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Abstract

In this article we propose an algorithmic approach – the detection and the characterization of planar fractures based on the
analysis of 3D data relative to rock samples (coming from X-ray=NMR tomography). Data analysis is based on a particular
implementation of the Hough Transform for the detection of planes in a 3D space. One of the original aspects of our
approach is the pattern detection strategy. In fact, it works in an iterative fashion and consists of the progressive removal of
the layers that constitute the cumulative array in the Hough space. At each step, we 4rst determine the leading fracture from
the analysis of the Hough cumulative arrays, and then we remove the corresponding cumulative layer in order to enable the
detection of the next important fracture. We also show the results of some tests, which prove the proposed method e7ective
even with very complex data sets. ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Rock masses generally develop fractures at dif-
ferent scales, from microcracks to faults, due to
emplacement and cooling of rock bodies, crustal
movements, and regional stress 4elds at di7erent
geologic stages. The spatial distribution of such
fractures, in fact, carries a great deal of infor-
mation for various 4elds of geoscience, includ-
ing hydrogeology for fracture-a7ected <ow chan-
nels, resource exploration for vein-type mineral
deposits and <uids in fractured reservoirs (e.g.
[1,6,19]). More recently, the general interest in
a statistical characterisation of fractures in rock
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masses has increased for environmental reasons, for
example to determine whether fractured reservoirs
could be used to temporarily store large quantities of
methane that, otherwise, would have to be released in
the atmosphere.

A wide variety of methods has been developed for
studying the geometry of rock fractures. Some of them
are based on the analysis of the data acquired by sensor
arrays that collect signals related to arti4cially gener-
ated pressure waves=impulses that propagate through
the earth [19,4,26], therefore they are able to collect
data on large-scale fractures and faults.

When dealing with fractures of smaller scale, how-
ever, the only data we can rely comes from the anal-
ysis of rock samples extracted from boreholes. For
this reason, a general view of fracture distribution in
a study area must be based on stochastic methods. In
the past decade, a variety of methods have been de-
veloped with the goal of clarifying “scaling laws” of
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fractures using fractal theory (e.g. [25,7,8,16]). Such
methods are usually based on the analysis of frac-
ture length distribution over wide scales. However, in
order to reveal spatial correlation structures of frac-
ture attributes, their location needs to be considered as
well ([18,5,13]). Indeed, one has to bear in mind that
this type of analysis cannot be pushed too far, as the
amount of fracture data is small and strongly biased in
a study area. As a consequence, fracture attributes that
are applicable to distribution modelling are limited to
length, appearance pattern, and azimuth (orientation)
[17].

In order to be able to conduct a statistical analysis
based on such features, we need tools that are able
to eJciently and e7ectively extract fracture data in a
non-destructive fashion. One way to do so consists of
analysing a “<attened” view of the external side walls
of boreholes, which can be obtained through appro-
priate imaging devices [23] or contact sensors [12],
depending on the nature of the rock mass. As these
images only show the intersection between fractures
and external surface of the borehole, they enable the
estimation of the geometry of the fractures of reason-
able size in an automatic or a semi-automatic fashion.
Using data coming from a set of boreholes extracted
from the same area, together with data of some other
origin (e.g. the results of the analysis of the propaga-
tion of pressure wave impulses) it is then possible to
extrapolate a general outline of the fracture distribu-
tion and orientation (“up-scaling” [24]).

In order to extract additional information (for ex-
ample on smaller size fractures such as microcracks)
it is also possible to analyse the internal structure of
rock samples. This can be done in a non-destructive
way using X-ray tomography or nuclear magnetic res-
onance (NMR) tomography, after a proper treatment
of the sample (e.g. water saturation in the case of NMR
analysis) [21,3,10]. In general, such methods of anal-
ysis generate volumetric data (voxsets) [11], although
the magnitude associated to each voxel is of some in-
terest only in the case of X-ray tomography. In fact,
while the greyscale values in X-ray data can be related
to the material’s density, this is no longer true with
NMR data. Anyway, the intensity value associated to
volumetric data can be quite easily binarised so that
the value “1” can be interpreted as “empty” (fracture)
while “0” can be treated as “full” (rock mass).

Even after binarisation, locating the most signi4cant

Fig. 1. A perspective view of a binary data set obtained through
X-ray-tomography of a rock carrot. The clouds of gray points
represent the empty areas (fractures) of the carrots.

fractures of a rock sample and understanding their
geometry can be quite a formidable task when left
to visual inspection. In fact, aside from visualisation
problems related to the volumetric nature of the data,
rock fractures are generally discontinuous (made of
non-connected regions in the volume of interest) and
they often exhibit a variable thickness. In addition,
such fractures are usually “fogged” by highly porous
material and measurement noise. It is also important to
mention that visual inspection can only be conducted
by a specialised operator, and can be a time-consuming
and expensive procedure [23].

