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Image-based surface modeling: a multi-resolution approach
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Abstract

In this article we propose a general and robust technique for modeling surfaces through the analysis of multiple image
acquisitions. Our method is based on the minimization of the multi-view texture mismatch and is inherently multi-resolution,
as the surface is obtained through a progressive re0nement of hierarchical radial basis functions. ? 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Classical stereometric methods for 3D data ex-
traction from multiple views are based on the de-
tection, matching and geometric triangulation of
viewer-invariant features such as corner points or
“sharp” edges. Such methods, unfortunately, are un-
able to generate dense clouds of 3D data, therefore
it is usually quite di8cult to interpolate them into a
global surface that resembles the shape of the imaged
object. In order to generate denser depth maps, a
widely adopted solution is stereopsis, which consists
of determining the correspondences between the lu-
minance pro0les of small image areas on the available
views [9,17,21]. The 3D coordinates of the surface
patch that originated a homologous pair of luminance
pro0les can, in fact, be computed through geometric
triangulation, while the area matching in di>erent
views is usually based on the optimization of some
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similarity function (or the minimization of the texture
mismatch) between luminance pro0les.
The literature is rich with solutions based on this

area matching approach, which basically di>er in the
surface representation, in the matching strategy and in
the adopted regularization constraints. For example,
the surface model can be in implicit or explicit form:
the former is based on the evolution of a volumetric
function’s levelset [6,11] (an implicit function in 3D
space) driven by the texture mismatch between views;
the latter consists of patchworking [22] several depth
maps (explicit functions) obtained through stereopsys
[9,17,21].
Depth map estimation is usually based on the anal-

ysis of a limited number of views (typically two
or three) and it requires that all surface points are
simultaneously visible from at least two of them.
Depending on the geometry of the acquisition sys-
tem, the surface parametrization can be that of an
elevation map (distance from a reference plane) or
a perspective depth map (distance from the optical
center of the reference camera). Also, besides the
usual multi-view constraints such as the epipolar one,
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it usually requires some additional constraints to im-
prove the estimation’s robustness, such as ordering
constraints [17] or smoothness constraints (locally
constant depth [9], or locally planar surface [21]).
It is also possible to account for lens distortion and
non-lambertian surface reGectivity [21].
All such solutions, however, need an initial approx-

imation of the object surface in order to prevent the al-
gorithm from encountering relative minima, which is,
in fact, a major limitation. The 3D modeling approach
that we propose in this article, on the contrary, is able
to estimate the surface geometry e>ectively and e8-
ciently without producing outliers and without need-
ing any initial model. The method, in fact, begins with
modeling a very simple (low-resolution) surface and
applies plastic deformations to it by changing a limited
number of parameters until the projection of textures
on it agrees at best. This “modeling bootstrap” relies
on a multi-resolution surface shaping strategy. Every
time the resolution increases, previously missing de-
tails are added in such a way to improve the similarity
between projected textures. In order to do so, the sur-
face is modeled as a hierarchical radial basis function
(RBF) network [3] made of 2D gaussian functions po-
sitioned on regular hexagonal grids of progressively
increasing density.
The article is organized as follows: after a brief

introduction to some basic facts of multiple-view
geometry, included in Section 2, we will discuss the
parametric surface representation adopted in this arti-
cle in Section 3. This will enable us to introduce, in
Section 4, our approach to image-based 3D modeling.
Section 5 will illustrate some results obtained from
real image acquisitions. Finally, in Section 6 we will
draw some conclusions on the proposed strategy, dis-
cuss future perspectives of this solution and propose
possible improvements.

2. Some general concepts surface and
multiple-view geometry

The problem of estimating the 3D geometry of a
scene from two or more of its views has received
a considerable attention in the computer vision lit-
erature (see, for example, [10]). The basic idea is
to start from two or more views of the scene and
use the image coordinates of corresponding image
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Fig. 1. Multicamera stereo geometry: p1; p2; p3 are image points
that correspond to a same point x in the 3D space. The optical
rays associated to corresponding image points intersect in x. c1; c2
and c3 are the optical centers of the cameras.

features to determine the 3D position (see Fig. 1)
of the scene features that generated them. The math-
ematical tools that are required to successfully per-
form this task come from projective geometry (the
camera model is a perspective projection); di>eren-
tial topology (surfaces are modeled as manifolds); and
multi-view geometry (model shaping is based on stere-
ometry).
In this section we will brieGy discuss some of the

basic concepts that will prove useful in the following
sections. These concepts are here collected mostly for
the sake of setting a homogeneous notation and vo-
cabulary.

