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ABSTRACT

In this paper we propose a novel system for indoor video
surveillance, which is able to detect and track moving ob-
jects even in the presence of significant variations of scene
illumination. After a preliminary analysis and clustering of
temporal changes in the video sequence, the algorithm per-
forms a classification based on fuzzy logic, aimed at identi-
fying moving regions that really correspond to unexpected
objects in the scene. The proposed approach tends to dis-
card shadows, reflections and luminance profile changes due
to illumination variations. One key feature of our system is
its modest computation complexity, which allows it to op-
erate in real-time on a common PC platform. The system
has been tested on a wide variety of situations, proving its
effectiveness and robustness.

1. INTRODUCTION

Advancement in the area of image analysis and cost reduc-
tions in CCTV equipment are currently boosting a formidable
growth in video surveillance systems. In particular, intru-
sion detection and classification in indoor and outdoor envi-
ronments represents an application of great interest.

In order to guarantee the necessary level of safety and
effectiveness, a video-surveillance system should be able
to correctly respond to a wide range of complex situations.
Typical scene chances that do not correspond to intrusions
are changes in the environmental illumination, such as nat-
ural light dimming due to clouding or sun setting; flicker-
ing fluorescent tubes; lightbulbs switching on or off; car
brights flashing through the windows; etc.). Also, in or-
der for the system to be able to correctly analyse regions
of detected motion, shadows and reflexions due to moving
objects.should be detected and treated separately from the
actual objects in motion.

In this paper we propose a novel intrusion detection sys-
tem that is particularly suitable for indoor use. The system
is able to detect and track moving objects that appear in the
fiéld of view of a static camera and is able to robustly distin-
guish between luminance profile changes due to a moving
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Fig. 1. Structure of the our video analysis algorithm.

object and those due to illumination changes that can nor-
mally occur in the environment. As we can see in Fig. 1, the
system consists of three cascaded blocks: the first performs
change detection and low-level analysis to extract the re-
gions of change, and is able to roughly distinguish between
illumination changes and geometrical scene changes. The
goal of the attention focusing block is to perform temporal
tracking of the regions of interest (bounding boxes) in order
to regularise them and improve the preliminary classifica-
tion performed by the previous block. The third block im-
plements the final classification phase, based on the analysis
of some carefully chosen image characteristics. The aim of
the classification algorithm is to distinguish between areas
where geometric scene changes (real intrusions) occurred
and ares where the changes are to be attributed to variations
in illumination, shadows, reflections, etc.

This global approach is, in fact, scalable as it allows us
to remove the last one or two blocks from the processing
chain of Fig. 1, and end up with a reduced system that is
still usable for intrusion detection purposes (of course with
reduced performance). In the following three Sections, we
will describe the three basic blocks of Fig. 1. Section 5 will
provide more information on the global complexity of the
system and present the results a series of tests conducted on
real sequences.
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2. CHANGE DETECTION

The first block of our video-surveillance system is aimed
at an accurate frame-by-frame detection of the areas that
exhibit significant changes between the current frame and
previous frames (or some reference frame). In order to re-
duce the computational load, only changes in the luminance
profile are considered. The algorithm, however, is designed
in such a way to be relatively insensitive to changes in the
global scene illumination.

The first step is to compute the difference between frames
in order to localize those areas where significant luminance
changes took place. There are several ways to do so, one
very simple solution that takes into account both the dif-
ferential change (F,(z,y) — Fy(z, y)) between current and
previous frames, and the absclute change (F.(z, y)—Fo(z,y))
between the current frame and a reference one, which con-
sists of a pixel-by-pixel computation of

max[(Fe - Fp), (Fe — )] - (n

Here the reference frame (background) is a reasonably re-
cent frame acquired knowing that there was no motion in the
scene. If (1) exceeds a threshold T, then the correspond-
ing pixel is labeled as “change point”. At the end of this
process we have a boolean mask M (z, y} that specifies the
presence of local changes. The threshold T'y, is dynamically
computed taking into account the local average and standard
deviation of the samples extracted with the mask M (z,y),
in accordance with what proposed by Hamadami [3]. Pixels
of the background frame F are not updated all in the same
way. In fact, the update is faster for the pixels below thresh-
old and slower for the others. This way it is still possible to
keep track of small luminance changes that occur between
frames, while structural scene changes (large objects that
move) will not be treated like change areas for long.

