][5]. Its description, in fact, can be 
given in the form S(z)C(z)=0T, where S(z) is a 2NxN 
Tableau matrix, 0 is a vector with N zero elements and 
C(z)=[A1,...,AN,B1,...,BN]T is the vector of digital 
waves. As already said above, a generic macro-adaptor 

can be thought of as a network of elementary (parallel 
or series) three-port adaptors with memory that belong 
to a predefined collection. This allows us to construct 
S(z) by “pasting” a number of pre-defined 6x3 matrices 
into a larger sparse matrix. This Tableau equation is, in 
fact, in implicit form, therefore we need re-write it in 
explicit form by expressing the reflected waves as a 
function of the incident waves. Going from a matrix 
equation in implicit form to a state-update equation is 
not too demanding a task, as it basically requires a 
matrix inversion. In alternative, it can be solved 
iteratively using some efficient numerical scheme for 
sparse matrix equations. As our macro-adaptors are 
generally not memoryless, they need to be properly 
initialized, which is a critical operation for WD models 
of mechanical systems as it usually affects the mutual 
position and contact conditions of mechanical elements. 
The determination of the state update equation can be 
seen as a direct form of the synthesis problem, as output 
signals are computed from input signals and memory 
content. Initialization, on the other hand, can be seen as 
an inverse problem, as memory content must be derived 
from output and input signals. 
As the nonlinearity is “lumped“, this operation can be 
performed through a matrix inversion and the solution 
of a nonlinear implicit equation. 
 
This wave tableau implementation exhibits a number of 
interesting properties: 
• The construction of the Wave Tableau matrix can be 

done by directly picking the Wave Tableau matrices 
of standard 3-port adaptors and “pasting” them into 
a larger matrix 

• The Wave Tableau matrix provides an immediate 
feedback on the computability of the topological 
connections, and their correctness 

• Once turned into a state update equation, the visual 
feedback is lost 

• The computational efficiency of this approach 
decreases as the basic building blocks become 
smaller. In fact, a great deal of computational power 
may be saved after collapsing together 3-port 
adaptors and reducing the size of the Wave Tableau 
matrices. 

This last property tells us that flexibility costs in terms 
of computational efficiency. This problem can be 
mitigated using specialized techniques for sparse 
matrices. 

2.2 Binary Tree implementation 
In order to avoid having to trade flexibility for 
computational efficiency, we can give up the Wave 
Tableau representation, and follow an iterated approach 
based on direct structural inspection. 
For the sake of simplicity, but with no loss of generality 
(see the beginning of this Section), we can make the 
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following assumptions: 
• the elementary adaptors are all standard WDF      

3-port adaptors (we may assume that the mutators 
that their ports are connected to are incorporated 
into the bipoles); 

• the macro-adaptor’s ports are connected to bipoles 
(we will see later that we can always use sort of 
substitution principle to turn the system in this 
form). 

This last assumption guarantees the overall topology to 
be tree-like with respect to the NL element. It is not 
difficult to convince ourselves that a non-adapted port 
can only be connected to either the adapted port of 
another adaptor, or to a bipole that has no instantaneous 
reflection (see Fig. 3).  
The connection tree is a binary tree (see Fig. 4) that 
formally describes the interconnection topology of the 
adaptors under the following rules: 
• the root of the binary tree corresponds to the 

adaptor that the nonlinear (NL) element connects 
to; 

• the nodes of the tree are 3-port standard WDF 
adaptors and the branching topology matches the 
actual adaptor’s interconnection topology; 

• the leaves correspond to the bipoles. 
Once the connection tree is built, the computational 
procedure can be constructed in  two steps: a forward 
scanning of the tree (from the leaves to the root), 
followed by a backward scanning (from the root to the 
leaves). In fact, the computation begins from the 
memory cells, which are in the leaves of the tree and 
contain all the initial conditions of the system. The 
recursive computational procedure begins from the 
leaves and keeps nesting function calls until we reach 
the root (NL element). At that point, the procedural 
stacks reach their maximum size. The backward 
scanning, on the other hand, reduces the size of the 
procedural stacks, which will be empty when the leaves 
are reached again.  
 

