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Image-Based Multiresolution Implicit Object Modeling
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We discuss two image-based 3D modeling methods based on a multiresolution evolution of a volumetric function’s level set.
In the former method, the role of the level set implosion is to fuse (“sew” and “stitch”) together several partial reconstructions
(depth maps) into a closed model. In the later, the level set’s implosion is steered directly by the texture mismatch between views.
Both solutions share the characteristic of operating in an adaptive multiresolution fashion, in order to boost up computational
efficiency and robustness.
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1. INTRODUCTION

Building a complete 3D model of objects from a sequence
of images is a task of great difficulty, as it involves many
complex steps such as camera motion tracking, image-based
depth estimation, and global surface modeling. In order to
solve the first problem, a variety of solutions are available ei-
ther in the literature or commercially. Aside from the many
motion feedback systems available in commerce, the litera-
ture is rich with image-based systems that enable a fairly reli-
able estimation of the camera motion through the analysis of
the acquired video sequences. Such solutions usually exploit
projective constraints and invariants to perform image cali-
bration [1] and vary in how such constraints are used, how
the outliers are managed, and whether additional informa-
tion (feature coplanarity, collinearity, etc.) can be included.
Alternative camera motion estimation techniques are based
on Extended Kalman Filtering and are also available com-
mercially and in the literature [2, 3] in more or less sophis-
ticated versions. In this paper, we will not be concerned with
the problem of camera motion estimation, instead, we will
focus on the problem of global surface modeling based on
images.

With “global surface” we mean the external (visible)
frontier of a volume, which is bound to be a closed surface.
Modeling closed surfaces, indeed, poses a number of repre-
sentation problems which are typical of differential topol-
ogy. Such surfaces, in fact, can be thought of as differentiable

manifolds, and their modeling solutions are closely related to
their classical representations.

A 3D manifold can be generally defined and represented
either explicitly, through a juxtaposition of overlapping 3D
maps; or implicitly, as the set of points that satisfy a non-
linear constraint in the 3D space (a level set of a volumetric
function). Using the former or the latter, surface represen-
tation has a substantial impact on how the image-based 3D
modeling problem is posed. An explicit global object model
is, in fact, obtained as a “patchworking” of local reconstruc-
tions (range images or depth maps), while an implicit sur-
face is described as a level set of an appropriate volumetric
function. An explicit modeling method deals with topologi-
cal complexity with a “divide-and-conquer” strategy, which
simplifies the local shape estimation process. The price to
pay for this simplification, however, is in the complexity of
the steps that are necessary for fusing the local reconstruc-
tion into a global closed one (registration, fusion and hole-
mending). An implicit approach to surface modeling, on the
other hand, tends to be more robust against topological com-
plexity, as it may easily accommodate self-occluding surfaces,
concavities, arbitrary topological varieties (e.g., doughnut-
shaped surfaces, objects with handles, etc.), or even multiple
objects. On the other hand, an implicit method is bound to
work with volumetric data, with more storage requirements
and a heavier computational load.

Level set methods were first proposed in [4] by Sethian,
as a powerful approach to the modeling of evolving inter-
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faces in a variety of fields, ranging from computational ge-
ometry to materials science [5]. The approach has been stud-
ied in depth over the past two decades and a variety of so-
lutions have been proposed to overcome some of the basic
limitations of the method and to make it as computation-
ally efficient as possible. More recently, the level set approach
proved effective for several image processing and computer
vision applications [6, 7, 8, 9, 10, 11, 12, 13], including
image-based 3D surface modeling [14]. In particular, some
effective strategies have been proposed to overcome the in-
evitable computational costs associated to the intrinsic volu-
metric representation in image-based shape modeling. Such
solutions refer to two different approaches to image-based
surface modeling: the first (indirect method) consists of
constructing the global surface as 3D mosaic of simpler sur-
face patches [15], while the second (direct method) skips the
partial modeling step and uses the available images to steer
the evolution of the level set toward the final surface shape
[16]. Both methods use a narrow-band approach in conjunc-
tion with a multiresolution technique (adaptive cell size) to
boost the performance of surface fusion and image-based 3D
modeling techniques. In this paper, we will explore these two
methods in depth, discussing the fundamental differences in
their implementation strategies and illustrating some imple-
mentational aspects of the solutions.

In Section 2, we review some well established basic ideas
behind implicit object modeling in the context of image-
based surface modeling applications. The purpose of this sec-
tion is to provide the readers who are not familiar with im-
plicit methods with some helpful ideas to better understand
the rest of this contribution . In Section 2, we also antici-
pate some technical solutions that we adopted in the spe-
cific applications described in the following two sections. In
Section 3, we propose a novel application of the ideas set
forth in Section 2 to the surface fusion problem. In partic-
ular, we discuss how to specialize the front evolution for
this particular application and how to obtain optimal per-
formance from this approach, both in terms of quality of
the results and in needed computational power. Section 4 ad-
dresses in depth a second image-based modeling application
where front evolution is directly driven by images. Although
the approach used for this second application is not new
[14], the solutions adopted to boost the performance and cut
the computational cost of this implementation are new. This
method, in fact, allows to operate in a multiresolution fash-
ion. In particular, a careful management of front evolution
is proposed, which is able to back-track and recover details
lost at lower levels of grid density. Applications to real data
are presented in each section, which prove the effectiveness
of the approach. Final comments and proposals of improve-
ments conclude this contribution in Section 5.

2. IMPLICIT SURFACE MODELING

As already discussed in Section 1, although there are a variety
of reasons why an implicit surface representation would be
preferable over an explicit one, the most compelling reasons
remain the ability to deal with complex surface topologies

and the optimal and simultaneous management of the avail-
able image information. In this section we provide the reader
with some fundamentals on level set evolution in the context
of image-based modelling applications.

2.1. Interface propagation

Our approach to surface modelling is not through piecewise
construction, but through interface propagation, that is, the
temporal evolution of a closed oriented surface or, more gen-
erally, of some oriented surface that separates two regions
from each other. This surface will “sweep” the volume of in-
terest until it takes on the desired shape under the influence
of some properly defined action.