Considering the type of fracture attributes that are
applicable to distribution modelling [17] it is appro-
priate and convenient to model the fractures as planar
surfaces, characterised by position, orientation, exten-
sion and thickness pro4le. Fig. 1 shows a perspective
view of a mildly fractured (binarised) data set, which
gives an idea of the nature of the data that we are
dealing with, and shows what kind of diJculties that
visual inspection would encounter. This justi4es the
need of an automatic analysis strategy.

The Hough transform HT is a powerful technique
that is widely used for the detection of lines in 2-D
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signals (typically images) [9,14]. Extensions of this
technique exist for the identi4cation of other paramet-
ric shapes, such as sinusoids [14], circles and ellipses
[27,22]. In this work we propose an extension of the
basic HT to a 3-D domain, which enables us to iden-
tify planar fractures through the analysis of volumet-
ric data sets (such as those produced by tomographic
analysis).

In particular, we propose a novel method for ac-
curately detecting fractures in inverse order of rele-
vance. The method, in fact, exhibits a strong resilience
against the inevitable mutual “masking” that occurs
between fractures in the Hough domain. In order to
do so, it works an iterative fashion by 4rst detecting
the leading fracture and then removing its impact onto
the Hough domain. The next fracture in order of rele-
vance will thus be the leading fracture of the residual
Hough map. The method we propose also incorpo-
rates a technique for re4ning the localisation of the es-
timated planes through “local” linear regression, and
it allows the user to perform thickness measurements
and, more generally, conduct a simple morphologic
analysis of the fracture.

It is important to emphasise the fact that our ap-
proach to planar fracture detection and localisation
works on binary data (which is obtained from volumet-
ric data of tomographic origin through simple thresh-
olding 1 ). The reasons why we do not directly use the
available greyscale values are various:
• The samples that we analyse came from either

X-ray or NMR tomography. While in the 4rst case
greyscale values give an indication of the volumet-
ric density, in NMR data these greyscale values are
no longer meaningful.

• Even when greyscale values can be directly related
to densitometric information (X-ray case), the use
of a greyscale approach does not seem to be of much
help as:
1. While the density of rock masses may change a

great deal in space, fractures are characterised by
a very speci4c and constant density.

2. It is not possible to directly apply a greyscale
approach to Hough transform such as that of

1 Notice that fractures are characterised by a known and constant
density (before tomographic acquisition, rock samples are soaked
in water). This makes thresholding a fairly simple and safe method
for binarising data.

O’ Gorman and Clowes [20], as the gradient of
the volumetric data would reveal the (irregular)
boundaries of the fractures instead of their vol-
ume, which could introduce additional bias in the
estimation. The availability of gradient informa-
tion is, in fact, what should speed up the com-
putation of the Hough transform. Without such
information, a greyscale method becomes more
expensive than a binary one, both in terms of
computational load and memory requirements.

• NMR data are very noisy and a simple binarisation
improves the situation a great deal.
In the next Section we will provide the basics on the

Hough transform and its extension to the 3D domain
(3D-HT). Such concepts will then be applied to the
analysis of rock carrots. The proposed solutions will
be tested on both simulated and real data.

2. Basics on the Hough transform

The Hough transform (HT) was 4rst introduced
as a method of detecting patterns of points in image
data [27]. With reference to a speci4c pattern model,
the Hough transform examines each point and 4nds
all possible model parameters that agree with it. By
collecting all such parameters in a properly de4ned
parameter space (Hough space) we can determine data
patterns that comply with the reference model through
cluster identi4cation in the Hough space. In practice,
the HT converts a complex pattern detection problem
in the image space into a more manageable peak de-
tection problem in the parameter space.

The key idea of the method can be better illustrated
with reference to the speci4c problem of identifying
sets of collinear points (straight lines) in the 2D case.
Let us consider a binary image, and assume that its
pixels are “signi4cant” when their value is 1. A set of
signi4cant image points (x; y) are collinear (see Fig.
2(A)) when they satisfy a relationship of the form

y − m̂x − ĉ = 0; (1)

where m̂ and ĉ being the parameters that de4ne slope
and intercept (with the y-axis) of the considered line.
This equation can be seen as a one-to-many mapping
from the image plane to the space of possible pa-
rameters. In fact, given a point (x̂; ŷ) on the image
plane, we can identify all the parameters (m; c) that
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Fig. 2. Basic idea behind a HT for line detection. (A) A set of non-zero collinear points in the data space. (B) Corresponding lines in the
(m; c) parameter domain (Hough space). The point of intersection of such lines identi4es the parameters of the line of collinearity. (C)
Corresponding Hough cumulation array.

“agree” with that point as those that correspond to all
the lines that pass through (x̂; ŷ). Such lines satisfy the
equation

ŷ − x̂m− c = 0: (2)

Each image point (x; y) will thus correspond to a line
in the (m; c) domain (see Fig. 2(B)).