2.1. The camera model

We assume that the cameras perform a perspective
projection of the 3D world on the image plane (pin-
hole camera). Considering that the image coordinates
are expressed in pixel units (see Fig. 2), the projec-
tive coordinates u = [u1; u2; u3]T of the image point
(the image coordinates are x = u1=u3; y = u2=u3) are
obtained as u = Px where P is a 3 × 4 projection
matrix and x= [x1; x2; x3; 1]T are to the projective co-
ordinates of the corresponding 3D point. When the
reference frame corresponds to that of the projective
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Fig. 2. A scheme for the image formation process.

camera (see Fig. 2) the projection matrix takes on a
very simple form P= KP0, where

K =



f=dx 0 xo>
0 f=dy yo>

0 0 1


; P0 =



1 0 0 0

0 1 0 0

0 0 1 0


: (1)

f is the focal length; dx and dy are the horizontal
vertical size of the camera pixel; and xo> and yo> are
the horizontal and vertical o>sets between the image
center and the camera’s principal axis.
If we apply a rigid motion (rotation matrix R and

translation vector t) to the camera, the projection
matrix becomes P= KP0G, where

G =

[
RT −RTt

0 0 0 1

]
: (2)

The perspective projection operated by a real lens,
however, is less ideal than the one described above.
In fact, lens distortion (a non-linear stretching of the
image plane) needs to be accounted for. In most cases,
lens distortion is practically radial [14], and can be
modeled by a power series of the form

ru = rd(1 + k3r2d + k5r4d + · · ·);
truncated to the third or the 0fth order [25], where ru
and rd are the distances from the principal point of the
distorted and undistorted image points.
In what follows we will assume that the relative

positions, orientations and the internal parameters

(e.g. focal length, lens distortion coe8cients) of the
camera(s) during the acquisition session are known
(calibrated acquisition system [19,25]), and that lens
distortion has been compensated for [21] through im-
age warping or through a coordinate distortion func-
tion [21].

2.2. Local charts on surfaces

Modeling surfaces means shaping 2D manifolds,
which are di>erential topological entities that locally
look like a vector space. Basically, a manifold can be
seen as an atlas made of a collection of “local” maps
that can be “gently” Gattened. More precisely, a subset
M of R3 is a smooth manifold of dimension 2 if for
each point x∈M there is a neighborhood W ⊂ M
that can be smoothly and invertibly mapped onto a
subset U ⊂ R2 in a one-to-one fashion. The mapping
 from W ⊂ M to U ⊂ R2 is thus called a “system
of coordinates” (or “coordinate map”) on W , and its
inverse  −1 is called a “parametrization” [26].
One very simple example of surface parametriza-

tion is the elevation map with respect to a reference
plane, usually perpendicular to the viewing direction.
Another typical choice is the depth map, where the
depth is measured as the distance from surface and the
optical center of a “reference” camera (perspective
depth map). In this second case, the parametrization
is simply the mapping from the image plane to the
object surface, i.e. the prolongation of the optical ray
from the image point to the object surface. In general,
we could choose any parametrization that best 0ts
the viewing conditions and the object’s topology. An
elevation map is suitable for a limited class of 2 1

2D
surfaces viewed from a distance d�f, while a per-
spective depth map is more suitable for 2 1

2D sur-
faces acquired from a closer viewpoint. This last
parametrization, in fact, is the one that guarantees the
maximum consistency between images and surface
topology as depth is measured along optical rays,
and images are acquired in such a way to capture the
surface geometry at best (see Fig. 3).

2.3. Transferring and comparing luminance pro/les

As already said in Section 2.2, a perspective depth
map guarantees the maximum consistency between
images and surface topology. In fact, with reference to
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Fig. 3. A 2D sketch of the perspective depth map and of the point
correspondence between two views.

Fig. 3, we can see that it guarantees a one-to-one corre-
spondence between image points of the reference view
and surface points. In fact, adopting a multi-camera
system for surface reconstruction, it seems logical to
choose the most central view as a reference for this
parametrization.
In order to characterize the mechanism that allows

us to estimate the correct surface depths using the
available views, we need to de0ne somemeasure of the
mismatch between luminance pro0les acquired from
di>erent viewpoints. This requires a detailed charac-
terization of the luminance transfer between image
planes (See Fig. 4).
Let us consider a point x = [x1; x2; x3; 1]T on the

surface of the object to be reconstructed and let u(1) =
[u(1)1 ; u(1)2 ; u(1)3 ]T=P1x and u(2)=[u(2)1 ; u(2)2 ; u(2)3 ]T=P2x
be the projective coordinates of this point, as viewed
from two cameras (see Fig. 1). The corresponding
image coordinates will thus be

(x(1); y(1)) =

(
u(1)1

u(1)3

;
u(1)2

u(1)3

)

and

(x(2); y(2)) =

(
u(2)1

u(2)3

;
u(2)2

u(2)3

)
:
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Fig. 4. Luminance transfer: the texture on image 1 is back-projected
onto the object surface and re-projected onto the image plane 2.

Using the 0rst camera as a reference, the surface can
be parametrized by a smooth perspective depth map of
the form d(x(1); y(1)), where d measures the distance
between surface point and c1.