Since we are not interested in any interface motion in
its own tangential directions, we can assume this surface to
move in a direction normal to itself (either outward or in-
ward) with a known velocity function F. It is in this speed
function that we will embed the external action terms, plus
the necessary smoothing terms that guarantee a successful
convergence of the front to the desired solution. The veloc-
ity function, in general, depends on a variety of information
sources, which are more or less related to the shape of the
front [5], as follows.

Local (intrinsic) properties of the front: local geometric in-
formation on the front, such as curvature and normal direc-
tion.

Global properties of the front: global information that de-
pends on the available data, and that usually depends on the
shape and the position of the front (through integration over
the front).

Independent properties: external action terms that are in-
dependent of the shape of the front.

A proper choice for the velocity function is crucial for
the success of the modeling technique. Later in this section
we will illustrate some examples of properties that we used
for our applications to 3D surface modeling.

There are two distinct formulations of the differential
equations that describe interface motion. The first is referred
to as boundary value approach, and the second is the initial
value approach. Such formulations lead to the fast marching
method and the level set method, respectively.

2.1.1 Boundary value approach

If we can assume that the velocity term F is always positive,
the characterization of the position of the front Γ(t) can be
entirely given in terms of the arrival time T(x) of the front as
it crosses each point x = [x1 x2 x3]T ,

Γ(t) = {x | T(x) = t
}
. (1)

The gradient ∇T of this function is bound to be orthogonal
to its level sets, therefore it is parallel to the velocity function
F. If we also consider the usual idea that velocity is the ratio
between displacement and time, then the arrival function T
will satisfy the equation

|∇T|F = 1, (2)
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where we have T = 0 on the initial location Γ(0) of the inter-
face. We thus have a formulation of the problem in terms of
a PDE (partial differential equations) subject to a boundary
condition [5].

2.1.2 Initial value approach

If we want to remove the constraint of monotonic propa-
gation and allow the front to move forward and backward,
then the crossing time T can no longer be a single-valued
function. We thus need to adopt an alternative representa-
tion for the front. An appropriate choice is to represent the
initial front as the zero level set of a volumetric function φ.
We can then link the evolution of this function to the prop-
agation of the front through a time-dependent initial value
problem [8, 9, 10, 17]. The front, in fact, will be given by

Γ(t) = {x | φ(x, t) = 0
}
. (3)

The equation of the motion can be easily derived by im-
posing that a particle on the front with trajectory x(t) lies on
the zero level set of the volumetric function

φ
(

x(t), t
) = 0, (4)

and that the normal component of its velocity matches F

∂x(t)
∂t

· n = F, (5)

where n = ∇φ/|∇φ|.
Differentiating the left-hand side of (4)

∂φ

∂t
+
∂x(t)
∂t

· ∇φ = ∂φ

∂t
+
∂x(t)
∂t

· n|∇φ|, (6)

and using (5), the initial value problem [17] can be rewritten
as

∂φ

∂t
+ F|∇φ| = 0, (7)

given φ(x, 0). Equation (7) can be discretized into the update
equation

φ(x, t + ∆t) = φ(x, t)− ∣∣∇φ(x, t)
∣∣F(x)∆t. (8)

It is important to emphasize the fact that now there is no
a priori condition on F, which can be arbitrary. In partic-
ular, its sign is free to change, therefore the front can move
forward and backward as it evolves. This particular PDE be-
comes a special case of the Hamilton-Jacobi equation if the
speed depends only on position x and first derivatives of φ.

In applications of computer vision and 3D modeling, the
structure of the embedding volumetric function φ is not nat-
urally suggested by the nature of the problem, therefore we
can invoke the need to keep computations as simple as possi-
ble and decide on a volumetric function whose absolute value
in x is given, the distance d between x and the evolving front
and its sign depends on whether the point x is inside or out-
side the surface. Adopting the signed distance as a volumetric

function, in fact, simplifies the computation of the surface’s
differential properties [5] of orders 1 and 2:

(i) the surface normal can be computed as the gradient
∇φ and is a unit vector;

(ii) the surface curvature can be computed as a divergence
of the form∇ ·∇φ.

2.1.3 A comparison
It is important to notice that (2) requires F > 0 all the time,
which means that the front is expected to move always in the
same direction, because it must generate one single crossing
time per grid point (points cannot be revisited). This is, in-
deed, a very strong requirement that should be avoided in
image-driven surface shaping schemes, especially if working
in with variable grid resolution. In fact, if we happen to miss
some surface details at a certain grid resolution, we need to
be able to backtrack the evolution and retrieve the lost details
as we increase its resolution.

Also, the framework of initial value level set methods
allows to define the speed function in a quite arbitrarily
complex fashion. This gained freedom, however, has a price
in terms of computational efficiency. Fast marching meth-
ods, which are efficient implementations of boundary value
methods, benefit from the fact that the time of arrival is a
single-valued map to compute the front evolution in a single
sweep, using heap-sort algorithms to generate the grid’s vis-
iting order. In spite of the loss of efficiency, level set methods,
which are direct implementations of initial value solutions,
can be made quite efficient through a joint use of narrow
band and adaptive mesh strategies [5]. Because of these rea-
sons, and others that will be illustrated throughout the paper,
we adopt a level set approach for our surface modeling solu-
tions.

2.2. Front stability and smoothness

Before we begin illustrating our approach to steering the level
set evolution using images, some clarifications on the stabil-
ity and the correctness of the front propagation are in order.
As a matter of fact, deciding on a reasonable velocity function
may be a problem if we do not include some sort of smooth-
ness term. For example, a front evolving at constant speed
may easily develop unwanted corners and become nondif-
ferentiable. In order to proceed with the front propagation
we must search for a weak solution for the propagating front
(meaning that it satisfies an integral formulation of the dif-
ferential equation). Similarly, in some cases we could have
ambiguities in how to continue front propagation (gaps in
the solutions). Such problems can be safely solved by intro-
ducing in the velocity function a smoothing term that is pro-
portional to the local curvature of the front. When the ve-
locity’s magnitude is proportional to the local curvature, the
front evolution is said to follow a motion by curvature. As
we can see in Figure 1, if this motion is uncontrasted, it tends
to smoothen more and more the initial shape as the front
evolves. There is, however, an important result in the theory
of level set evolution that states and proves that the correct
result (entropy solution) can be achieved as the limit of the
smooth solution as the smoothing term goes to zero [5].
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Figure 1: Motion by curvature: the surface deflates in a maximally
smooth fashion until it disappears.

