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ABSTRACT

In this paper we propose a new approach to the camera
self-calibration problem, based on geometric algebra. After
a brief introduction on the adopted Clifford algebra frame-
work, we provide new insight on the epipolar constraint as
defined in terms of bivectors. On the basis of that, we pro-
pose a novel solution for the simultanous determination of
the focal lengths of the cameras and the rigid motion be-
tween views.

1. INTRODUCTION

Structure from motion (SfM) is often approached in a ge-
ometric fashion, by exploiting invariants and constraints of
projective geometry [1]. More recently, some effective al-
gebraic solutions based on rank conditions have started to
emerge [2, 3]. Ifteh goal is to devise and implement SfM al-
gorithms that retain the evocative power of geometry, with-
out giving up the effectiveness and the generality of alge-
braic solutions, we -need a mathematical framework where
geometry and algebra sinergically co-exist. Geometric (Clif-
ford) algebra [4] (GA) is currently gaining more and more
of the interest of researchers in computer vision [5] because
it seems to blend such aspects effectively and elegantly.

In this paper we show how geometric algebra can be
used to efficently represent the camera geometry and the
epipolar constraint, with new insight in its geometric in-
terpretation. Based on that, we propose a novel two-view
self-calibration technique.

2. ANOVEL GA FRAMEWORK

Adopting the same notation used in [5], a generic point p
of the projective space P2 can be written in homogeneous
form as p = aje; + azey + azez + eq, Where e;, €2, €3, €4
form a base of P2, The line ! passing through a given pair of
points p; and p, can be expressed as a bivector of the form
I = p1 A p2, where the wedge operator denotes the outer
product between vectors and can be written in terms of the
geometric product. Similarly, the plane passing through the
three points p;, p2 and ps can be written as the grade-3 blade
T =p1 ANp2 Aps.
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Another important issue is to test whether two subspaces
are incident. A general condition for the incidence of two
subspaces A and B is given in geometric algebra as A -
B* = 0, which becomes A A B = 0 when the grade of
AN B is smaller or equal to the dimension of the space. This
expression becomes very useful when we want to verify the
incidence of two lines (bivectors), as the dimension of P3 is
4. In fact, the two lines /3 and I, are found to intersect in a
point pifand only if [; Al; = 0. This allows us to formulate
of the epipolar constraint in quite a straightforward fashion.
Let c; and ¢, be the centers of the cameras and p; and p; be
the projections (world coordinates) of a point p onto the first
and second camera, respectively. The epipolar constraint
can be written as

(61 /\pl)/\(62 /\p2) =0 . (1)

A simple pin-hole camera model is completely speci-
fied by an optical center ¢, a focal length f and the di-
rections of the camera axes 1, z2 and 3. Under these
assumptions, a point of homogeneous image coordinates
m = [my,ma,m3]", with mz = 1, turns out to be ex-
pressed as p = m; 1 +maT2+ms3 fz3+4cin the world coor-
dinate frame. If we consider two different views of the same
point p, of homogeneous coordinates m = [m1,ms, m3]T
andn = [ny,n2,n3]”, eq. (1) can be specialized as follows

(m1 (e1 Azr) +ma (c1 Az2) + mafi (cr Ax3)) A
(ni(e2Ay)y +n2{ca Ay2) +n3fa(caAys)) =0, (2)

where fi, ¢1, «; are the parameters of the first camera and
f2, €2, yi are those of the second camera. If, for the moment,
we assume that f; = fo = 1, then eq. (2) can be expanded
as a sum of grade-4 blades of the form m ;nje;; 14, where g5
are unknown scalars, therefore the epipolar constraint takes
on the form 7, ., 3minjeijly = 0. This expression,
after eliminating /4, can be written in matrix form as

mTEn=0 3)
where E is the 3 x3 matrix of the coefficients €;;, which is

the classical formulation of the epipolar constraint where E
is the well-known essential matrix. More generally, when
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no assumptions are made on fi and f2, similar considera-
tions hold true and, as we will see later on, eq. (3) becomes
the fundamental matrix F.