 
Figure 3: A typical WD structure. The adapted 
port of an adaptor (thick side of the box) is either 
connected to a non-adapted port of another 
adaptor or to a nonlinear element. If there are no 
nonlinearities, we have an adapted port to spare, 
or one degree of freedom in the choice of the 
RTFs. 

 
An important issue to settle is the initialization of the 
algorithm. In this case, in fact, we need to determine the 
values to put in the memory cells, starting from initial 

condition specified at all the macroblock’s ports, 
including the port that the NL element is connected to. 
Determining the initial condition means solving a set of 
equations, one of which is nonlinear. Indeed, the 
solution of this set of equation is rather simple, as it 
requires a matrix inversion and a search for a fixed 
point. The problem is to specify the set of equations 
starting from the connection tree. This, in fact, can only 
be done iteratively through a repeated back-
ward/forward scanning of the tree.  
Although this may seem like a serious burden, this 
initialization procedure is practically required only 
when the initial conditions involve positional 
parameters. In all other cases, it may be greatly 
simplified with no noticeable consequences. 
 

 
 

Figure 4: A typical connection tree (nodes are 
always 3-port adaptors). The root is the adaptor 
that the NL element is connected to. Each node 
branches out to the adaptors that is connected to. 
Notice that the adapted ports are always facing 
upward. 

 
One key feature of this approach is that its 
computational cost and memory requirements increase 
linearly with the number of adaptors. Of course, this 
improved efficiency costs in terms of evocative power 
of the structure and some difficulties related to its 
initialization. 

2.3 Handling time-varying structures 
Changing any model parameters in a WD structure 
usually affects all the other parameters as they are 
bound to satisfy global adaptation conditions. Temporal 
variations of the nonlinearities are easily implemented 
by employing special WD two-port elements that are 
able to perform a variety of transformations on the 
nonlinear characteristics (non-homogeneous scaling, 
rotation, etc.). Temporal variations of RTFs, on the 
other hand, are implemented through a global re-
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computation of all model parameters on the behalf of a 
process that works in parallel with the simulator [4][5]. 
This operation requires the re-mapping of the 
nonlinearities as well. The parameter update, however, 
is not computationally intensive as it is performed at a 
rate that is normally only a fraction of the signal rate 
(e.g. 100 times slower). It is important to remember, 
however, that abrupt parameter changes must be 
carefully dealt with in order not to affect the global 
energy in an uncontrollable fashion. 

2.4 Automatizing the synthesis 
Some methods are already available for synthesizing 
macro-blocks, therefore the automatic synthesis 
procedure is based on the assumption that such elements 
are already available in the form of a collection of pre-
synthesized structures. In its current state, the system 
that we developed is able to automatically compile the 
source code that implements a WD structure based on 
the Wave Tableau approach (see Section 2.1), applied to 
standard WDF adaptors and new dynamic adaptors 
chosen from a reasonably wide collection [4][5]. The 
information that the system starts from is a semantic 
description of the network of interactions between all 
such elements. Currently, the family of blocks includes 
WD mutators [6] and other types of adaptors developed 
for modeling typical nonlinear elements of the classical 
nonlinear circuit theory (both resistive and reactive). 
The available linear macro-blocks belong to the family 
of the DWG’s [8], while the nonlinear maps are 
currently point-wise described in the Kirchhoff domain 
and then automatically converted in a piecewise linear 
WD map. Typical lumped WDF blocks are masses, 
springs, dampers, nonlinearities, ideal generators and 
filters (especially allpass filters, for the fine tuning of 
strings or acoustic tubes, or to account for the dispersive 
propagation in some enharmonic elastic structures such 
as bells, low piano strings, etc.). Typical distributed-
parameter blocks are simple DWG implementation of 
strings and acoustic tubes, generalized DWG that 
account for rigidity and losses in a distributed fashion, 
reverberators based on Toeplitz matrices, green 
functions, DWG models of 2D and 3D structures such 
as membranes and bells. The parameters can be 
modified “on the fly“ in order to make the structure 
time-varying. A parallel process deals with the problem 
of re-computation of all WD parameters, depending on 
their changes expressed in the Kirchhoff domain. 