The necessity of a smoothing term is also justified by the
need of overcoming the intrinsic ill-conditioning of stereo
problems and, more generally, of computer vision problems.

2.3. Narrow band

Updating the volumetric function whose level set zero rep-
resents the propagating front requires, in principle, the up-
dating of O(M3) voxels, M being the linear size of the voxset
(expressed in voxels). A Lagrangian (particle tracking) ap-
proach, on the other hand, is only expected to update the
location of the points of the propagating front, therefore we
only need to act on O(M2) points. This excess in the compu-
tational cost associated to a level set approach is due to the
intrinsic redundancy of an implicit surface representation,
but it can be drastically reduced if we consider that the vol-
umetric function φ does not need to be updated everywhere,
as we are only interested in the zero level set of φ. In fact,
only the values of φ in the proximity of the front tend to have
an influence on the evolution of its shape, due to the spa-
tial derivatives that appear in the PDE that governs the front
propagation. As a consequence, it is possible to limit the re-
gion of influence to a “narrow band” (NB) centered around
the evolving front

x ∈ NB ⇐⇒ ∣∣φ(x)
∣∣ ≤ δ

2
, (9)

δ being the thickness of the narrow band [12, 18]. As a conse-
quence, the number of voxels to be updated is back toO(M2).
We have to keep in mind, however, that the inevitable dis-
cretization errors that occur in the implementation of the
equation that governs the front evolution require an occa-
sional reinitialization of the volumetric function within the
narrow band, with the constraint of keeping the front un-
changed. The choice of the thickness δ must be a trade-off
between the need of minimizing the number of voxels to up-
date and minimizing the number of reinitializations. Typi-
cally, δ is set to values that range between 10 and 20 voxels.

A straightforward way to implement the updating pro-
cess for NB reinitialization is based on the recomputation of
the distance function from the front. This operation, how-
ever, is computationally expensive, therefore we adopt an it-
erative approach to do so. The method consists of a first
rough reinitialization of the volumetric function, followed by
an iterative refinement process that returns the actual signed
distance function from the front. This iterative process is
meant to change the function in order for its gradient to have
a unit magnitude. This is, in fact, done by discretizing a spe-
cial type of Hamilton-Jacobi PDE [19],

∂φ

∂t
= sign

(
φ0
) · (1− |∇φ|), (10)

whose solution is a distance function φ (|∇φ| = 1) and
whose level zero is the initial function φ0. This iterative
scheme turns out to be far more efficient than a complete
reinitialization, especially if the rough initialization φ0 is al-
ready quite accurate [20]. One way to build a good approx-
imation φ0 of the desired function φ is to keep the previous
values. Of course, as the front migrates between two reini-
tializations, we will be able to use only some of the previous
values. The other voxels (those that are located in the new
portions of the narrow band) will be assigned increasing (de-
creasing) values as we move outward (inward) with respect to
the front.

This method [21] has been proven to be equivalent to the
so called “upwind scheme” [5], which is based on an appro-
priate choice of the discretization of the partial differentia-
tion operator.

2.4. Multiresolution

As already said above, working in a narrow band around the
propagating front dramatically reduces the number of voxels
to be updated from O(M3) to O(M2). A further drastic re-
duction in the updating complexity comes from the adoption
of a multiresolution strategy in the front evolution, which
drops the complexity to a mere O(M logM). The term mul-
tiresolution, however, requires some explanation, as it may
lead to completely different solutions in the data structure
and management. In particular, if we do not know in advance
where the surface details are located (direct, or image-driven,
shape modeling), all we can do is to let the front evolve on a
coarse grid, and increase the voxset resolution of a factor two
(23 = 8 smaller voxels for each coarser one) every time the
front evolution comes to a stop (equilibrium configuration).
When the location of the surface details is known (indirect,
or surface-driven, modeling), we can do better than just per-
form an on-the-fly split of the whole voxset. In fact, we can
reorganize the data structure in a hierarchical fashion using
an octree. This, of course, complicates the computation and
the management of the derivatives and of the velocity func-
tion, but it boosts the performance even further.

Aside from the data structure management, what de-
serves more investigation in this context is, in fact, how to
deal with details that might not be captured at a lower res-
olution. This discussion, however, will be given in the two



Image-Based Multiresolution Implicit Object Modeling 1057

applications (indirect and direct modeling) proposed in the
next two sections.

2.5. Construction of the extension velocities

It is important to point out that the velocity function is usu-
ally defined only on the propagating front Γ(t) (zero level set
of φ). On the other hand, in order to be able to integrate
the PDE that governs the motion of the propagating front,
we need the speed function to be defined on the whole do-
main of interest of φ, which is the narrow band defined in
Section 2.3. The extension of the velocity function in that do-
main must be done starting from its profile on the propagat-
ing front, in such a way to guarantee that the evolution of φ
in the whole narrow band will be consistent with evolution of
the propagating front [22]. Roughly speaking, we would like
all level sets of φ to propagate without self-collisions (swal-
lowtail configurations) or rarefactions (gaps).

In order to define an extension of the velocity function
that does not generate self-collisions or rarefactions, we can
proceed as follows: let Γ = {x | φ(x) = 0} be the propagating
front and consider a generic point xP . If xP does not lie on
Γ, we can always find another level set that it belongs to. In
other words, we can always find a c such that φ(xP) = c. If

xQ = arg min
xQ∈Γ

∥∥xQ − xP
∥∥ (11)

is the closest point of Γ to xP , then we can assign xP the ve-
locity F(xP) = F(xQ). This operation can be done for ev-
ery point of the narrow band, and is exempt from the above-
mentioned problems of self-collision or rarefaction [5].