The information contained in the change mask M .(z, y)
is then improved through morphological closing, and the ar-
eas of interest (connected regions of change) are enclosed in
bounding boxes. The result will be a set of partially over-
lapping rectangles which are finally fused together into a
smaller number of larger non-overlapping boxes.

At this point we can limit our analysis to the detected
bounding boxes in order to reduce the computational cost,
and apply a robust algorithm that exhibits little sensitivity
to luminance changes [1, 2]. We adopt a simple muliiplica-
tive model for the scene illumination, therefore the lumi-
nance profile #/(z:, y) turns out to be the product between an
“illumination profile” I(x,y), which is assumed as slowly
varying in space, and a “local texturing” S{z, ¥), whose fre-
quency content is more in the high range. As both reference
frame Fr.(z,y) and current frame F,{z,y) are modeled as

such a product

Fo(z,y)
Fu(z, 1)

1(z,9)5: (2, y)
IC(Ia y)Sﬂ(may) 1 (2)

the behavior of the ratio F./F, will exhibit different fre-
quency content, depending on what is changing in the scene.
If the local change is purely in the illumination, then the
ratio V = F,/F, will correspond to I./1,, therefore its
frequency content will be in the low range. Conversely, if
the change is purely geometric, then the ratio F./F; will
correspond to S./Sr, therefore it will be rapidly varying.
This can be easily exploited using two filters that extract
the two frequency components of interest, like the local av-
erage m,(z,y) (low-pass) and the local standard deviation
o4(z,y) (high-pass). The analysis of this information is, at
this point, quite straightforward:

® |m,| = 1 and modest o, imply that no change oc-
curred between F,. and F;

s |m,| >> 1 and modest g, imply that there has been
a diffuse change in the scene, which is likely to be
due to the illumination;

e large o, implies that there has been a signficant vari-
ation in the local texturing, which is Iikely to be due
to geometrical changes in the scene.

Indeed, there are many exceptions to this criterion, which
are due to model failure. A multiplicative model of the il-
lumination is, in fact, quite simplicistic, and is easy to fail,
for example, in the presence of reflective surfaces and non-
diffuse illumination. However, for matte surfaces and dif-
fuse illumination, it performs quite nicely.

A quantized version of the local variance map M. is
stored by the system for further analysis {see Fig. 2).

Fig. 2. Example of the variance map generated by the
change detector. Darker regions correspond to a larger vari-
ance.
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3. ATTENTION FOCUSING

The attention focusing block implements an object tracking
phase by searching for correspondences between bounding
boxes in consecutive frames. This is done by studying the
similarity of both shape and motion. The tracking phase, as
well as the classification phase, are based on the variance
mask M, generated by the previous block.

The tracking algorithm is based on the method proposed
by Chetverikov [4]. The attention is focused on three con-
secutive frames (previous, current, and next), and the corre-
spondence between bounding boxes is determined through
the minimization of an appropriate cost function f. This
cost function takes into account both motion compatibility
(based on the motion of the centroids of the variance mask
within the considered boxes) and shape compatibility (based
on the zero-order moment of the variance masks).

This solution is characterized by a good computational
efficiency, particularly in situations like ours, where the num-
ber of change areas typically no more than 6 or 7.

4. CLASSIFICATION

Once determined and tracked the change areas, we need to
classify such changes according to their origin. In particu-
lar, we want to distinguish geometric changes {moving in-
truders, sometimes only partially visible} from any other
type of change (typically shadows, reflexions, and noise
sources of other nature}). The parameters used to discrim-
inate between such two categories are:

+ Weight ratio - Ratio R between the zero-order mo-
ment of the variance mask M, ({z,y) and its perime-
ter. This parameter describes the “activity” of the lu-
minance profile, after normalization on the part of the
perimeter. This normalization action tends to make
the parameter insensitive to the distance from the view-
point.