The 3D coordinates of the point x = [x1; x2; x3; 1]T

can be quite easily written as a function of the image
coordinates (x; y) and the depth d as

x1 =
xd√

x2 + y2 + f2
; x2 =

yd√
x2 + y2 + f2

;

x3 =
fd√

x2 + y2 + f2
:

When the focal length f is much greater than the
image coordinates x and y, the above expressions
become

x =
[
xd
f

;
yd
f

; d; 1
]T

:

It is now possible to 0nd a closed-form expression of
the image coordinates (x(2); y(2)) on �2 as a function
of the image coordinates (x(1); y(1)) on �1 and the
depth d. In fact, assuming that u(1) =K1P0x and that
u(2) = K2P0Gx (where the reference frame of point
x is attached to camera 1 and G describes the rigid
motion from camera 1 to camera 2), we can write

u(2) =K2P0G

[
X

1

]
= K2[R − RTt]

[
X

1

]

=K2RX − K2RTt;
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where X=[x1 x2 x3]T, whose components are written
above as a function of x(1); y(1) and d. The result-
ing expression after normalization with respect to the
third component, provides the (nonlinear) relationship
between stereo-corresponding coordinates.
Let I1 and I2 be the luminance pro0les of the two

images. Assuming that the surface reGectivity is per-
fectly Lambertian [19] we can write

I1(x(1); y(1)) = I2(x(2); y(2)): (3)

where the image coordinates (x(2); y(2)) on �2 can be
written as a function of the corresponding image co-
ordinates (x(1); y(1)) on �1 and the depth d as shown
above. This luminance constancy constraint can be
used to compute the depth d. However, relying on
this constraint is very risky, as several pixels on the
epipolar line could have the same luminance. In order
to reduce this risk, we need to make a shape regular-
ization assumption in the neighborhood of (x(1); y(1)).
The simplest way to proceed would be, for example,
to assume that the depth is constant in a neighbor-
hood˝ of (x(1); y(1)). This depth constancy constraint
(zero-order smoothness assumption) allows us to es-
timate the depth d through the minimization of a cost
function [11] of the form

C(d) =
∫ ∫

˝
[I1(x; y)

−I2(x(2)(x; y; d); y(2)(x; y; d))]2 dx dy: (4)

This can be done to estimate the depth of all surface
points that are visible on both images.
A better regularization constraint is represented

by the tangent plane constancy constraint (0rst-order
smoothness), which consists of assuming that the
surface is planar in a neighborhood ˝ of (x(1); y(1)).
Let us assume that the surface is locally described by
a plane of equation sTx = 0, where s = [s1 s2 s3 1]T,
and let S be the back-projection of ˝ onto the sur-
face. The projective image coordinates u(2) =P2x of a
point x∈ S can be written as a function of u(1) =P1x,
through a collineation (a linear projective mapping)

u(2) = K(s)u(1); u(1) = [x(1) y(1) 1]T;

(x(1); y(1))∈˝: (5)

The collineation K(s) (a 3× 3 invertible matrix) can
be written in closed form as a function of the (three)

parameters of the plane (and of the camera param-
eters), as shown in [21]. This allows us to estimate
the tangent plane s through the minimization of a cost
function of the form

C(s) =
∫ ∫

˝
[I1(u)− I2(K(s)u)]2 du: (6)

Indeed, this second way of proceeding requires the
estimation of three parameters instead of one, but pro-
vides more information (a di>erential surface descrip-
tion of order 1). This, by the way, could be exploited
to reduce the density of the depths to be computed.
More generally, we could choose a more complex

parametric model for the surface shape whose region
of support ˝ could be limited to a neighborhood of
modest size (local approach), or it could be arbitrarily
large, up to the size of the entire viewed surface (global
approach).
If we express the depth as a function of a limited set

of surface parameters p = (�1; : : : ; �N ) (see Section 3
for a more detailed description), we can de0ne a cost
function of the form

C(p) =
∫ ∫

˝
[I1(x; y)

−I2(x(2)(x; y; p); y(2)(x; y; p))]2 dx dy: (7)

The surface parameters that minimize the luminance
mismatch can thus be estimated as

p̂= argmin
p

[C(p)]: (8)

In general, the CCD sensors of the cameras used
for image acquisition do not exactly have the same
physical and electrical characteristics, therefore the
luminance constancy constraint cannot be taken for
granted. In order to overcome this di8culty, we can
modify this constraint as

I1(x(1); y(1)) = a12 + g12 · I2(x(2)(x(1); y(1); p);

y(2)(x(1); y(1); p));

where a12 and g12 represent a di>erential o>set and a
di>erential gain between the two cameras [1]. In order
to keep this problem into account the cost function (7)
can be rewritten as

C(p) =
∫ ∫

˝
[(I1(x; y)− I1)− g12(I2(x(2)(x; y; p);

y(2)(x; y; p))− I2)]2 dx dy; (9)
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where I1 and I2 are the mean values of the luminance
pro0les, while g12 can be estimated by comparing the
views of some reference object.
This last model-based approach to parametric sur-

face estimation is the focus of this article, therefore in
the next section we will develop it further.