2.6. Volumetric and surface rendering

Visualizing the zero level set of a volumetric function is im-
portant when we need to visually follow the evolution of the
front. Conventional surface visualization techniques, how-
ever, are suitable for Lagrangian surface descriptions (trian-
gle mesh), but they do not directly apply to an implicit sur-
face representation. In this section, we discuss a solution for
visualizing the evolving front, without having to construct
the surface mesh.

The method consists of assigning a luminance value to
a generic pixel through the analysis of sign changes in the
volumetric function φ along the associated optical ray:

(i) if the volumetric function φ(x) does not change sign
along the optical ray, we assign the pixel the back-
ground luminance;

(ii) if φ(x) exhibits a sign change along the optical ray, then
the pixel will be assigned a value of luminance, com-
puted using an appropriate radiometric model that ac-
counts for the viewing direction and the normal to the
front. In fact, we assume the local texture to be lo-
cally uniform and the light to be diffused, the lumi-
nance will only depend on the viewing direction (non-
Lambertian component)

I = i · n
‖i‖‖n‖ , (12)

where i is the viewing direction and n is the front’s nor-
mal in the considered point, which can be computed
directly from the samples of φ that surround the point
along the optical ray, where φ changes sign.

It is also quite easy to map other characteristics on the
evolving front, such as the cost function or the original tex-
tures. As for the final model, the conversion to a more con-
ventional wireframe can be easily performed using a modi-
fied marching cubes algorithm [23].

3. INDIRECT SURFACE MODELING

A common way to build a complete 3D object model consists
of combining several simpler surface portions [24, 25, 26]
(range images or depth maps) through a 3D “mosaicing”
process. In order to do so, we need a preliminary registra-
tion phase [27], in which all the available surface patches
are correctly positioned and oriented with respect to a com-
mon reference frame; and a fusion process, which consists of
merging all surface patches together into one or more closed
surfaces. One rather standard registration strategy is the It-
erative Closest Point [28] algorithm, which consists of min-
imizing the mean square distance between overlapping por-
tions of the surface, using an iterative procedure. As for sur-
face fusion, in this section we propose and test an approach
that is able to seamlessly “sew” the surface overlaps together,
and reasonably “mend” all the holes that remain after sur-
face assembly (usually corresponding to non-visible surface
portions).

This patchworking process is suitable for combining 2D
1/2 modeling solutions such as image-based depth estima-
tion techniques, range cameras, and laser scanners. It is im-
portant to stress that the depth maps produced by such
devices could be made of several non-connected surface
patches, as occlusions and self-occlusions tend to gener-
ate depth discontinuities [26]. Such surfaces usually need a
lengthy assembly process in order to become a complete and
closed surface.

3.1. Definition of the velocity function

The velocity function that steers the front evolution accounts
for two contrasting needs: that of generating a smooth front
propagation with no degenerate configurations (motion by
curvature) and that of honoring the data (oriented surface
patches). As already seen in the previous section, if the mo-
tion were purely by curvature, a surface would tend to de-
flate completely and disappear, while becoming progressively
smoother and smoother (Figure 1). The need to honor the
available range data prevents this complete implosion from
taking place.

Let x be a point on the evolving front Γ, k the local cur-
vature of the front in x, and d the distance from x to the
closest available surface. Our velocity function combines a
term of the form F1(k), which promotes motion by curva-
ture, with a term of the form F2(d), which encourages data
fitting. In principle, there are several ways to do so. The
most obvious choice of a simple product, however, tends to
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produce unpleasant front profiles in the proximity of discon-
tinuities between different surface portions. A better front
behavior is obtained by replacing the product with a simple
sum of the two above terms. This solution, however, tends to
round all edges, with a consequent loss of accuracy. In or-
der to avoid this problem, we define the velocity function
as

F(x) = F1
(
k(x)

)
+ α

kM(x)
k(x)

F2
(
d(x)

)
, (13)

where k is the front’s local curvature, kM is the local curva-
ture of the facing surface; d is the distance (with sign) be-
tween the propagating front and the surface patch; and α is a
weight that balances the two terms of local smoothness and
data fitting. In this version of the velocity function, the term
that promotes data fitting is multiplied by a corrective factor
that depends on the local curvature of the surfaces that are
facing the front. This tends to encourage the front to fit the
data much more in the proximity of edges.

Notice that the above definition of velocity is only valid
on the propagating front, therefore we need to extend it to
the whole volume of interest (narrow band around the prop-
agating front), as explained in Section 2.3.

3.2. Precomputation of the distance function

One crucial step of the indirect method is the computation
of the distance function that appears in (13), which charac-
terizes the data-fitting term of the velocity function. The zero
level set of this function gives a rough idea of the global shape
and of the level of detail that the final model will have, there-
fore it allows to correctly decide initial and final spatial dis-
cretization steps. In fact, the initial voxset resolution must
be sufficient to capture the topology of the surface to model,
while the final voxset resolution must be adequate to model
the surface details.

It is important to emphasize that the distance function
can be computed on the whole volume of interest before
starting the front evolution. Given a generic point x, its dis-
tance from a single oriented surface can be easily computed
as the distance between x and its projection onto the clos-
est triangle of the mesh (Figure 2). If no point on the surface
patch faces the point on the level set orthogonally, then the
distance function d is computed from the closest point on the
border of the patch (within certain angular limits). Of course
this distance will be attributed a sign, depending on which
side of the surface the point x is facing. In particular, negative
values of the distance function tend to prevent the front from
penetrating apertures or holes between surface portions and
avoids useless concavities. Indeed, this computation leads to
a distance whose zero level set coincides with the initial sur-
face.