3 OBJECT INTERACTION 
Let us consider an object that could potentially interact 
with a number of other objects in a sound environment. 
For example, we could think of a mallet that could 
potentially collide with a number of drum-like 
resonators. Indeed, this situation cannot be implemented 
with a fixed interaction topology such as the one of 

Figure 5. In order to be able to implement this dynamic 
topology, we need to be able to connect or disconnect 
objects on the fly. This can be achieved by exploiting 
the fact that a connection between systems becomes 
irrelevant when their contact condition is not satisfied. 
As a simple example, let us consider the case of 
hammer-string interaction in the piano mechanism. The 
WD structure that corresponds to the equivalent circuit 
of Fig. 1 is shown in Fig. 5, where the macro-block M 
corresponds to the contact point between hammer and 
string. The nonlinear element (NLE) connected to the 
R-C mutator [5][6][7] (the double-boxed two-port 
junction of Fig. 1, whose aim is to “transform” the 
nonlinear capacitor into a nonlinear resistor) 
corresponds to the nonlinear spring that models the felt 
deformation and, at the same time, the contact 
condition. It can be easily shown that, when the contact 
condition is not satisfied, the series adaptor that 
connects the hammer to the two portions of the string 
becomes “transparent” for the two portions of 
waveguides that model the string. This fact suggests us 
that removing the whole connection by replacing that 
series adaptor with a direct connection between the two 
waveguide portions would not modify the behavior of 
the resonator. 
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Figure 5: WD structure for the modeling of piano 
sounds with fixed interaction topology. The 
contact condition is incorporated in the nonlinear 
element that is connected to the macro-adaptor 
M. When the contact condition is not satis- fied, 
the macro-adaptorM becomes irrelevant and the 
string keeps evolving as if the macro-adaptor 
was not there. 

 
The above reasoning can be extended to more complex 
resonators and has a significant impact onto our 
implementation scheme. In fact, there are two important 
direct consequences that are worth mentioning: 

• systems that are not “close” to contact can be 
disconnected and may evolve independently; 