As we can see, in GA the epipolar constraint is written
directly as an incidence relation between lines, which is a
something that has no counterpart in projective geometry.
In fact, lines have no direct homogeneous representation in
projective spaces [1] (they can be represented with Pliicker
matrices or as an intersection between planes), and are alge-
braically described through appropriate rank conditions [3].

A line [ in GA can be written as the linear combination
of the base bivectors as follows

| = a1l1 + azlz + 03l3 + b1T] + b2T2 + b3i€3 (4)

yhere 11 = €3 A%, 12 =e3zANey, l3 = €1 /\62,71 = €4 /\61,
lo = e4 A ey and I3 = e4 A e3. This notation for the grade-2
base elements emphasizes the fact that base bivectors I; and
Ti are pairwise dual. In fact, a line (bivector) can always be
written as the sum of two terms:

e aline byly + boly + bsls passing through the origin of
the world reference frame (“finite” component);

e aline a1l +azls + asls on the plane at infinity (com-
ponent “at infinity”).

Notice that this notation for lines is somewhat redundant, as
it involves 6 (projective) parameters instead of 5. The extra
degree of freedom will be later removed through a consis-
tency constraint on the coefficients.

The coefficients a; and b; can be obtained by computing
the inner product between the line ! and the corresponding
base bivector, [; or T, For example, we have

-l = (a1ly + asly + agls + byl + byl + bals) - Is
= aili . li = —a; . (5)

A camera with center ¢, and axis directed as z, 9 and z3
can be represented by the three lines ¢ A z1, ¢ A 23 and
¢ A z3 corresponding to its axes. To retrieve position and
orientation of a camera we must find the finite and infinite
components of these lines.

2.1. Essential matrix

In this Section we will show that the coefficients of the in-
finite components of the axes of the second camera corre-
spond to the elements ¢;; of the essential matrix E. To do
so, without loss of generality, we assume that the axes of
the world coordinate frame are oriented like the axes of the
first camera, and that the origin of the world frame is in the
camera’s optical center, i. €. £1 = e, T2 = €2, 3 = e3 and
¢, = e4. With this assumption, we can rework the epipolar
constraint (2) to obtain nine equations of the form

€ijls = (es Ney) A (c2 Ayj) ©)

all involving the quadrivector Iy. As we can see, there are
three equations for each axis y;, whose unknowns are both
€;5 and the axes ¢z A y; of the second camera. If we com-
pute the inner product between both sides of eq. (6) and the
bivector ;, we obtain g I4-l; = (EA(Q/\yj)) -l;. Using the
known equalities I - I; = I;, and (AAB)-C = A- (B -C),
we can write

eijri =0 ((ea Ayj)-li) - )

Notice that the term (cz A y;) - I; in the right-hand side of
eq. (7) is a scalar, therefore we can write €;; = (c2 Ay;) - ;.
As shown in eq. (5), the inner product between a bivector [
and the base bivector {; at infinity, returns the relative coef-
ficient a;, with a sign change. This shows that the generic
element ¢;; of the essential matrix is, in fact, the coefficient
of the component at infinity /; of the camera-2 axis y;. We
can thus conclude that, knowing the essential matrix, we al-
ready have the components at infinity of the camera-2 axes.

2.2. Rotation matrix

In order to determine position and orientation of the sec-
ond camera we still need to compute the coefficients of the
base bivectors [; that pass through the world origin. We
will show how this coefficients correspond to the elements
of the rotation matrix which brings from the first camera
to the second. With this goal in mind, we need a compact
notation for the axes of the second camera

coAy; = —-ETI-RIT, i=1,2,3, (8

where E; = [ e1j €25 €3 ]T, j = 1,..,3, are the
columns of E; the vectors R; = [ Tij T2j T3j ]T,j =
1,..., 3, collect the unknowns; while ! and T are defined as
I=[l4 I I3)Tandl=[7 I, Iy |T. We will now
prove that R, j = 1, ...,3, are the columns of the rotation
matrix of the second camera.