In the presence of several surfaces, the distance must be
computed as a combination of the various distances (within
reasonable limits), taking into account, somehow, their reli-
ability. Indeed, a special case is represented by two overlap-
ping surfaces that are oppositely faced, and need to be treated
separately (in this case the viewpoints are in opposition).

x1

n1
P1

x2

n2

P2

Figure 2: Distance function in the case of a single surface.

Also, we need to exclude all surface portions that, although
correctly oriented, are too far apart from the considered
point.

If we consider the kth mesh of triangles, k = 1, . . . , N , we
can compute the distance dk(x) from the point x as follows:

(1) find the closest node m to x;
(2) find the point p that lies the closest to x, on the trian-

gles that share the node as a vertex;
(3) compute dk(x) as follows:

(i) if p is not a frontier point of the triangle mesh, then
dk(x) = (x− p) · n;

(ii) if p is a frontier point of the triangle mesh, then

dk(x) =

+
∣∣(x− p)

∣∣ when (x− p) · n ≥ 0,

−∣∣(x− p)
∣∣ when (x− p) · n < 0.

(14)

The zero level set of dk(x) turns out to be continuous and
piecewise linear, just like the original triangle mesh.

In order to compute the global distance function d(x)
that pertains a set of multiple surfaces, we can proceed as
follows:

(1) find the algebraic distance dk(x), k = 1, . . . , N , from
each available mesh;

(2) if all distances correspond to border points, then let

d(x) = dmin(x), (15)

otherwise go to step 3.

(3) let d̂min(x) be the smallest of all distances dk(x) that
are not measured from a border point. Let pmin be
the point from which that minimum distance is com-
puted, nmin be the surface normal at that point, and

I = {k | (nk·nmin
)
> 0
}

(16)

be the set of indices that identify all surfaces oriented
like nmin, nk being the normals at the other closest
non-border points. Similarly, we can determine the set
of surfaces oriented opposite to nmin

I = {k | (nk·nmin
)
< 0
}
. (17)
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Figure 3: Distance function in the case of multiple surfaces. Left:
surface sections with the relative normals. Right: distance profile
along section A-B.

At this point we can determine dopp(x) as the distance
with minimum magnitude among those that are ori-
ented opposite to nmin and use this value as a thresh-
old to rule out of I all distances whose magnitude is
greater than dopp(x). We can thus compute d(x) as a
linear combination of the remaining points of the set I

d(x) =
∑
i∈I
widi(x), (18)

where wi are properly chosen weights.

In Figure 3, we can see some examples of distance pro-
files corresponding to uniform weights wi. As a matter of
fact, the choice of the weights wi can be critical for a fine
tuning of the result, as they allow to decide whether to trust
one surface patch better than another one. Indeed, if we had
a priori information on the accuracy and the reliability of
a partial reconstruction, it would be easy to use this infor-
mation through a careful choice of the weights. In our case,
however, this information is not available. However, we can
always infer an appropriate weight configuration on a heuris-
tic basis. For example, if we are using an image-based depth
estimation technique to obtain the partial reconstructions
(range images), we can safely assume that the least reliable
surface portions are those that lie in the proximity of self-
occlusions or extremal boundaries. It is thus reasonable to
assign a higher weight to regions that are far from the border.
Another reasonable criterion can be used whenever the over-
lap involves several surfaces. In this case it is reasonable to
limit the averaging only to those surfaces that remain within
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Figure 4: Multiresolution progression of the voxset where the vol-
umetric function is defined.

a certain distance from each other. This tends to rule out pos-
sible outliers in the partial reconstructions. One final possible
parameter that could be easily considered in the computa-
tion of the distance function is surface orientation. In fact, if
we knew the viewpoint associated to a certain partial recon-
struction, we could decide to favor those surface areas that
are more orthogonal to the viewing direction.

3.3. Multiresolution

In order to obtain high performance at low computational
cost, besides updating the volumetric function just in a nar-
row region around the zero level set (narrow-band imple-
mentation), we operate in a multiresolution fashion (see
Figure 4). This can be achieved by starting with a low-
resolution voxset and letting the front settle down. Then we
break down the voxels around the propagating front and re-
sume the front propagation. The operation continues until
the final resolution is reached. Every time the voxset is split
we proceed with a reinitialization of the newly introduced
samples, which is done through simple linear interpolation.
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Of course, we also need to recompute the distance function
through an iterative process that is similar to the one used for
the reinitialization of the narrow band (see Section 2.3).

The initial resolution must be set in such a way to be able
to obtain a fast front evolution, without missing surface de-
tails. In fact, the voxel size should be decided in such a way to
guarantee a correct sampling of all scene elements of interest.
Failing to do so would result in a front that “passes through”
some surface elements.

A key aspect of this process is the fact that the velocity
field that drives the implosion of the level set can be pre-
computed on a hierarchical data structure (octree that best
fits the available range data).

The resulting model is bound to be a set of closed sur-
faces, therefore all the modeling holes left after mosaicing the
partial reconstructions are closed in a topologically sound
fashion. In fact, those surface portions that cannot be re-
constructed because they are not visible, can sometimes be
patched up by the fusion process. This ability to mend the
holes can also be exploited in order to simplify the 3D acqui-
sition session, as it allows to skip the retrieval of some depth
maps.

An interesting aspect of our fusion method is in the pos-
sibility to modify the surface characteristics through a pro-
cessing of the volumetric function. For example, filtering the
volumetric function results in a smoother surface model. Fi-
nally, the method exhibits a certain robustness against orien-
tation errors, as the non perfect matching of surface borders
can be taken care of by the fusion process through a careful
definition of the distance function used in the specification
of the volumetric motion field.

3.4. Examples of application

In order to test the effectiveness of the proposed technique,
we applied it to a variety of study cases. A series of tests on
synthetic data were conducted to confirm the system’s ability
to deal with complex topologies, with multiple objects, with
facing surfaces, and with hole-mending situations. In partic-
ular, some tests on multiple facing surface were conducted
on the synthetic data set (the handle of a pitcher chained to
a torus), proving that the definition of the distance function
for multiple surfaces, provided in Section 3.2, is effective (see
Figure 5).