• if the topology of the DWG network that 
implements the resonator is fixed, then a measure 
of “proximity” can be used for deciding whether 
and where to insert a transparent junction on the 
delay lines, in order to “preset” the contact point. 
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Notice that disconnecting two models has an impact on 
the complexity of a Wave Tableau implementation. In 
general, while for a bipole the condition of adaptation 
corresponds to the possibility of “extracting” a delay 
element from it, for a multi-port element this is no 
longer true. In fact, the port adaptation only implies that 
no local instantaneous reflections can occur, while 
nothing can be said about instantaneous reflections 
through outer paths. If it is true that a delay can actually 
be extracted from a port, then we talk about 
instantaneous decoupling, which is a stronger condition 
than adaptation (see Fig. 6). The concept of 
instantaneous decoupling is important as it allows us to 
split the synthesis and the initialization of large WD 
structures into that of smaller substructures [4][5]. If N 
portions of a WD structure that are connected together 
through a decoupling N-port block ( 2≥N ), which is a 
multi-port element that exhibits at least N-1 decoupling 
ports, then such portions are said to be instantaneously 
decoupled, as they do not instantaneously interact with 
each other. One other reason why this decoupling 
condition is important is that it allows us to model WD 
structures that contain more than one nonlinearity. We 
know, in fact, that only one of all the ports of a macro-
adaptor (oval blocks of Fig. 6 and 7) can be adapted, 
therefore only one nonlinearity can be connected to it. 
Through a decoupling N-port block, however, we can 
connect together N macro-adaptors, each of which is 
allowed one nonlinear element. 
Decoupling multi-port blocks are quite frequently 
encountered in musical acoustics, especially when using 
DWG to implement reverberating structures. An 
example of block-based sound synthesis structure where 
the decoupling condition allows us to model a large 
number of nonlinear elements is that of the acoustic 
piano. In this case, in fact, a number of wave digital 
hammers are connected, each through a DWG model of 
a string, to the same (decoupling) resonating structure 
(soundboard). 
In conclusion, the global structure of a WD 
implementation of a physical model can be seen as a 
number of decoupled interconnection blocks such as 
those of Figs. 6 and 7, whose aim is to connect together 
either linear macro-blocks or instantaneous nonlinear 
blocks. The presence of decoupling ports, allows us to 
approach the synthesis/initialization problem in a block-
wise fashion. For example, if an interconnection block 
is connected to a set of adapted macroblocks of the form 
B(z)=z-1K(z)A(z), then we can separate the 
synthesis/initialization of the macro-blocks of the form 
K(z) from that of the interconnection block [4][5]. A 
similar reasoning holds for two decoupled portions of 
the global WD structure. The contact conditions allow 
us to unplug and isolate subsystems, while decoupling 
blocks allow us to approach the synthesis and the 
initialization of WD structures in a block-wise fashion. 
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Figure 6. Instantaneously decoupled macro-
adaptors. For the purpose of synthesizing the 
structure, the decopupling multiport element can 
be replaced be a pair of adapted bipoles with the 
same RTF. 
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Figure 7. Structure of a nonlinear block-based 
WD system with fixed interaction topology. The 
gray boxes at the ports of decoupling multi-port 
block denote the presence of a delay element, 
which guarantees that neither instantaneous local 
reflections nor instantaneous reflections through 
outer loops will occur. The contact conditions 
allow us to unplug and isolate subsystems, while 
decoupling blocks allow us to approach the 
synthesis and the initialization of WD structures 
in a block-wise fashion. 
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4 BEYOND SCATTERING PARAMETERS 
The WD world represents an exact and analytic solution 
to the problem of making interconnections between 
individually constructed blocks, without violating the 
basic laws of physics, such as the laws of continuity and 
the preservation of pseudo-energy [7]. This approach, 
however, involves scattering parameters, therefore it 
differs significantly from many synthesis solutions that 
are available in the literature.  
An example of successful physics-based structural 
synthesis technique is the transfer function method by 
Rabenstein and Trautmann [9][10][11]. This method, 
basically, transforms a PDE into an algebraic 
relationship through a mixed time-space functional 
transformation. This is achieved using a Fourier time-
transform and a Sturm-Liouville space-transform, which 
is basically a functional transformation that naturally 
“complies with boundary conditions”. This approach 
leads to algorithmic schemes that exhibit a remarkably 
realistic behavior at a limited computational cost. 
 

 
(a) 

 

 
(b) 

 
Figure 8: Connecting a WD structure with a 
Kirchhoff structure gives rise to computability 
problems at the ports of the domain 
transformation block (a). Transformation matrix 
for the WD-to-K mapping (b). 

 
In order to be able to include this class of elements and, 
more generally, all those that are described in the 
Kirchhoff (K) domain, we evaluated schemes that 
involve Transfer Function method in the Kirchhoff 
domain, which proved effective for the simulation of 
membranes and distributed structures, in conjunction 
with lumped models.  
One basic problem with trying to connect WD models 
with K-models is the fact that the transformation that 
maps scattering waves into K variables (extensive-
intensive pairs) is bound to give rise to computability 

problems (see Figure 8). In order to overcome this 
difficulty we can proceed as follows: 
 
1. give up the physicality of the interaction by forcing 

an ordering in the operations through the insertion 
of a delay element in the non-computable loops; 

2. compute the solution of the implicit equation 
corresponding to the non-computable loop at every 
time step; 

3. transform the implicit equation corresponding to 
the non-computable loop in an explicit form using 
the K-method [12]; 

4. treat the transfer function as an RTF, derive the 
corresponding Scattering Transfer Function (STF), 
and apply the Functional Transformation approach 
[9][10][11] to it. 