If we consider a set of collinear image points, their
corresponding lines in the (m; c) space intersect in one
point, whose coordinates are the parameters of the line
that the image points lie on (see Fig. 2(B)).

In principle, the HT can be viewed as sort of an
“evidence gathering” procedure. Each image point
“votes” for all parameter combinations that describe
straight lines to which it could belong. The votes are
counted in an accumulation array (Hough matrix).
The sum of votes accumulated in one cell indicate
the relative likelihood of lines described by param-
eters within the corresponding parameter cell (see
Fig. 2(C)).

Indeed, the above de4nition of the HT based suf-
fers from the disadvantage of not having a compact
support. In fact, in order to be able to construct and
analyse the Hough space associated to a speci4c
data set, we need its support to be limited. This is
the reason why the classical HT for line detection is
based on a di7erent parametrisation. In fact, in or-
der to satisfy the compact support requirements, the
two parameters used to describe a line in the Hough
space are: the distance of a line from the origin of the

reference frame, whose range is easy to limit; and its
orientation in radians, which is limited to one period
[9,14].

3. 3D Hough transform for plane detection

The de4nition of a 3D HT (3D-HT) is the natural
extension of the 2D HT summarised in the previous
Section. This time, however, we will follow the above
line of thoughts with reference to the speci4c concept
of null space.

A plane in the data space can be described by an
equation of the form

âx + b̂y + ĉz + 1 = 0; (3)

which corresponds to a point of coordinates (â; b̂; ĉ)
in the parameter space, and represents the null space
of plane (3). In order to de4ne the 3D-HT, however,
we should consider the null space of individual points.
Given a point p of coordinates (x̂; ŷ; ẑ), the set of the
parameters of all the planes that pass through p con-
stitute its null space. These planes are characterised
by all parameters (a; b; c) such that

ax̂ + bŷ + cẑ + 1 = 0: (4)

Therefore, quite obviously, the null space of a point
in the data space is a plane in the parameter space.
This duality between the data space (x; y; z) and the
above-de4ned parameter space (a; b; c) becomes even
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more apparent when looking at the equation of the
plane in vector form [27]

[ a b c 1 ]



x
y
z
1


 = 0: (5)

Another interesting case is that of collinear points in
the data space, whose null spaces (planes in the pa-
rameter space) intersect in just one line that, in turn,
is the null space of the line of collinearity in the data
space. Notice that two parallel (perpendicular) lines
in the data space correspond to two parallel (perpen-
dicular) lines in the parameter space [27].

Given a binary point-set in the discrete 3D data
space, its HT is de4ned as an integer data set in the
discrete 3D parameter space, whose points (plane
parameters) describe the number of signi4cant data
voxels that lie on the considered plane. Voxels are
classi4ed as signi4cant when their binary value is
1 (in our speci4c case the voxels of a fracture are
signi4cant).

The above-considered plane parametrisation ex-
hibits several interesting properties, but also su7ers
some a severe drawback. In fact, even if the data
space (x; y; z) is limited

xmin6 x6 xmax;

ymin6y6ymax;

zmin6 z6 zmax

(6)

the parameter space turns out to be unbounded. In fact,
the parameter a; b; c can range anywhere from −∞ to
+∞. This is a particularly undesirable property when
determining the HT as a cumulatation array.

In order to overcome this diJculty, alternative pa-
rameterisations can be considered. A reasonable one
can be directly derived from the 2D-HT, and refers to
the following representation of a plane:

x cos �+ y cos� + z cos 
= d; (7)

where �; �; 
 are the angles between the plane and the
x-, y-, z-axis, respectively.

Such angles are bound to satisfy the constraint

cos2 �+ cos2 � + cos2 
= 1; (8)

Fig. 3. Computation of the distance between two points A and B
on a cyclic coordinate axis with a 0–� range (see Eq. (10)).

therefore only 3 out of 4 parameters turn out to be
independent. Keeping this fact in mind, our plane pa-
rameterisation becomes (�; �; d). Such parameters can
be used to evaluate the plane coeJcients as

a= −cos �
d
;

b= −cos�
d
;

c = −
√

1 − cos2 �− cos2 �
d

:

(9)

Eqs. (9) are strongly non-linear, therefore the 3D-HT
induced by this parametrisation turns out to be more
diJcult to characterise. On the other hand, this 3D-HT
results in a bounded parameter space whenever the
data space is bounded. In fact, as we can see in Eq.
(7), d is the distance of the plane from the origin,
therefore it is bounded when the sample is of limited
size. Since angles are periodic, their range is intrin-
sically bounded. Actually, since in our analysis it is
not important to assign a speci4c normal direction to
a plane (we have no notion of “inside” or “outside”),
the range of � and � can be limited to 0 − �.