A particularly interesting experiment was conducted on
a real object with a nontrivial topology (a bottle with a han-
dle) that could easily create problems of ambiguities. Any tra-
ditional surface fusion approach would, in fact, encounter
difficulties in deciding how to complete (close) the surface
in the regions of missing data. Furthermore, besides exhibit-
ing self-occlusion problems, this object puts the multireso-
lution approach under a severe test. We acquired six depth
maps and assembled them together using an ICP algorithm
[28] (see Figure 6). The result was an incomplete model with
some accuracy problems in the overlapping regions (at the
boundaries of the depth maps). The front evolution is shown
in Figure 7, which results in the final model of Figure 8.

As we can see, the topology of the object is retrieved cor-
rectly, without having to provide the system with specific

Figure 5: Testing the distance function: progressive reconstruction
of a surface of complex topology with multiple facing surfaces.

Figure 6: One of the original views (top left). Six unregistered sur-
face patches obtained with stereometric techniques (top right). Two
views of the assembled surface patches after registration (bottom):
notice the creases due to a nonperfect model overlapping, and the
presence of holes in the global model.

instructions. Also, through a simple low-pass filtering of the
volumetric function, we can reduce the problems that oth-
erwise would arise from the jaggedness of the borders of the
surface patches.

4. DIRECT SURFACE MODELING

In alternative to using 3D data for the generation of the com-
plete closed object surface, we can directly use the available
images. An image-based 3D modeling method that uses an
implicit representation of surfaces was recently proposed by
Faugeras and Keriven [29]. With this modeling approach the
front evolves by following a motion that is always locally nor-
mal to the surface, with a speed that depends on the local sur-
face curvature and to a measurement of the local texture mis-
match between imaged and transferred textures. Transferring
the imaged texture onto another view means back-projecting
it onto the model and re-projecting it onto the other view.
Our solution significantly improves this approach as, besides
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Figure 7: Level set implosion.

Figure 8: Final 3D model.

working on a narrow band around the evolving front, it op-
erates in an adaptive multiresolution fashion, which boosts
up the computational efficiency. Multiresolution, in fact, en-
ables to quickly obtain a rough approximation of the objects
in the scene at the lowest possible voxset resolution. Succes-
sive resolution increments allow to progressively refine the
model and add details. In order to do so, we introduce sev-
eral novel action terms in the velocity function, which al-
low to control the front evolution in the desired fashion. For
example, we introduce “inertia” in the level set evolution,
which tends to favor topological changes (e.g., the creation
of doughnut-like holes in the structure). Other mechanisms
that implement some sort of biased quantization and hys-
teretic evolution tend to prevent its dynamics from missing
details (surface creases, ridges, etc.) at lower resolution levels,
or to recuperate them at every resolution increment.

4.1. Definition of the velocity function

One of the terms that contribute to steering the level set evo-
lution is the texture mismatch between imaged and trans-
ferred textures [24, 25], which is a function of the correlation
between homologous luminance profiles [29]. The texture

mismatch is

C(S,n) =
∫
S
ψ(S,n, v, w)

∣∣sv × sw
∣∣dv dw, (19)

ψ = 1−
n∑

i, j=1; i �= j

1∣∣Ii∣∣∣∣I j∣∣
〈
Ii, I j

〉
, (20)

where dσ = |sv×sw|dvdw is the infinitesimal area element of
the surface S, associated to the local surface parametrization
(v,w) induced by the image coordinate chart; n is the sur-
face normal; and Ii(mi) is the luminance of pixel mi in the
ith image. This definition of dσ guarantees that the surface
representation will be independent of the variables (u,w).
The surface patch S through which the luminance transfer
occurs is assumed to be a locally planar approximation of the
propagating front. Indeed, in order to guarantee that this ap-
proximation will maintain a constant quality, the size of this
planar patch will change according to the local curvature of
the level set.

The inner product (correlation) between the pair of
subimages Ii and I j is defined as follows:

〈
Ii, I j

〉 = 1
4pq

∫ p

−p

∫ q
−q

(
Ii
(

m1+m
)− Ii(m1

))
× (I j(m2+m

)− I j(m2
))

dm,
(21)

where m1 and m2 are homologous image points (i.e., im-
age points that correspond to the same point of the surface
model), and

Ik
(

mk
) = 1

4pq

∫ p

−p

∫ q
−q
Ik
(

mk+m
)

dm, k = 1, 2. (22)

Although the correlation could be computed between all
the viewpoints where there is visibility, only the pair of views
with the best visibility is considered. Visibility can be easily
checked through a ray-tracing algorithm and measured as a
function of the angle between visual ray and surface normal.
Notice that normalizing the correlation has a twofold pur-
pose: to limit its range between 0 and 2; and to guarantee that
low energy areas (smooth texture) will have the same range
of high energy (rough texture) areas. Finally, subtracting the
average from a luminance profile tends to compensate a non-
Lambertian behavior of the imaged surfaces.

In order to achieve the desired front evolution, we pro-
pose and define a novel velocity function that mediates the
twofold need of guaranteeing surface smoothness and con-
sistency between images and final model

F(x) = C(x)divφ +∇ψ · ∇φ + αψ. (23)

Texture-curvature action

The first term C(x) divφ of (23), where divφ = ∇·∇φ, rep-
resents the texture-curvature action and favors a maximally
smooth implosion toward a shape that agrees with the avail-
able textures. The presence of the texture mismatch cost C, in
fact, tends to slow down areas with modest cost, and speed up
areas of high cost.