= Morphological index - This parameter is based on
the so-called morphological spectrum [5, 6], which
is an operator that extracts the contribution of every
structural element from an image through a series of
operations of morphological opening

— w(¥n(My)) — (¥ rga (M)
p{My) ’

where ¥, is the morphological opening operator of
order n; u is the operator that computes the zero-
order moment. Notice that n is the size of the kernel
used for the morphological opening. The morpholog-
ical spectrum of order n represents the contribution
of the details of "size” n to the variance mask M.
In what follows we will use a morphological index

fn

@

that incorporates the information contained in several
morphological spectrum coefficients.

In order to characterize such parameters, we run a se-
ries of tests with various types of intruders (completely vis-
ible, partially occluded, etc.) and scenes {strongly chang-
ing lighting conditions, presence of reflections, etc.). As
we can see from Fig. 3, the parameter R associated to an
intruder turned out to be always significantly higher than
in the other cases, thus representing a strong discriminant
for the purpose of intrusion detection. Furthermore, we
noticed that the variance masks M, associated to intrud-
ers, tend to stimulate morphological indices of significant
size (“relevant details”), such as f», while non-geometric
changes usually excite smaller morphological indices (“ir-
relevant details™), such as fi. After analyzing the response
of such two morphological indices to intruders, partially-
occluded intruders, and scene changes of other nature, we
concluded that it would be maore efficient and equally effec-
tive efficient to simply look at their difference. In fact, mor-
phological indices corresponding to an intruder tend to stay
above a 45-degree line on the (f1, f2) plane, while those of
non-intruders tends to occupy the area below such line.

R ratio

Morphological index

Fig. 3. Intrusion discrimination based on the selected pa-
rameter. The light dots represent non-geometrical changes,
while the black dots correspond to intruders. The abscissa
corresponds to the scene index.

Now that we have a pair of good discriminanis, we can
use themn jointly throufsgh a properly defined classifier. Qur
approach to this problem is based on fuzzy logic [7] and the
semantic rules used for classification are:

e [F R is High AND Morphoiogical Index is Relevant
THEN geometric (human) intrusion;

e [F R is Low AND Morphological Index is Irrelevant
THEN non-geometric intrusion.
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The membership function relative to the input linguistic vari-
ables were determined through statistical analysis (hystograms)
of the available data.
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Fig. 4. Membership function relative to the input linguistic
variables of the fuzzy logic classifier.

3. PERFORMANCE EVALUATION

The system performance was measured in terms of wrong
classifications. We acquired our grayscale videos using both
a low-quality webcam and a digital camera of good quality.
The intruder, once in the scene, was allowed to change pos-
ture or partially hide behind furniture. The scene lighting
was often changed during the video acquisition. The results
of these experiments are collected in the following table,
where the first column lists the content, while the first row
lists the results of the classification.

Intruder | Notan intruder | Uncertain
Visible intruder 175 10 8
Partially visible intruder | 484 65 2
Not an intruder 20 206 0

In spite of the unfavorable selection of testing sequences,
the percentage of correct classification is around 89%. If
we had used only the ratio R, the percentage of success
would have dropped of more than 10%. The column labeled
as “uncertain” denotes the situations in which the classifier
was unable to make a decision. In all considered videos,
however, the intruder’s trajectary was always uniquely iden-
tified. As far as computational efficiency is concerned, the
system is able to work at 3 to 5 frames per second on a
800MHz PIIL

Fig. 5. A view of the working system. The bounding box
has been correctly tracked and classified as associated to an
intruder.

6. CONCLUSIONS

We proposed and implemented a video-surveillance system
operating in real-time that turned out to be robust against il-
lumination changes and shadows in the scene. The classifier
proved able to correctly recognize intruders even in unstable
and difficult illumination conditions.
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