The fact that � and � are cyclic coordinates has
another important consequence on a plane detection
strategy. In fact, with reference to Fig. 3, the distance
between two points (A and B) along one of such co-
ordinate axes needs to be de4ned as follows:

06A¡�; 06B¡�;

dist(A; B) = dist(B; A)

= min{|A− B|; (�− |A− B|)}: (10)
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3.1. Some remarks on the numerical
implementation of a 3D-HT

A numerical implementation of the above-de4ned
3D-HT is based, like in the 2D case, on the de4nition
of a proper 3D cumulation array. Its construction is
done by scanning all signi4cant voxels in the data
space (those that correspond to fractures). Given a
signi4cant data voxel, we increment by one unit all
those cells of the cumulation array that correspond
to the parameters of a plane that passes through that
data voxel. The determination of such cells can be
easily done in an analytical fashion. If (x̂; ŷ; ẑ) are
the coordinates of the centre of the data voxel, the
parameters of all planes that pass through it are bound
to satisfy the equation

x̂ cos �+ ŷ cos� + ẑ cos 
= d; (11)

where 
 can be written as a function of � and � using
the relationship cos2 � + cos2 � + cos2 
= 1. We can
thus proceed by considering all the possible pairs of
angles � and �, and for each pair we can compute the
corresponding value of d. Indeed, as the parameters
belong to a discrete set, there will only be a 4nite num-
ber of combinations of angles, and the corresponding
distances will have to be quantised to the nearest avail-
able value. Once determined the corresponding cell of
the cumulation array, we will increment its value by
one unit.

Once constructed the 3D-HT, the dominant planes
in the data set can be determined through a peak search
process on the Hough cumulation array. The searching
strategy is, in fact, crucial for a correct identi4cation
of the fracture planes. In the next Section we will
describe an e7ective search strategy for the speci4c
application considered for this work.

In order to better understand the above plane detec-
tion strategy, let us consider the HT of four coplanar
points shown in Fig. 4. As we can expect, there exists
a point of cooccurrence for the four surfaces (clouds
of points), whose coordinates provides the parameters
of the plane of coplanarity of the four data points.

Indeed, the above ideal situation of perfect copla-
narity never actually occurs. In fact, in typical real
situations peaks are not so pronounced and isolated
because
• fractures have non-zero thickness (“loose 4t” of

planes),

Fig. 4. Hough transform of four coplanar points. A di7erent colour
is used for the cloud of points associated to each data point. The
distance between adjacent points is related to the quantisation
step of �; � and d. All surfaces intersect in just one point which
identi4es the parameters of the plane that the data points lie on.

• fractures have non-perfectly planar shape (irregular
scattering of points),

• data space is discrete (quantised data coordinates),
and

• parameter space is discrete (quantised plane param-
eters).

As a consequence, there is a region around each peak
in the Hough space where the cumulation array takes
on signi4cant values, and the shape of this region is
strongly in<uenced by the shape of the HT of a sin-
gle data point. In fact, Fig. 4 suggests that the shape
of this region (cumulation region) will be that of a
thickened portion of a 3D sinusoid (often similar to a
thick bowl). In order to visualise this fact, we simu-
lated a number of 100 × 100 × 100 voxel specimens,
whose points of fracture lie on single planes. In our
simulations the number of fracture voxels varies from
about 5000 to about 15; 000. Fig. 5 shows a perspec-
tive view of a typical cumulation region in the Hough
space. In this image, grey levels evoke the magnitude
associated to each cell (the colour scale ranges from
red to black going through orange, yellow and blue),
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Fig. 5. A perspective view of the cumulation array (Hough space)
associated to a set of coplanar voxels (data space). The grey scale
is used to give an idea of the value associated to each cell. The
cell with the highest value is the black one marked with m. In
order to help visualise the data, only the cells with value greater
than 100 are shown.

and only the cells whose value is greater than 100 are
displayed.

When more than one plane of fracture are present,
the Hough space exhibits several cumulation regions
that are similar to the one shown in Fig. 5. Considering
that fractures may di7er signi4cantly from one another
in the number of signi4cant voxels, the fact that each
local peak is surrounded by other peaks of comparable
value makes the identi4cation of planes of fracture
quite complex. In fact, a simple peak search strategy
would not produce reasonable results.

In order to be able to detect not just the leading
fracture but also minor ones, we could proceed by
4rst identifying cumulation regions corresponding to
the various signi4cant planes of fracture, and then se-
lecting the local maxima (one per region). This ap-
proach, however, requires the cumulation regions to
be separated from each other. Unfortunately, this does
not usually happen as they often overlap one another
in the Hough space. This problem, together with sev-
eral others, led us to develop a novel search strategy,
which we will introduce in the next Section.

4. An e�ective approach for planar fracture
detection

When looking at a data set such as the one shown
in Fig. 1, the detection of planar structures (fractures)
appears to be very complex. In fact, fractures are not
continuous, their thickness is often signi4cantly larger
than one voxel, and it may vary a great deal along the
fracture’s extension.