3. Modeling surfaces with RBF networks

In the previous section we described in a general
fashion how to approach the surfacemodeling problem
through a global minimization process. The question
that we would like to answer now is how to de0ne
a suitable parametric surface model for this purpose,
and how to perform an image-based estimation of its
parameters through a procedure of practical usability.
One of the characteristics that we would like our

parametric surface model to have is a simple control of
its smoothness. In fact this characteristic would enable
a control of the surface resolution, and favor a certain
robustness in the parameter estimation.
Although the literature is rich with parametric

surface models with controlled smoothness (see for
example [2,13,23,24]), our interest in radial basis
functions (RBFs) [2] arises from the fact that they
can also be organized hierarchically (HRBF), which
makes them good candidates for multi-resolution
methods. Among the RBFs, we are interested in
radially symmetric gaussian functions, as they are
circularly symmetric in spite of their separability. Let
s= [x y]T be the image coordinates of a point on the
reference image plane �1. The surface model can be
expressed in parametric form by expressing the depth
map as a weighed linear combination of gaussians of
the form

d(s) =
M∑

m=1

wmG(s; sm; �m);

G(s; sm; �m) =
1

��2
m
e−|s−sm|2=�2

m ;

(10)

where M is the number of gaussians; the image points
sm; m=1; : : : ; M , provide the depth rays along which
the centers of the gaussians are positioned; while
wm and �m represent their weights (magnitudes) and
spreads (standard deviations).

If the gaussians are scattered on a regular and sep-
arable (rectangular) grid on the image plane and the
maximum viewing angle � on the CCD is not very
wide (so that tan � ∼= �), then all the gaussians can be
assumed to have the same spread (�m=�). In what fol-
lows, we will always assume that this is true, although
removing this hypothesis would not generate unbear-
able complications, as it would require the adoption of
a mildly space-varying spread. In fact, a regular grid
on the image plane would project onto the viewing
sphere as distorted (non-uniform) grid. Anyway, we
can assume this model to be completely speci0ed by
the set of weights wm; m=1; : : : ; M . As far as the grid
density is concerned, the choice will have to be made
in such a way to capture all the details of interest [4,5].

3.1. Hierarchical Radial Basis Function (HRBF)
networks

The nonlinear optimization problem set forth in Sec-
tion 2.3 exhibits potential problems of convergence to
a global minimum. This encourages us to search for a
solution that allows us to tackle the parametric estima-
tion problem in a progressive (multi-resolution) fash-
ion. One such solutions would allow us to subdivide
the optimization process in several steps; to “navigate”
the parameter space in a more e8cient fashion; and
to adapt the total number of parameters to the level
topological complexity of the imaged surfaces [5].
A multi-resolution representation of our paramet-

ric surface is provided by Hierarchical Radial Basis
Function (HRBF) networks. In this case, the surface
representation is organized in layers of di>erent res-
olution, each built on a set of uniformly distributed
gaussians with the same spread. The gaussians are
usually positioned on a regular and separable (rectan-
gular) grid. From one layer to the next one the grid
density increases (normally it doubles in both direc-
tions) in order to capture 0ner details. This hierarchy
of basis functions can be speci0ed by rewriting Eq.
(10) as

d(s) =
L∑

l=1

Kl∑
k=1

wlkG(s; slk ; �l);

G(s; slk ; �l) =
1

��2
l
e−(s−slk )2=�2

l ;

(11)
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where L is the number of resolution layers; Kl is the
number of Gaussians in the lth layer; and �l is the
standard deviation of the gaussians of that layer. In
order to obtain a good surface representation, the value
of �l should be chosen according to the grid density.
A good choice for the spread is proposed in [4] as

�l = 1:465 · #l; (12)

where #l is the grid step (along x or y) for the layer l.

3.2. RBF networks as surface interpolators

Let us consider a smooth function d(s), whose
values are known only in a limited set of points
(sk ; k = 1; : : : ; K), arbitrarily scattered on a certain
domain. The value of d(s) in an arbitrary point s of
that domain can be estimated as a weighed sum of
the known samples sk

d(s) =

∑
sk∈A( Ps) d(sk)w(|s − sk |)∑
sk∈A( Ps) w(|s − sk |)

:

The support A(s) of the function’s sampling is, in prin-
ciple, the set of all the K points where d is known. In
practice, however, its extension may be limited to the
so-called receptive /eld of s, i.e. to the set of the clos-
est points to s. Among the possible choices of weight
functions w(·), gaussians are those that yield the max-
imum a posteriori (MAP) estimate of s from its sam-
pling set sk [11]

d(s) =

∑
sk∈A(s) d(sk) exp(−|s − sk |2=�2

e)∑
sk∈A(s) exp(−|s − sk |2=�2

e)
;

where the spread �e is chosen according to the sur-
face’s roughness. We will see later that an RBF ap-
proach to surface interpolation becomes particularly
useful when using a local approach to depth estima-
tion. Such methods, in fact, produce a set of depths
scattered on a regular grid, therefore the RBF inter-
polator enables a fast analytic computation of all the
other points of the support region [11]:

d̂(s) =
K∑

k=1

wkG(s; sk ; �k);

G(s; sk ; �k) =
1

��2
k
e−|s−sk |2=�2

k ;

wk = d(sk)#2;

(13)

where # is the grid step of the RBF network.