 
While the first solution is the simplest one, it also 
violates the assumption that interactions are physical, 
i.e. they satisfy the global laws of continuity (Kirchhoff 
laws). Consequently, this choice comes with a certain 
amount of risks in terms of loss of stability. The second 
solution, on the other hand, is very demanding from the 
computational standpoint. The third solution (K-
method) consists of rewriting the equations of the 
system in such a way to locate the “faulty loops” that 
involve a nonlinearity, and eliminate the instantaneous 
dependency through an appropriate geometric 
transformation. This method overcomes the limitations 
of the first one but it is usually difficult to automatize. 
Finally, the last solution is quite interesting, as it remaps 
the Functional Transformation method into the WD 
domain, retaining many of its nice properties, but it does 
not allow us to use “pre-packaged” blocks that were 
originally developed in the K domain. 

5 EXAMPLES OF APPLICATION 
Our approach to object-based sound synthesis has been 
tested on a variety of applications of musical acoustics. 
Starting from an appropriate semantic descriptions of 
the building blocks and their topology of 
interconnection, we used our authoring tool to 
automatically generate C++ source code for the 
implementation of a number of typical acoustic musical 
instruments. The timbral classes implemented with this 
method are hammered strings (piano, electric piano), 
and other very simple models of plucked strings 
(guitar), bowed strings (violin), reed instruments 
(clarinet, oboe), jet-flow acoustic tubes (flute, organ 
pipes), percussions, etc. 
One of these examples, namely the grand piano, has 
been developed with the goal of testing our solution on 
the problem of modeling non-trivial mechanical 
acoustic instruments. The basic mechanism of hammer-
string interaction is shown in Fig. 1, which corresponds 
to the block-based WD model of Fig. 5. The produced 
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sounds are quite realistic and “physical”. 
The global implementation of the piano model has been 
entirely built using a rather extended network of WDF 
and DWG elements. The DWG model of each string 
includes stiffness and losses. The bridge is modeled as a 
bandpass filter (theWD-equivalent of an RLC filter) and 
is connected to a soundboard model based on a DWG 
network. The string’s fine tuning is performed using 
high-order all-pass filters. A limited number of 
hammers are used dynamically to hit a full-scale 
resonator such as the one described above, with a 
dynamical management of the contact conditions. 
Indeed, the computational complexity of the resulting 
algorithm in this case coincides with the complexity of 
the resonating structure, whose role in the 
characterization of timbres is predominant. However, 
some simpler implementations already run real-time on 
low-cost PC platforms. For example, the WD model of 
an electro-mechanical piano (e.g. Wurlitzer or Fender-
Rhodes) can easily run with full polyphony (73 keys) on 
a Pentium III (350MHz) platform.  
We also successfully conducted some preliminary 
experiments of automatic synthesis of structures, using 
the Connection Tree approach. From the computational 
standpoint, the method proved to be much more 
efficient than the solutions provided by the Wave 
Tableau, at the cost of a greater complexity in the 
initialization process (we tested the case of hammer-
string interaction, where the initial conditions concern 
the hammer-string distance). 
As far as the testing of dynamic structures with            
K-blocks is concerned, we implemented an audio-visual 
model of interacting multiple objects based on the Wave 
Tableau approach. The system consists of a ball 
bouncing in a cubic room (see Figure 9), whose walls 
represent various resonators, such as rigid strings or 
membranes (see Fig. 10), implemented either in the WD 
domain or in the K domain. The point of contact 
between ball and walls corresponds to either the actual 
contact point (for 2D resonating structures) or to a 
specific choice of some physical parameters (in 1D 
resonating structures), such as mass, rigidity, loss, etc. 
As the model runs, a schematic visualization of the 
fusion of local models is shown in the bottom.  