In order to better illustrate the various problems that
arise when dealing with real data, we will 4rst consider
the characterisation of the leading fracture, and from
there we will describe our global search strategy.

4.1. Identi3cation and characterisation of the
leading fracture

Considering the de4nition of the Hough space given
in the previous Section, we should expect the leading
fracture to correspond to the global maximum in the
Hough space. Normally fracture’s thickness exceeds
one voxel, therefore a measurement of its total volume
is signi4cant for its characterisation. In order to mea-
sure its volume we can count the signi4cant voxels
that lie within a “thick slice” centred on the considered
plane. In order to decide a reasonable slice thickness,
we can take into account the analysis of di7erent real
data sets and the information provided by geophysi-
cists. In the case of an X-Ray CT with a 1 mm cubic
voxel, we can use a typical thickness of 5 voxel (frac-
ture’s thickness is normally smaller than that). It is
also possible to compute the “extension” (area on the
plane) of the fracture. This measurement is obtained
by computing the sum of the projections on the esti-
mated plane of all the fracture voxels. Normally, data
sets are very large (to the order of 100×100×100 vox-
els), therefore in order to ensure a rapid evaluation of
the fracture volume the slice height is oriented along
the coordinate axis that is perpendicular the most to
the fracture plane (see the 2D case shown in Fig. 6).

When considering a fracture of signi4cant thick-
ness, a maximum in the Hough space may not cor-
respond to the plane that best represents a fracture.
This can be more easily understood when considering
a simple two-dimensional data set corresponding to a
single fracture of constant thickness (see Fig. 7). Since
the maximum of the HT corresponds to the plane of
“maximum consensus”, i.e. the plane (dashed line of
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Fig. 6. Thick slice used to evaluate the fracture volume, as measured with reference to the estimated plane. For the sake of clarity we
consider a 2D case, therefore voxels here correspond to pixels and planes correspond to lines.

Fig. 7. Di7erence between the plane that correctly identi4es a fracture and the one actually detected through the analysis of the Hough
transform. Like in Fig. 6, the situation is depicted just for the 2D case.

Fig. 7) that 4ts the largest number of fracture voxels
(pixels), its orientation does not correspond to that of
the fracture as it ends up laying along the fracture’s
diagonal.

In many situations, the di7erence between the plane
of maximum consensus and the one that best repre-
sents the fracture can be very modest or even negligi-
ble compared to the HT’s quantisation step. Anyway,
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this error can be easily compensated for through a reg-
ularisation process based on the minimisation of the
mean square distance

L=
N∑
i=1

l2i ; (12)

where N is the total number of fracture voxels and li
is the distance of the centre of the ith voxel with from
the fracture plane.

The whole estimation procedure for the dominant
plane can be summarised as follows:
1. Computation of the HT of the given data set;
2. Determination of the global maximum of the HT

(plane of maximum consensus);
3. Determination of the fracture voxels;
4. Computation of the best-4tting plane through linear

regression (minimisation of the mean square dis-
tance (12)). This process can be carried out through
a full-search procedure over a set of planes whose
parameters are centred around that of maximum
consensus.

Once determined the best-4tting plane, we can esti-
mated the fracture’s volume, its extension, and the
thickness distribution (see Fig. 8).

4.2. Identi3cation of the other fractures

In the previous section we described the procedure
adopted for the localisation and characterisation of the
leading fracture in the data set. The localisation of
the other fractures can be very critical. A quasi-planar
point-set generates in the Hough space a cumulation
region (a cloud of points with signi4cantly large cu-
mulation values) such as the one shown in Fig. 5.
When the data exhibit several planar point-sets, a cor-
responding number of cumulation regions will appear
in the Hough space. Such “clouds” will often intersect
one another quite heavily (depending on the relative
position and orientation of the fracture planes) with
the result that:
• the geometry of the overlapped regions changes dra-

matically (see Fig. 9);
• “weaker” cumulation regions are often “masked”

by stronger overlapping regions.
Because of the above reasons, cluster detection [15,2]
followed by local peak search in the Hough space
cannot guarantee reliable results.

Fig. 8. In a perspective view both the position=orientation and
the local thickness of the fracture, relative to a real data set, are
shown. The black areas identify the regions of the plane where
the fracture is, in fact, not present. The local thickness increases
from yellow to green, blue and white.

In order to overcome such diJculties, we developed
a novel approach to the identi4cation of the planar
data structures, based on a combined analysis of the
Hough space and the data space. Here are the main
steps of this approach:
1. Computation of the HT;
2. Detection of the dominant plane through the

previously-described approach (Hough space anal-
ysis);

3. Identi4cation of the fracture voxels (data space
analysis) that pertains to the detected fracture;

4. Estimation of the HT associated to the dominant
fracture and subtraction of this transform from
the HT of the whole data set; the residual HT is
now purged of the contribution of the dominant
plane, therefore we can proceed with the search of
the second to the second most dominant plane by
repeating steps 2–4.