In order to improve the quality of the results and
speed up the interpolation process, once again we can
adopt a multi-resolution approach based on a HBRF
network:

d̂(s) =
L∑

l=1

d̂l(s) =
L∑

l=1

Kl∑
k=1

wlkG(s; slk ; �l);

G(s; slk ; �l) =
1

��2
m
e−(s−slk )2=�2

l ;

wlk = rlk(sk)#2
l ;

rlk(sk) =

{
d(sk) for l= 1;

d(sk)− d̂l−1(sk) for l �=1:

(14)

At each resolution level l interpolation (13) is car-
ried out through an updating process based on the
residuals rlk = d(sk) − d̂l−1(sk). In fact, the true in-
terpolated value is obtained by adding, layer by layer,
the missing details at the corresponding resolution.

4. Multi-resolution depth modeling

Although our approach to multi-resolution mod-
eling has a wide range of validity in terms of
camera-based acquisition systems, its development
has been done with reference to a speci0c calibrated
multi-camera system like the one of Fig. 5. The sys-
tem is based on three digital cameras mounted on a

Fig. 5. A prototype trinocular acquisition system.
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Fig. 6. Illustration of the surface parametrization mechanism in the case of elevation map. (a) The plane & represents the reference image
plane [10] and is shown in front of the optical center (C) only for convenience. The plane &1 is parallel to &, all the elevations can be
more conveniently referred to this plane. The gray volume identi0es the space that contains the object of interest. (b) Arrangement of the
gaussians on the 0rst layer of the HRBF network.

rigid frame in a triangular con0guration with conver-
gent optical axis. The adopted resolution is 1524 by
1012 pixels with 8 or 10 bit per color component
(R,G,B). Some experiments have been also conducted
with another system, with similar geometry, but based
on TV-resolution analog CCD cameras connected to
a PC with frame grabber.
The choice of a trinocular system is motivated by

the fact that three views give us extra redundancy
in the identi0cation of stereocorresponding elements.
This improves the robustness of the 3D reconstruc-
tion process with respect to a simple binocular system
[10,19,21], and sometimes they also allow us to over-
come self-occlusion problems. Camera calibration is
performed just before the acquisition campaign and it
consists of acquiring and analyzing several trinocular
views of a planar target in di>erent random positions
[19,25]. The upper (central) image is used as a refer-
ence view, and all the estimated 3D information will
be refereed to it.

4.1. Model-based surface parametrization

As already said above, our approach to image-driven
surface estimation is based on a hierarchical
(multi-resolution) parametric surface model. This
type of representation is provided by an HRBF net-

Fig. 7. Grids for positioning the gaussians in the 0rst and the
second layers of the HRBF network. The grid density quadruples
between consecutive layers.

work and the parameters that describe it are estimated
through a comparison between the luminance pro0les
on the three available images.
As already said in Section 3, the gaussians of

typical HRBF networks are usually arranged on a
separable (rectangular) grid whose axes are oriented
like the reference image axis. The grid geometry that
we adopted, however, is non-separable. In fact, the
grids are hexagonal and their density quadruples from
one level to the next (see Figs. 6 and 7).
The choice of a hexagonal grid is motivated by the

fact that it provides a slightly better packing of the
gaussian functions compared to an equivalent square
grid [7]. Moreover, this distribution of gaussians turns
out to be more suitable for surface representation at
the lowest levels of resolution (the 0rst few network
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Fig. 8. An hexagonal grid can be seen as a rectangular grid rotated
by a 45

◦
angle.

layers). In fact, with this choice, some gaussians al-
ways end up in the middle of the region where the
subject (and the most important details) usually are.
A regular hexagonal grid, however, can be seen as

a square grid rotated of 45◦ (see Fig. 8), therefore the
spread of (12) can still be used, as long as we de0ne
#l as the distance between points along the diagonal
direction (see Fig. 8).
As shown in Fig. 6, the region of support of the

HRBF network is chosen such a way to select only
the portion of the image in which the object under
analysis is contained. Moreover it is necessary for the
selected portion of the scene to be visible on all the
three available images.
The total number of Gaussians Nlt and the number

Nll of those that lie on one side of the border of the
surface’s support region can be expressed in closed
form as a function of the layer’s index l as

Nll = 2l−1 + 1

Nlt =
(2Nll − 1)2 + 1

2


 l¿ 1:

Our HRBF network is made of up to 8 layers, and
the number of Gaussians quadruples from one to the
next. This means that the linear resolution (along each
axis) doubles from a layer to the next. We chose 8
as a maximum number of layers because in all our
experiments (see Section 5) a grid of this density was
always able to represent all the signi0cant details of
the imaged object. In order to give an idea of the

Table 1
Number of gaussians for each resolution level. Level 0 is made
of a single radial function with in0nite spread

Resolution No. of gaussians on Total number of
level (l) the border (Nll) gaussians (Nlt)

0 1 1
1 2 5
2 3 13
3 5 41
4 9 145
5 17 545
6 33 2113
7 65 8321
8 129 33025

numbers involved, Table 1 collects the values of Nll

and Nlt that correspond to the layer indices of interest,
including index 0. This trivial layer is made of a sin-
gle radial function with in0nite spread. If our surface
parametrization were based on an elevation map, this
gaussian would correspond to a plane. Of course, if
the region of interest was viewed under a small angle
(tele-zoom lens), a perspective projection could be
safely approximated with an a8ne camera (see Fig.
6, where f → ∞), therefore even with a perspec-
tive depth map a gaussian with in0nite spread would
correspond to a plane. In general, however, the a8ne
camera assumption is not acceptable, therefore us-
ing a perspective depth map makes a gaussian of
in0nite spread look like a portion of a spherical sur-
face. In conclusion, our best choice for the surface
parametrization is still the perspective depth map
d(x; y) discussed in Section 2.2 (see Fig. 9).

4.2. Estimating surface parameters

The geometric con0guration of the acquisition sys-
tem that we used to test our modeling technique is
illustrated in Fig. 10. The spherical surface A rep-
resents the layer 0 of the HRBF network used to
model the surface. Its distance from the reference im-
age (“Up” image=camera) is chosen in correspondence
to the point of minimum distance from the principal
axes, which is likely to fall close to the object center.
Layer by layer, the parameters of the HRBF can

be estimated through the minimization of a special-
ized version of the cost functions (6)–(9). The cost
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Fig. 9. Illustration of the surface parametrization mechanism in the case of perspective depth map. (a) The gray volume identi0es the
space that contains the object of interest. (b) Arrangement of the gaussians on the 0rst layer of the HRBF network.

Fig. 10. Geometrical arrangement of the camera system. Surface A represents the layer 0 of the HRBF network used to model the object
under analysis. Its distance from the reference image (“Up” image=camera) is chosen in such a way to include the point of minimum
distance from the principal axes, which is likely to fall close to the object center.
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function used for this system, in fact, is

C(wl1; : : : ; wlNlt )

=
∫ ∫

|(Iup(sup)− Iup)

− gul(Ileft(sleft)− Ileft)|2 dsup

+
∫ ∫

|(Iup(sup)− Iup)

− gur(Iright(sright)− Iright)|2 dsup: (15)

The integral is computed over the whole relevant area
(a square block) of the reference image. Iup; Ileft ; Iright
are the average luminances of the “Up”, “Left” and
“Right” images, computed on the relevant area of
the Up image and on the corresponding (transferred)
areas on the other two images. The gains gul; gur are
estimated by analyzing several triplets of views of
test objects. As the up view is the reference, the co-
ordinates sup (expressed in pixel) assume only integer
values. The relationships between corresponding co-
ordinates in di>erent views (sup and sleft; sup and sright)
are de0ned by (5). The optimal parameters are esti-
mated through the minimization of a highly nonlinear
cost function over the parameter space

(ŵl1; : : : ; ŵlNlt ) = argmin
(wl1 ;:::;wlNlt )

C(wl1; : : : ; wlNlt ); (16)

which is performed with a downhill simplex algo-
rithm [16]. Of course, the estimation of the param-
eters of layer l is done assuming the weights of the
Gaussian functions included in the previous layers
are assumed as known. This means that at the next
layer we will search only for a re0nement of a known
lower-resolution surface (see Section 5 for comments
on real data).

4.3. A local approach to parameter estimation

The global optimization process described in the
previous subsection works well (see experimental re-
sults in Section 5) as long as the dimensionality of the
parameter space is not excessive. In our experiments
we found that a global minimization is feasible up
to layer 4 of the HRBF, which has 145 weights (see

Support region of the HRBF (layer l) 

Locally optimized gaussians Region of texture 
comparison

Fig. 11. Shape of the support region of the local RBF surface
model on the reference image. The outermost square de0nes the
region where luminance pro0les are compared, although only the
weights of the internal 0ve gaussians are optimized.