One interesting property of a generic line (4) of the pro-
jective space P? is that its orientation is given by its inter-
section with the plane at infinity 7o, = e; A e2 A e, which
can be written as (7eo - I4) -1 =1 - w%,. We can write

(a1ls + agly + asls + byly + boly + bslz) - (—e4) =
—bily ey —byly-eq —bylz - eq =
biey + baes + baes

Also, eq. (8) implies that the directions y1, y2, y3 of the
camera-2 axes can be written as a function of the directions
r1 = e1, Ty = ez, T3 = ez of the camera-1 axes

Y1 = —Tine; —T21€2 —T31€3
Y2 = —T12€1 —T22€2 — T32€3
Ys = —Ti13€1 —T23€2 — T33€3

II-574



It is now quite apparentthat R =[ Ry Ry R; |Tis,in

fact, the rotation matrix of the second camera.

3. RETRIEVING THE SECOND CAMERA

We now have enough tools to derive an alternative formula-
tion of the self-calibration problem. The essential matrix E
can, in fact, be computed using a few point-corrispondences
between the two views (see [1]), therefore all we need for
determining the orientation of the second camera are the
coefficients r;; that describe the “finite” component of the
camera-2 axes. In order to estimate the coefficients of this
component, a set of constraints between the known and un-
known parameters needs to be found. First of all, the axes of
the second camera must meet in the optical center c;. This
leads to the following pairwise-incident conditions

(c2Ay)A(caAy2) = 0
(caAy)A(caAys) = 0 )
(c2Ay2)A(c2Ays) = 0

which can be rewritten as

E?R2+EER1=0
ElTRs-f-Eg‘Rl =0 . (10)
E2TR3+E3TR2=0

Such equations, however, are only meant to imply that the
axes will meet pairwise, therefore we also need an addi-
tional orthogonality constraint on the axes. This could be
done by imposing that R be an orthonormal matrix with
unit determinant. However, it is more convenient to rep-
resent rotations with rotors, which better exploit the char-
acteristics of geometric algebra and are intrinsecally related
to quaternions. In fact, the generic rotor in the the metric
space E? is expressed as a multivector of the form Q =
a + bly + cly + dl3, which has a scalar component a and a
bivector component bl | + cl2 +dl3, subjected to the normal-
ization constraint a® + % + ¢® + d? = 1. Incidentally, the
bivector component bl +clz+dl3 only involves bivectors at
infinity in the projective space P3. Represent rotations with
rotors, the orthonormal constraint on R is automatically sat-
isfied.

Notice however, that it is not difficult to derive the rota-
tion matrix from the rotor’s components

with respect to the first one, and [t] « is the skew-simmetric
matrix form of ¢ [1]. This implies that each row of F is
bound to be orthogonal to the corresponding row of R, i.e.
EF'R, =0, ETR, =0, ETR;=0. (1)
This leads to an interesting property of lines in geomet-
ric algebra. In fact, if we write a generic line (4) as the
outer product of two of its points in P3, the coefficients
of the bivectors at infinity a;, ¢ = 1,...3, and the coeffi-
cients b;, ¢ = 1,...3 of the “finite” base bivectors, must sat-
isfy the consistency constraint a1b; + a2b2 + azbs = 0.
This result can also be proven using classical tools of geo-
metric algebra. This is the additional constraint mentioned
in Section 2.1, which reduces the notational redundancy
of the bivector representations. Eqgs. (10) and (11) can be

expressed in terms of [ @ b ¢ d ]”. Along with the
normalization constraint on quadrivectors we end up with a
nonlinear system of seven equations in four unknowns. As
E is a rank-2 matrix, only six of these seven equations are,
in fact, linearly independent. It is thus possible to compute
position and orientation of the second camera by numeri-
cally solving the system (we end up with two solutions, only
one of which corresponds to a camera whose optical axis is
oriented consistently with that of the first camera).