5. The process is iterated until all the signi4cant frac-
tures are identi4ed. One reasonable stopping cri-
terion consists of checking whether the volume of
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Fig. 9. A perspective view of the cumulation array (Hough space)
associated to a data set containing two planar structures plus a
number of signi4cant voxels randomly scattered in the data space.
A grey scale is used to visualise the values associated to the cells
(see also Fig. 5). In order to provide a clearer view, only cells
whose value is ¿ 100 are shown.

the last detected fracture is negligible compared to
the dominant fracture.

As we can see, the point of strength of this
plane-search procedure is in the fact that at every step
we always search for the dominant plane among what
is left from the previous compensation.

It is interesting to notice that each fracture voxel
contributes to the Hough map only once. Similarly,
the removal of the contribution of the (current) domi-
nant fracture must be done in such a way to count the
contribution of each fracture voxel only once as well.
This way the residual of the Hough map will never be
negative.

5. Experimental results

The proposed approach for fracture detection has
been tested on a variety of synthetic and natural data
sets. The size of the considered voxsets are 50×50×50
and 100 × 100 × 100 voxels. As for the quantisation
of the Hough space (the size of the elementary cell
in the cumulation array) we chose for the two angles

    

Fig. 10. Fracture localisation uncertainty.

a step of 2o ≈ 0:035 rad, while for the distance d
(see Eq. (7)) the step size was chosen to be equal
to the voxel side (typically 1 linear unit). The choice
of a 2o stepsize for the angular coordinates is related
to the fact that too dense a quantisation would only
increase the computational load without signi4cantly
improving the ability to localise fracture planes. This
can be attributed to the fact that a 4nite voxel size
is responsible for a certain degree of ambiguity in
the exact de4nition of the fracture’s orientation. For
example, a fracture having a square extension of 60
voxels per side, and a thickness of 1 voxel will carry
an intrinsic localisation uncertainty of about 2o (see
Fig. 10).

As for the performed tests, we 4rst considered sim-
ple synthetic data sets that included a single fracture
with various locations, orientations, extensions and
thickness (4xed or variable) and a number of signi4-
cant voxels randomly scattered in the data volume. In
such cases the structure detected by the algorithm cor-
responded to the fracture. We then considered more
complex synthetic data sets such as the one of Fig. 11.

This data set includes six fractures of di7erent
shapes and dimensions. For all the fractures the thick-
ness is one voxel. The data set also includes a large
number of scattered signi4cant voxels. The results
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Fig. 11. A perspective view of a synthetic data set that includes
six fractures with di7erent shapes and sizes. All the fractures are
one voxel thick. There is also a large number of “signi4cant”
voxels randomly scattered in the volume.

Fig. 12. A perspective view of the results obtained from the
analysis of the data set shown in Fig. 11. The six fracture actually
present on the data are perfectly identi4ed (see how the grey
areas perfectly overlap the black ones). Moreover, some other
very small fractures are detected. This is due to the amount of
scattered “signi4cant” voxels.

of the analysis are shown in Fig. 12. The six frac-
tures that are actually present in the data are perfectly
identi4ed (see how the grey surface patches perfectly

Fig. 13. Another perspective view of the data set of Fig. 1. The
fracture models (planes whose transparency depends on fracture
thickness) are superimposed.

overlap the black ones), with a very strong resilience
against the randomly scattered signi4cant voxels. In
fact, additional other very small fractures are detected
by the method. Such fractures are, in fact, gener-
ated by the random coplanarity of signi4cant voxels
within the dense clouds of scattered data. Such ad-
ditional planes can be easily removed after checking
the volume, the extension, and the distribution of the
detected fractures. As far as the accuracy of the local-
isation is concerned, it always turned out to be below
the predicted level of intrinsic uncertainty.

This experiment also allowed us to test the criterion
we adopted to determine when to end the iterations.
The volume of the data set was 103 cm3, while the
surface of the leading fracture was 173 cm2 and that
of the other 4ve fractures was always above 0:35 cm2,
which corresponds to 0.2% of 173 cm2. Knowing this
allows us to set the threshold that will decide when
to end the iterations. In fact, we can decide not to
consider fractures whose area is no greater than 0.2%
of the leading one.