Table 1) to be estimated. Beyond that layer, the num-
ber of parameters becomes unmanageable. In order to
overcome this di8culty, from layer 5 on, the algorithm
switches to a “local mode”, in which progressively
smaller image regions are considered. We found that
a good choice for the shape of the local region is the
one of Fig. 11, where the outermost square de0nes the
area of the reference image where luminance pro0les
are compared. Notice, however, that only the weights
of the internal 0ve gaussians are optimized using (15)
and (16).
In order to determine the surface re0nement asso-

ciated to layer 5 and the next ones, we will individu-
ally estimate the sets of 0ve weights of all the local
windows centered in the grid points. As the windows
overlap each other and the surface shapes are individu-
ally estimated, the only shape information that we will
preserve for each surface patch will be the depth of the
center of the patch. The complete shape of the HRBF
layer will then be rebuilt through the HRBF-based in-
terpolation process described in Section 3.2.
One problem that arises when using a local estima-

tion approach is that, among the incremental depths
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of the new layer, we can 0nd a number of outliers.
This can be attributed to several causes: lack of lumi-
nance gradient; presence of areas with non-lambertian
reGectance; occlusions or self-occlusions in one of the
views; etc. These outliers, however, can be usually de-
tected because they exhibit a high cost function (see
(15) and (16)) and=or they cause unexpected and large
depth changes with respect to the previous network
layer. This detection process can thus be conducted
through simple thresholding. Since the surface re0ne-
ment is organized in an incremental fashion and the
interpolation process has a smoothing action on the
resulting surface, the detected outliers can be simply
removed from the data to be interpolated.

4.4. Occlusion management

As underlined in the previous section, the informa-
tion redundancy of trinocular acquisitions guarantees
a certain robustness in the depth estimation process.
On the other hand, it requires the whole surface to
be simultaneously visible on all three views, which
seems to increase the risk of occlusion occurrence. For
example, when acquiring a trinocular front view of a
human face with the acquisition system described
above, there are always surface areas (e.g. the sides
of the nose) which are seen either on the “Up-Right”
image pair, or on the “Up-Left” image pair, but will
appear as occluded on the third view. When needed, in
order to overcome such problems, obvious solutions
consist of switching back to a binocular approach
and=or rede0ning the camera setup (camera positions,
orientations, and focal lengths).
However, if the occlusions are not too extended,

we can take advantage of the trinocular geometry in
order to increase the estimation robustness and, at
the same time, overcome occlusion problems. This
can be done by switching between the trinocular and
the binocular estimation modes only when needed.
In particular, the estimation of the 0rst layers of the
HRBF network can just be done in a trinocular fash-
ion, while ignoring the (modest) occlusion problems.
When the occlusions are expected to locally disrupt
the shape estimation (usually at the last one or two
network layers), we can perform three minimizations
per surface patch (with the same reference view): one
corresponding to the whole triplet of views; one cor-
responding to the “Up-Left” pair; and one correspond-

ing to the “Up-Right” pair. The depth information that
is retained is the one associated to the minimum cost.
Of course, the whole layer surface is reconstructed
through RBF-based interpolation as discussed in Sec-
tion 4.3.

5. Experimental results

We tested the proposed algorithm for image-based
3D shape estimation on di>erent sets of real images,
acquired with either digital photocameras or TV video-
cameras. In this section we will show the results of
two such sets of views of a human subject. One is a
close view of a human face and the latter is view of
a head-and-shoulder scene. The human face, in fact,
exhibits very 0ne shape details (but very little textur-
ing) and strong occlusion problems, while the second
exhibits a very complex depth distribution.
In order to acquire the 0rst subject (“Elena”, see

Fig. 12), we used digital photocameras (1524 by 1012
pixels). We acquired two triplets of views: the 0rst
(Fig. 12a) with natural light, and the second (Fig.
12b) with “structured” illumination to arti0cially en-
hance the surface texturing [8]. Of course, we used
the textured triplet for shape estimation, and the “nat-
ural” triplet for texture- mapping purposes [18]. As
anticipated in the previous Section, we chose the “Up”
image as the reference view. As we can see, some sur-
face areas (bottom portions of nose and chin) are not
clearly visible, therefore they will be only partially re-
constructed. In addition, the sides of the nose are only
visible on two of the three images, which makes the
triplet suitable for testing our occlusion-management
method.
In order to speed-up the reconstruction process, we

selected a square region of 640 by 640 pixels on the
reference image, which frames the subject’s face.
The perspective views of the depth maps d(x; y)

relative to layers 1 to 7 are shown in Figs. 14–17.
At each level, the surface is sampled on a regular
grid corresponding to the pixel centers of the ref-
erence image. The resulting 3D point cloud is then
Delaunay-triangulated (see Fig. 13) and rendered
through a standard shading technique [12].
In Figs. 14 and 15 we can see perspective views of

the estimated surface d(x; y), as the resolution (layer
index) increases. Considering the resolution of the
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Fig. 12. One of the images of the original triplets of views of the
subject “Elena”: (a) acquisition with natural light; (b) acquisition
with “structured light” to enhance the local texturing.

local details, the reconstruction process was stopped
at the 7th layer. Figs. 16 and 17 show how the man-
agement of the occlusions can improve the quality
of the reconstructed surface. Two di>erent views of
the reconstructed 3D model after texture mapping are
shown in Fig. 18.
Notice that, thanks to the addition of arti0cial textur-

ing, the images used for building the HRBF network

Cup

A
B

C

D

B’

C’
D’

A’

Fig. 13. Triangulation of the 3D points corresponding to the center
pixel locations.