6 CONCLUSIONS 
The proposed approach has proven effective for the 
automatic and modular synthesis of a wide class of 
physical structures encountered in musical acoustics. In 
fact, both the Wave Tableau approach and the 
Connection Tree approach we implemented make the 
construction and the implementation of the interaction 
topology systematic. In its current state, the 
implementation of the described synthesis system is 
able to assemble the synthesis structure from a syntactic 
description of its objects and their interaction topology, 

opening the way to a first CAD approach to the 
construction of an interactive sound environment. 

 

  
 
Figure 9. Modeling the dynamic interaction 
between multiple objects. A ball bounces in a 
cubic room whose walls represent various 
resonators (rigid strings or membranes). The 
point of contact between ball and walls 
corresponds to either the actual contact point (for 
2D resonating structures) or to a specific choice 
of some physical parameters (in 1D resonating 
structures), such as mass, rigidity, loss, etc. 

 

 
Figure 10: Example of wave propagation on a 2D 
membrane simulated using the Transfer Function 
approach. 

 
 
 
REFERENCES 
[1] G. Borin, G. De Poli, A. Sarti: “Sound Synthesis 

by Dynamic Systems Interaction”, in Readings in 
Computer- Generated Music, Denis Baggi ed. , 
IEEE Comp. Soc. Press, p. 139-160, 1992. 

[2] G. Borin, G. De Poli, A. Sarti: “Musical Signal 
Synthesis”, in Musical signal processing, C. 
Roads, S. Pope, A. Piccialli, G. De Poli ed., 
Swets and Zeitlinger, Lisse NL, 1996. 

[3] A. Fettweis: “Wave digital filters: theory and 
practice”. Proc. of the IEEE, Vol. 74, No. 2, pp. 
327–270, Feb. 1986. 



A. Sarti, S. Tubaro Dynamic Modeling of Physics-Based Interactions in Musical Acoustics 

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 10 

[4] F. Pedersini, A. Sarti, S. Tubaro: “Block-wise 
Physical Model Synthesis for Musical 
Acoustics”. IEE Electronic Letters, Vol. 35, No. 
17, Aug. 1999, p. 1418-19. 

[5] F. Pedersini, A. Sarti, S. Tubaro, R. Zattoni: 
“Toward the automatic synthesis of nonlinear 
wave digital models for musical acoustics”. IX 
European Sig. Proc. Conf., September 8-11, 
1998, Rhodes, Greece. Vol. IV, pp. 2361-2364. 

[6] A. Sarti, G. De Poli: “Generalized Adaptors with 
Memory for Nonlinear Wave Digital Structures”. 
VIII European Sig. Proc. Conf., 1996, Trieste, 
Italy, Vol. 3, pp. 1773-6. 

[7] A. Sarti, G. De Poli: “Toward Nonlinear Wave 
Digital Filters”. IEEE Tr. Sig. Proc.. Vol. 47, No. 
6, June 1999. 

[8] J.O. Smith, “Principles of digital waveguide 
models of musical instruments”, in Applications 
of digital signal processing to audio and 
acoustics, M. Kahrs and K. Brandenburg ed., 
Kluwer, 1998, pp. 417-466. 

[9] L. Trautmann, R. Rabenstein, “Multidimensional 
Transfer Function Models”. To appear on IEEE 
Transactions on Circuits and Systems I, 2002. 

[10] L. Trautmann, R. Rabenstein, “Stable Systems 
For Nonlinear Discrete Sound Synthesis with the 
Functional Transformation Method”. Accepted 
for Proc. Int. Conf. on Acoustics, Speech & 
Signal Processing (ICASSP), IEEE, Orlando, 
Florida, May, 2002. 

[11] L. Trautmann, R. Rabenstein, “Digital Sound 
Synthesis by Physical Modelling”. Proc. Int. 
Symposium on Image and Signal Processing and 
Analysis (ISPA 01), Pula, Croatia, June, 2001. 

[12] G. Borin, G. De Poli, D. Rocchesso, 
“Elimination of Delay-free Loops in Discrete-
Time Models of Nonl inear Acoustic Systems ”, 
IEEE Tr. on Speech and Audio Processing, Vol. 
8, pp. 597 -605, Sept. 2000.  