1062 EURASIP Journal on Applied Signal Processing

Hook-on action

Ideally, we would be lead to think that the first term is suffi-
cient to correctly steer the model’s evolution, as correct sur-
face regions should have a zero cost, while other regions are
left free to evolve. This, however, is not really true as the cost
is rarely equal to zero due to a nonperfect luminance trans-
ferral (a homography models just a first-order approxima-
tion of the surface) and a non-Lambertian radiometric be-
havior. Because of that, without some additional contrasting
action, the front propagation would “trespass” the correct
surface and continue its evolution uncontrollably. The sec-
ond term of (23) will tend to contrast this behavior. In fact,
in the proximity of the actual surface, the local cost gradi-
ent ∇ψ is almost parallel (although oppositely oriented) to
the propagation front’s normal n = ∇φ. As a consequence,
∇ψ · ∇φ < 0 tends to stabilize the front in the proximity of
the actual surface. Furthermore, this term exhibits the desir-
able property of speeding up the evolution of the front in the
proximity of configurations of minimum cost, as it accounts
of a positive action∇ψ · ∇φ > 0.

Inertia action

The third term of (23) acts like an “inertial” term in order to
favor concavities in the final model. The weight factor α > 0
is constant all over the front, but it is variable in time. In fact,
αmust satisfy two opposite needs: on one hand its magnitude
needs to be small enough to avoid affecting the action of the
first term of (23); on the other hand, it has to be large enough
to produce the desired topological changes. We found exper-
imentally that a good choice for α corresponds to the average
curvature of the front at every time step

α =
∫
S |divφ|dσ∫

S dσ
. (24)

The weight α needs to be rather frequently updated, some-
times at every iteration. However, this operation does not re-
quire additional computational effort, as the first action term
of (23) already requires the computation of divφ.

4.2. Multiresolution

If the volumetric function that characterizes the level set is
defined on a static voxset of N × N × N voxels, the compu-
tational complexity of each front propagation step is propor-
tional to N2, as it is proportional to the surface of the level
set (narrow-band computation). Furthermore, since the ve-
locity F is multiplied by |∇ψ| (which is equal to the sampling
step), the number of iterations turns out to be proportional
to N , with a resulting algorithmic complexity that is propor-
tional to N3. In order to dramatically reduce this complexity,
we developed a multiresolution approach to level set evolu-
tion. The algorithm starts with a very low resolution level (a
voxset of 10–15 voxels per side). When the propagation front
converges, the resolution increases and the front resumes its
propagation. The process is iterated until we reach the de-
sired resolution. A progressive resolution increment has the
desired result of minimizing the amount of changes that each

Multiresolution
Single resolution

# iterations

Φ

Figure 9: Illustration of the temporal evolution of the cost function
(texture mismatch) and of the model. Notice that the cost value sud-
denly increases at every resolution change, due to the mechanism of
recovery of details.

propagation step will introduce in the model, with the result
of achieving a better global minimum of the cost function.
Furthermore, the number of iterations will be dramatically
reduced (from N to logN) with respect to a fixed-resolution
approach, with an algorithmic complexity that turns out to
be proportional to N2 logN .

Indeed, starting from a low-resolution voxset, we need to
prevent the algorithm from losing details at that resolution
or to make sure that the algorithm will be able to recover the
lost details. In fact, we have to keep in mind that the motion
by curvature tends to dominate over the other terms, there-
fore some of the details of the object may totally disappear. In
order to prevent this from happening, we limit the impact of
the local curvature on the front’s evolution through a “soft”
clipping function, which guarantees a better evolutional be-
havior than hard clipping.

In spite of this smooth thresholding mechanism, in some
cases it is not possible to prevent some of the smaller details
from disappearing. For this reason, we developed a technique
that enables the recovery of lost details before the resolution
is increased, which is based on a mechanism of hysteresis in
the surface implosion. The idea is to keep track of all the vox-
els on the zero level set whose costΨ is below a certain thresh-
old. After the implosion of the level set, we let the propa-
gation front evolve while driven by a different cost function
that depends on the distance between the surface and such
points. This operation makes the surface literally “climb up”
the lost details. As an example of applications, see Figure 9,
which illustrates the temporal evolution of the cost function
(texture mismatch) during a multiresolution front evolution.
Notice that the cost value suddenly increases at every resolu-
tion change, due to the mechanism of recovery of details. The
graph, however, confirms that the convergence of the cost
function in the multiresolution case is much faster than in
the single-resolution case.
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(a)

(b)

(c)

Figure 10: Detail recovery in an object with relevant small details of
high curvature. Original image (a), evolution with no backtracking
(b), backtracking re-expansion (c).

Two are the critical aspects associated to a resolution
change: the management of resolution changes; and the re-
covery of lost details. The first problem can be approached
with a simple interpolation with half the sampling step, fol-
lowed by a low-pass filter. The second problem is far more
complex, and deserves further discussion.

The basic idea is to select the minimum resolution that
allows the front evolution to proceed, without worrying too
much about lost details. The final resolution, of course, will
depend on the accuracy of the details that we want to repre-
sent. Consider, for example, the object of Figure 10a, which
exhibits relevant details of small size and high curvature. If
we let a low-resolution level set (10 × 10 × 10 voxels) evolve
under the influence of the above described velocity terms,
we obtain the evolution shown in Figure 10b. The algorithm
can initially sense the presence of the pitcher’s handles, as
the evolving front slows down in their proximity. The front,
however, ends up missing the handles completely. This is
mainly due to the curvature component of the velocity func-
tion, which tends to flatten the front. In fact, any detail whose
curvature radius is smaller than the voxel size is filtered out
by the front evolution. Roughly speaking, if the resolution is
too low, the handles are treated like a ripple to be removed.
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Figure 11: Plot of the soft thresholding function β tanh(k), with
β = 1 (typical value for most applications).

We recall that the texture-curvature term in the velocity func-
tion is the product between texture mismatch ψ and the cur-
vature∇ ·∇φ of the front, therefore although the mismatch
ψ becomes very small as the front passes through the han-
dles, the curvature factor becomes very large, with the result
that the corresponding velocity term does not become zero
and the front continues to advance.

In order to avoid this problem, we limit the impact of the
front’s local curvature through a “soft clipping” function (see
the hyperbolic tangent function of Figure 11). The value of β
represents the limit we set for the curvature k = ∇·∇φ, and
it is usually set to 1.