Fig. 14. Reconstructed surface of subject “Elena”: (a) 0rst layer,
with 5 gaussians; (b) second layer, with 13 gaussians; (c) third
layer, with 41 gaussians; (d) fourth layer, with 145 gaussians.

are very rich of luminance details, therefore there is
no need to perform any outlier removal in the local
estimation approach (see Section 4.3).
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Fig. 15. Reconstructed surface of the subject “Elena”: (a) the 0fth
layer, with 545 gaussians; (b) sixth layer, with 2113 gaussians;
(c) and (d) two views of the seventh layer, with 8321 gaussians.

Fig. 16. Two perspective views of the reconstructed surface (HRBF
network with 7 layer). It is possible to see some artifacts on the
sides of the nose due to occlusion problems.

The second test triplet (subject “Ludo”, Fig. 19) was
acquired with three TV-resolution (720 by 576 pixels)
video-cameras for the ACTS-PANORAMA research
project supported by the European Commission. Also
in this case we chose the “Up” image as the refer-

Fig. 17. Two perspective views of the reconstructed surface (HRBF
network with 7 layer). In this case, the occlusion management
strategy (see Section 4.4) is able to remove the artifacts of Fig. 16.

Fig. 18. Perspective views of the reconstructed 3D model after
texture mapping.

ence view. The image area of interest (whose details
appear in all three images) is a central region of 420
by 420 pixel. This is the area where we performed
shape estimation. Figs. 20–25 show the reconstructed
surfaces from the third to the eighth resolution levels
of the HRBF network. In Fig. 26 we can see the 3D
point-cloud corresponding to the last resolution layer
(local approach), where some outliers are clearly vis-
ible. Such depth errors can be attributed to the lack
of local texturing on the available images, but most
of them can be detected and removed through statis-
tical thresholding (see Section 4.3). The result of this
outlier removal process is shown in Fig. 27. As we
can see, the algorithm proved capable of a correct es-
timation of the surface shape even in rather complex
situations. One has to bear in mind, however, that a
scene with several objects (and mutual occlusions)
will always be modeled with a single HRBF network,
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Fig. 19. Original views of subject “Ludo”.

Fig. 20. Subject “Ludo”: reconstructed surface at the third layer.

therefore a separation of the object requires additional
post-processing [20].
In both examples of application (“Elena” and

“Ludo”) the simulations have been carried out on a
PC with a Pentium III processor (300 MHz) and a
Linux operating system. The program code was writ-
ten in C and C++. With this platform, the complete
process for an image triplet took about 2 h to be com-

Fig. 21. Subject “Ludo”: reconstructed surface at the fourth layer.

pleted but signi0cant improvement in the processing
time can be still obtained through code optimization.

6. Conclusions

In this article we proposed a general and robust
method for close-range 3D reconstruction of surfaces
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Fig. 22. Subject “Ludo”: reconstructed surface at the 0fth layer.

Fig. 23. Subject “Ludo”: reconstructed surface at the sixth layer.

through multi-resolution area matching. The method
is based on the progressive re0nement of a parametric
surface, described by a variable set of radial functions
organized as a HRBF network.
The parameters that describe the basis function

in the 0rst few resolution layers of the network are
obtained through a global optimization process that
minimizes the luminance di>erences between image
pairs, which takes into account the shape-dependent
luminance transfer function. This global multi-
resolution approach enables the construction of the
object surface without any initial model (modeling
bootstrap). In order to increase the layer density fur-
ther, a global estimation approach is computationally
too heavy, therefore the estimation of the RBF pa-
rameters of the next layers is performed with a local
approach.

Fig. 24. Subject “Ludo”: reconstructed surface at the seventh layer.

Fig. 25. Subject “Ludo”: reconstructed surface at the eight layer.

The algorithm has been tested on a variety of real
image triplets producing signi0cant results.
In order to produce complete object models, it is

possible to assemble several such perspective depth
maps through a process of surface registration fol-
lowed by fusion. We are currently investigating and
developing solutions for this purpose [22]. We are
also working on alternative multi-resolution meth-
ods for image-based shape modeling based on the
evolution of the levelset of a volumetric function
[6]. Possible further developments concern the in-
clusion of a radiometric surface model in the def-
inition of the cost function, in order to improve
the resilience against non-lambertian radiometric
reGectance.
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Fig. 26. Subject “Ludo”. 3D point-cloud generated at the eighth layer using a local approach. Due to the limited luminance details there
are several outliers.

Fig. 27. Subject “Ludo”. 3D point-cloud at the eighth layer after outlier removal.
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