We also carried out some tests on real data sets. The
results relative to the data set of Fig. 1 are presented
in Figs. 13–15. The voxel size is determined consider-
ing the size and the accuracy of the data set. Since the
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Fig. 14. A di7erent perspective view of the data set of Fig. 1. The
two leading fracture planes are superimposed.

spatial resolution of the tomographer we used to
extract volumetric data is about 1 mm and the rock
samples we analysed are cylinders of about 8–
10 cm in diameter, we used a voxset size of about
100 × 100 × 500 voxels. A perspective view of both
the original data set and the estimated fracture plane
representation are shown in Fig. 13. In Figs. 14 and 15
we can see the planes relative to the two leading frac-
tures. Using the same thresholding method adopted
with synthetic data, and ruling out fractures whose
area is no greater than 2% of the area of the leading
fracture, we end up with 18 fractures, in order of rel-
evance, all accurately positioned in 3D space (and all
with a measurement of the relative volume and area),
which is more than a human operator would ever be
able to achieve. In fact, both the original data set and
the obtained results were accurately inspected by an
expert analyst using a volume=surface rendering sys-
tem. This manual inspection process con4rmed the
quality of proposed technique.

It is important to notice that this method returns the
parameters of the fracture planes and the related data
in a reverse order of importance. Occasionally, usually
with data sets that include a large number of fractures
that are close to each other, the order in which the
fractures are detected may not be exactly the one re-
lated to their extension. This is due to the fact that the
cumulation regions of two close fractures (see Figs. 5

Fig. 15. Perspective view of the data set of Fig. 1, with the two
leading fracture planes. The fracture thickness appear as an image
on the fracture plane. Fracture planes are partially transparent for
visualisation purposes.

and 7) are so heavily overlapped that the minor peak
ends up increasing above the level of the major peak.
This, however, does not prevent all fractures from be-
ing correctly estimated. All that could be required in
that case is a post-sorting process based on the frac-
ture extension=volume.

6. Some software implementation details

The software of our algorithm has been imple-
mented in C++. The current version runs on Win-
dows, Linux and IRIX platforms. In particular the
processing of a 128 × 128 × 128 voxset similar to
the one of Fig. 1, running on a PC equipped with
a PIII 700 Mhz and a 256 MB RAM, takes about
5 min.

In order to develop and validate the algorithm
we also had to overcome signi4cant visualisa-
tion problems for both data and fracture planes.
In order to guarantee portability and to simplify
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future SW expansions, we developed a volume=
surface visualisation SW based on JAVA 3D. All the
images of data sets and results have been obtained
with this visualisation tool. It is important to under-
line that a standard PC with a modern accelerated
video board enables a very comfortable and natural
visualisation and manipulation of the considered data
sets and of the relative results.

7. Conclusions

In this article we proposed an algorithmic approach
to planar fracture detection and characterisation based
on a particular implementation of the HT. One of the
original aspects of our approach is in the pattern de-
tection strategy. Our approach, in fact, is iterative, and
it consists of the progressive removal of the cumula-
tive layers in the Hough space. At every step, we de-
termine the leading fracture among the residual ones
after the removal of the previous cumulative layer.

The proposed solution proved e7ective even with
the most complex data sets, always with better
accuracy than what predicted.

It is important to emphasise the fact that our ap-
proach to fracture detection is general enough to
accommodate a variety of applications of pattern
detection. In particular, we can change reference
model in order to detect di7erent types of surfaces.
Examples of surface models that could be detected
are spherical, parabolic or hyperbolic, although the
Hough space would have to have more dimensions
than three.

Future developments of this technique concern the
possibility to use greyscale information to improve
plane detection. Considering the discussion given in
the Introduction about using greyscale values for this
purpose, we could devise a strategy that uses gradient
information to quickly obtain a rough estimate of the
planes in 3D space, and then uses a greyscale version
(without gradient information) to re4ne the extracted
data. Indeed, this second re4nement phase, would need
a preliminary pre-processing phase to limit data to
fracture regions. Having a rough estimate of the planes
would also help reducing the search space for the
second phase.

Acknowledgements

We wish to thank ENI-AGIP (national Italian oil
company) for 4nancially supporting this research
activity and for giving us permission to publish this
article with their data sets. In particular, we are grate-
ful to Drs. Daniela Mattiello and Massimo Balzarini
for their help during the research activities, for col-
lecting and preparing the volumetric data and for the
fruitful discussions on the study of fractures in rock
samples.

References

[1] P.M. Adler, J.F. Thovert, Fractures and Fracture Networks,
Kluwer Academic Publishers, Dordrecht, The Netherlands,
1999.

[2] J.C. Bezdek, Some new indexes of cluster validity, IEEE
Trans. Systems Man Cybernet. 28 (3) (June 1998) 301–315.

[3] M. Bomans, K.H. Hohne, G. Laub, A. Pommert, U. Tiede,
Improvement of 3D acquisition and visualisation in MRI,
Magn. Res. Imaging 9 (1991) 597–609.

[4] A.R. Brown, Interpretation of Three-Dimensional Seismic
Data, 5th Edition, Society of Exploration Geophysicists,
1995.

[5] J.P. ChilTes, Fractal and geostatistical methods for modelling
of a fracture network, Math. Geol. 20 (6) (1988)
631–654.