Although this soft clipping process is effective in many
situations, some complex topologies such as the one of
Figure 10a, cannot be correctly reconstructed when starting
from a coarse initial resolution. For this reason, we imple-
mented a method for recuperating the lost details before a
resolution change. The idea is to keep track of the coordi-
nates of all the voxels of the zero level set where the texture
mismatch ψ is lower than a certain threshold ε. It is quite rea-
sonable to expect that this set � of points correspond to all
details that have been missed at the previous resolution level.
After the front evolution settles to an equilibrium configu-
ration, the algorithm begins a backtracking phase in which
the front expands toward the points of the set �. In order to
do so, we use such points as attractors by adding a new action
term in the velocity function, which accounts for the distance
from such points.

As we can see in Figure 10c, the point cloud � (here cor-
responding to the pitcher’s handle) attracts the closest points
of the front in order for the next implosion, which will occur
at a higher resolution level, to begin from a model that con-
tains all the previously lost details. In Figure 10c we can see
the front evolution during the re-expansion phase.

4.3. Implementational issues

In order to maximize the computational efficiency of the
proposed algorithm, we devised and adopted a number of
solutions. For example, we implemented some mechanisms
for recognizing whether the front evolution has locally con-
verged to a stationary solution. In that case, we mark the sta-
tionary subregions as fixed until the next resolution changes.
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Figure 12: Sequence of original views.

Figure 13: A view of the cost function mapped onto the propaga-
tion front. The darker the texture is, the heavier the mismatch.

This operation alone results in a saving of about 50% of the
total computational time. Significant computational savings
also arise from the choice of computing the luminance agree-
ment only on two images at a time (n = 2 in (20)) [14].

As for the algorithmic automaticity, we devised and im-
plemented a number of solutions that reduce the interven-
tion of the operator to a minimum. For example, the algo-
rithm selects, for each surface point, the best pair of cameras
(C1, C2) for the computation of the correlation (21). This
is done by selecting the cameras whose viewing direction is
most parallel to the surface normal and whose view of the
point is not occluded.

Another important problem to assess is the choice of
the width of the window used for computing the correla-
tion between textures. In fact, in order to keep computa-
tional complexity at a reasonable level, luminance transfer
between views is performed through the local tangent plane
to the surface (homography). This window cannot be too ex-
tended otherwise texture warping would come in the way,
but it cannot be too small, otherwise we would have prob-
lems of matching ambiguity. What we did in our implemen-
tation is to link the window size to the radius of curvature of
the evolving front through a simple proportionality relation-
ship. In fact, the radius of curvature ρ can be derived imme-
diately as the reciprocal of the divergence of the volumetric
function.

4.4. Examples of application

In order to prove the effectiveness of our approach to 3D
modeling, we tested it on several objects acquired with a
camera moving around them. In this section, we show the
results in two different cases characterized by a significantly

Figure 14: Temporal evolution of the propagation front. The initial
volumetric resolution is very modest (in this case the voxset size
is 20 × 20 × 20), and is not able to account for some topologically
complex details of the surface (the fifth frame in lexicographic order
is the best one can do at this resolution). As the resolution increases,
more details begin to appear, such as the stem of the apple.

Figure 15: Four views of the final 3D model.

complex topology. The first test concerns a styrofoam ob-
ject with fine natural texturing (see Figure 12). The im-
ages are acquired using a fixed CCIR B/W analog camera
(720 × 576 pixels) pointed at the object while it rotates on
a turntable. We used a subsampling of the whole sequence
(one shot every 20 degrees of rotation), and we set the algo-
rithm in such a way to evolve in three resolution stages. As
we can see from Figure 13, the front evolution is well steered
by the cost function. In fact high values of the cost (darker
areas in the left image) correspond to regions where the sur-
face is still far from a reasonable approximation of the actual
surface. Figure 14 shows the temporal evolution of the prop-
agating front, as the resolution changes. As we can see, de-
tails that are only roughly sketched at a lower resolution level,
are better recovered at the next resolution level. In Figure 15
we can see how the algorithm was able to carve the surface
even under the leaf and recover hidden topological details
at later stages of the front evolution. We also tested our al-
gorithm with a sculpture that exhibited only a modest lo-
cal texturing (see Figure 16). In this case we used a digital
camera with a resolution of 1500× 1000 pixels that acquired
the subject in similar conditions as the previous case (one
shot every 20 degrees, three resolution stages). As we can see
from Figures 17 and 18, once again the method proved to be
remarkably robust against topological complexity. We also
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Figure 16: Two of the original views of the subject.

Figure 17: Temporal evolution of the propagation front.

performed some experiments in which the images were ac-
quired with a modestly cluttered background, without sig-
nificantly affecting the evolution of the front.

5. CONCLUSIONS

In this paper we discuss two image-based 3D modeling meth-
ods based on a multiresolution evolution of a volumetric
function’s level set. The first consists of fusing (“sewing” and
“stitching”) numerous partial reconstructions (depth maps)
into a closed model, while the second consists of steering the
level set’s implosion with texture mismatch between views.
Both solutions share the characteristic of operating in an
adaptive multiresolution fashion, which boosts up compu-
tational efficiency and robustness.

Both modeling applications have been written in C++,
and run on several SW platforms. Computational times de-
pend on the final resolution and on the topological complex-
ity of the imaged object. Using a PC equipped with a Pen-
tium III 800 MHz with a 256 MB RAM, the fusion algorithm
always completes its task in just a few minutes on voxsets of
128× 128× 128 voxels. A bit more intensive is the direct ap-
proach, mostly because none of the computation can be done
in advance. In this case, although the implementation is not
optimized, we need less than 10 minutes per resolution level.

Figure 18: Final 3D model. The rendered view is here blended with
a model’s wireframe, obtained after mesh simplification.

We are currently working on a new version of the above
methods, based on 3D mesh adaptivity, which will further
improve the computational efficiency and the effectiveness
of the solution. We are also working on an image-based au-
tomatic fine tuning of the algorithm’s parameters.
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sion par Ordinateur, Ph.D. thesis, École Nationale des Ponts
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