4. FOCAL LENGTH ESTIMATION

In the previous Sections we made the assumption that the
focal lengths of the cameras were equal to one. We will
now remove this limitation and show how to estimate the
unknown focal lengths. Once again, with no loss of gener-
ality, we assume the first camera to be placed in the origin
of the world reference frame. In this case the epipolar con-
straint takes on the usual form m7 Fn = 0, where F is the
fundamental matrix. On the other hand, the coefficients ¢ ;;
of the axes of the second camera are still the elements of the
essential matrix E.

As we know, the relationship between the essential ma-
trix E and the fundamental matrix F is

E=KIFK, (12)

where K; =diag(fi, fi,1) and K2 =diag(f2, f2, 1) are the
matrices of intrinsic parameters (in this case only the fo-

_ ) T cal lengths) of the first and second camera, respectively.
Ry = [a®-d®~c’+b® 2bc+2ad 2bd - 2ac ] Eq. (12) can be expanded as
R, = [2c—2ad —b+a®+c?—d® 2ab+2cd]”
2 [ 2be -2 wre “ ed ] T fu fi2 fia/ fa
Ry = [2bd+2ac —2ab+2cd —c®—b+a?+d” ] . E=| fn fa2 f23/ fa
fsulfi faalfr fas/(fif2)

An additional set of constraints can be derived from the
fact that the essential matrix F can always be written in
closed form as E = [t]x R, where t and R are the trans-
lation vector and the rotation matrix of the second camera

Similarly to what done in the previous Section, we can
use the notation (8) to express the axes of the second cam-
era. The system of equations formed by (10), (11) and
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the constraint on quaternions is still sufficient to retrieve
both orientation and focal lengths of the second camera. In
fact we now have seven nonlinear equations (six linearly in-
dependent) in the six unknowns[ ¢ b ¢ d fi f2 ).
This system is fully constrained and allows us to find both
focal lengths, plus position and orientation of the second
camera with respect to the first one. Notice that the system
has more than one solution, only one of which is correct.
This solution can be easily determined as the one such that
f1 >0, f2 > 0, and focal axes consistently oriented.

5. SIMULATION RESULTS

A series of experiments have been conducted on noisy im-
age coordinates of clouds of points with the goal of com-
paring the proposed solution with existing others. Specifi-
cally, we compared the focal lengths and rotations estimated
through our solution with the ones obtained respectively
with the Newsam method [2] and the canonical decompo-
sition of the Essential matrix described in [1]. As we can
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Fig. 1. Average estimation error on (variable) focal length. The
proposed method and the Newsam method produce almost exactly
the same results for every noise level, in fact only two curves (for
the first and the second focal distance) are visible instead of four.

see in Figure 1, the Newsam method and the proposed one
produce almost exactly the same results at the various noise
levels on the images. However, Figure 2 shows that the ro-
tation retrieved with the proposed method is more accurate
than the one obtained using the canonical composition of
E. This can be explained considering that our method com-
putes focal lengths and rotations simultaneously, with the
result of “distributing” the impact of noise on such quanti-
ties more evenly. In addition, it implicitly represents rota-
tions through rotors/quaternions, which are less sensitive to
noise than rotation matrices. It is important to stress that this
method performs a simultaneous estimation of both intrinsic
and extrinsic camera parameters with no ambiguities.
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Fig. 2. Average rotational estimation error in the case of cameras
with different focal lengths. Rotational distance is measured as the
total rotation around the Euler axis.

6. CONCLUSIONS

In this paper we proposed a novel geometric interpretation
of essential and rotation matrices in terms of bivectors in
geometric algebra. From this parametrization we derived a
procedure for computing both focal lengths together with
position and orientation of second camera with respect to
the first one, without introducing projective ambiguities. The
proposed approach seems to open new possibilities in Com-
puter Vision research, as it enables a direct geometric inter-
pretation of incidence relations that involve lines, otherwise
not possible in projective geometry.
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