[6] M.P. Coward, T.S. Daltahan, H. Johnson, et al., Structural
Geology in Reservoir Characterisation (Special Publications),
Geological Society, London, 1998.

[7] P. Davy, A. Somette, D. Sornette, Experimental discovery
of scaling laws relating fractal dimensions and the length
distribution exponent of fault systems, Geophys. Res. Lett.
19 (4) (1992) 361–363.

[8] N.H. Dawers, M.H. Anders, C.H. Scholz, Growth of normal
faults: Displacement-length scaling Geology 21 (1993) 1107–
1110.

[9] R.O. Duda, P.E. Hart, Use of the Hough transformation to
detect lines and curves in picture, Commun. ACM 15 (1)
(January 1972) 11–15.

[10] W.A. Edelstein, Oil core NMR imaging=spectroscopy
instrumentation, Magn. Res. Imaging 9 (1991) 67–865.

[11] J. Foley, A. van Dam, S. Feiner, J. Hughes, Computer
Graphics: Principles and Practice, Addison-Wesley, Reading,
MA, 1995.

[12] M. van Ginkel, L.J. van Vliet, P.W. Verbeek, M.A.
Kraaijveld, E.P. Reding, H.J. Lammers, Robust curve
detection using a radon transform in orientation space applied
to fracture detection in borehole images, in: R.L. Lagendijk
et al. (Eds.), ASCI’01, Proceedings of the Seventh Annual
Conference of the Advanced School for Computing and
Imaging, Heijen, The Netherlands, May 30–June 1, ASCI,
Delft, 2000, pp. 299–306.



1282 A. Sarti, S. Tubaro / Signal Processing 82 (2002) 1269–1282

[13] E. Gringarten, 3-D geometric description of fractured
reservoirs, Math. Geol. 28 (7) (1996) 881–893.

[14] J. Illingworth, J. Kittler, A survey of the Hough transform,
Comput. Vision, Graphics Image Process. 44 (1988) 87–116.

[15] A. Jain, R. Dubes, Algorithms for Clustering Data,
Prentice-Hall, Englewood Cli7s, NJ, 1988.

[16] K. Koike, K. Kaneko, Characterisation and modelling of
fracture distribution in roch mass using fractal theory,
Geothermal Sci. Technol. 6 (1999) 43–62.

[17] K. Koike, K. Komorida, Y. Ichikawa, Fracture-distribution
modelling in rock mass using borehole data and geostatistical
simulation, Annual Conference of the International
Association for Mathematical Geology, IAMG 2001, CancVun,
Mexico, September 6–12, 2001.

[18] J.C.S. Long, D.M. Billaux, From 4eld data to fracture network
modelling: an example incorporating spatial structure Water
Resources Res. 23 (2) (1987) 1201–1216.

[19] National Research Council, Rock Fractures and Fluid Flow,
Contemporary Understanding and Applications, National
Academic Press, Washington, DC, 1996.

[20] F. O’Gorman, M.B. Clowes, Finding picture edges through
collinearity of feature points, IEEE Trans. Comput. 25 (4)
(1976) 449–456.

[21] L.J. Pyrak-Nolte, C.D. Montemagno, D.D. Nolte, Volumetric
imaging of aperture distributions in connected fracture
networks, Geophys. Res. Lett. 24 (18) (September 1997)
2343–2346.

[22] J. Sklansky, On the Hough technique for curve detection,
IEEE Trans. Comput. C-27 (10) (October 1978) 923–926.

[23] B.B. Thapa, P. Hughett, K. Karasaki, Semi-automatic analysis
of rock fracture orientations from borehole wall images,
Geophysics 62 (1) (January–February 1997) 129–137.

[24] F.M. Verga, G. Giglio, F. Masserano, L. Ruvo, Calibration
of fractured reservoirs with dynamic data, SPE Reservoir
Simulation Symposium, February 11–14, 2001, Houston, TX,
USA.

[25] M. Vignes-Adler, A. La Page, P.M. Adler, Fractal analysis
of fracturing in two African regions, from satellite imagery
to ground scale, Technophysics 196 (1992) 69–85.

[26] P. Weimer, T.L. Davis (Eds.), Application of 3-D Seismic
Data to Exploration and Production, Society of Exploration
Geophysicists, 1996.

[27] R.K.K. Yip, P.K.S. Tam, D.N.K. Leung, Modi4cation of
Hough transform for circles and ellipsis detection using a
two-dimensional array, Pattern Recognition 25 (9) (1992)
1007–1022.


	Detection and characterisation of planar fracturesusing a 3D Hough transform
	Introduction
	Basics on the Hough transform
	3D Hough transform for plane detection
	Some remarks on the numerical implementation of a 3D-HT

	An effective approach for planar fracture detection
	Identification and characterisation of the leading fracture
	Identification of the other fractures

	Experimental results
	Some software implementation details
	Conclusions
	Acknowledgements
	References


