
NEW PERSPECTIVES ON CAMERA CALIBRATION USING GEOMETRIC ALGEBRA

C. Defferara A. Dell’Acqua F. Negroni A. Sarti S. Tubaro

Dip. di Elettronica e Informazione – Politecnico di Milano,
Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

ABSTRACT

In this paper we propose a new approach to the camera
self-calibration problem, based on geometric algebra. After
a brief introduction on the adopted Clifford algebra frame-
work, we provide new insight on the epipolar constraint as
defined in terms of bivectors. On the basis of that, we pro-
pose a novel solution for the simultanous determination of
the focal lengths of the cameras and the rigid motion be-
tween views.

1. INTRODUCTION

Structure from motion (SfM) is often approached in a ge-
ometric fashion, by exploiting invariants and constraints of
projective geometry [1]. More recently, some effective al-
gebraic solutions based on rank conditions have started to
emerge [5, 4]. If teh goal is to devise and implement SfM al-
gorithms that retain the evocative power of geometry, with-
out giving up the effectiveness and the generality of alge-
braic solutions, we need a mathematical framework where
geometry and algebra sinergically co-exist. Geometric (Clif-
ford) algebra (GA) is currently gaining more and more of
the interest of researchers in computer vision [2] because it
seems to blend such aspects effectively and elegantly.

In this paper we show how geometric algebra can be
used to efficently represent the camera geometry and the
epipolar constraint, with new insight in its geometric inter-
pretation. Based on that, we propose a novel two-view self-
calibration technique. After then, we extend such results to
the three-view case and we show what level of further im-
provement can be achieved.

2. TWO-VIEW ANALYSIS IN THE GA
FRAMEWORK

Adopting the same notation used in [2], a generic point p
of the projective space P

3 can be written in homogeneous
form as p = a1e1+a2e2+a3e3+e4, where e1, e2, e3, e4
form a base of P3. The line l passing through a given pair of
points p1 and p2 can be expressed as a bivector of the form
l = p1 ^ p2, where the wedge operator denotes the outer
product between vectors and can be written in terms of the

geometric product. Similarly, the plane passing through the
three points p1, p2 and p3 can be written as the grade-3
blade � = p1 ^ p2 ^ p3.

Another important issue is to test whether two subspaces
are incident. A general condition for the incidence of two
subspaces A and B is given in geometric algebra as A �

B� = 0, which becomes A ^ B = 0 when the grade of
A^B is smaller or equal to the dimension of the space. This
expression becomes very useful when we want to verify the
incidence of two lines (bivectors), as the dimension of P3 is
4. In fact, the two lines l1 and l2 are found to intersect in a
point p if and only if l1^l2 = 0. This allows us to formulate
of the epipolar constraint in quite a straightforward fashion.
Let c(1) and c(2) be the centers of the cameras and p(1)

and p(1) be the projections (world coordinates) of a point p
onto the first and second camera, respectively. The epipolar
constraint can be written as

(c(1) ^ p(1)) ^ (c(2) ^ p(2)) = 0 : (1)

A simple pin-hole camera model is completely speci-
fied by an optical center c, a focal length f and the di-
rections of the camera axes x1, x2 and x3. Under these
assumptions, a point of homogeneous image coordinates
m = [m1;m2;m3]

T , with m3 = 1, turns out to be ex-
pressed as p = m1x1 +m2x2 +m3fx3 + c in the world
coordinate frame. If we consider two different views of
the same point p, of homogeneous coordinates m (1)
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f
(1), c(1), x(1)i are the parameters of the first camera and

f
(2), c(2), x(2)i are those of the second camera. If, for the

moment, we assume that f (1)
= f

(2)
= 1, then eq. (2)

can be expanded as a sum of grade-4 blades of the form
m

(1)
i m

(2)
i "ijI4, where "ij are unknown scalars, therefore

the epipolar constraint takes on the form

X
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m
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i "ijI4 = 0 :



This expression, after eliminating I4, can be written in ma-
trix form as

mTEn = 0 (3)

where E is the 3�3 matrix of the coefficients "ij , which
is the classical formulation of the epipolar constraint where
E is the well-known essential matrix. More generally, when
no assumptions are made on f

(1) and f
(2), similar consider-

ations hold true and, as we will see later on, eq. (3) becomes
the fundamental matrix F.

As we can see, in GA the epipolar constraint is written
directly as an incidence relation between lines, which is a
something that has no counterpart in projective geometry.
In fact, lines have no direct homogeneous representation in
projective spaces [1] (they can be represented with Plücker
matrices or as an intersection between planes), and are alge-
braically described through appropriate rank conditions [4].

A line l in GA can be written as the linear combination
of the base bivectors as follows

l = �1b1 + �2b2 + �3b3 + �1b̂1 + �2b̂2 + �3b̂3 ; (4)

where b1 = e2 ^ e3, b2 = e3 ^ e1, b3 = e1 ^ e2, bb1 =

e4 ^ e1, bb2 = e4 ^ e2 and bb3 = e4 ^ e3: This notation
for the grade-2 base elements emphasizes the fact that base
bivectors li and bli are pairwise dual. In fact, a line (bivector)
can always be written as the sum of two terms:

� a line �1b̂1+�2b̂2+�3b̂3 passing through the origin
of the world reference frame (“finite” component);

� a line �1b1 + �2b2 + �3b3 on the plane at infinity
(component “at infinity”).

Notice that this notation for lines is somewhat redun-
dant, as it involves 6 (projective) parameters instead of 5.
The extra degree of freedom will be later removed through
a consistency constraint on the coefficients.

The coefficients�i and �i can be obtained by computing
the inner product between the line l and the corresponding
base bivector, bi or bbi. For example, we have

l � bi = (�1b1 + �2b2 + �3b3 + �1b̂1 + �2b̂2 + �3b̂3) � bi

= �ibi � bi = ��i : (5)

A camera with center c, and axis directed as x1, x2 and x3
can be represented by the three lines c ^ x1, c ^ x2 and
c ^ x3 corresponding to its axes. To retrieve position and
orientation of a camera we must find the finite and infinite
components of these lines.

2.1. Essential matrix

In this Section we will show that the coefficients of the in-
finite components of the axes of the second camera corre-
spond to the elements "ij of the essential matrix E. To do

so, without loss of generality, we assume that the axes of the
world coordinate frame are oriented like the axes of the first
camera, and that the origin of the world frame is in the cam-
era’s optical center,i. e. x(1)1 = e1, x(2)1 = e2, x(3)1 = e3
and c(1) = e4. With this assumption, we can rework the
epipolar constraint (2) to obtain nine equations of the form

"ijI4 = (e4 ^ ei) ^ (c(2) ^ x
(2)
j ) (6)

all involving the quadrivector I4. As we can see, there are
three equations for each axis x(2)j , whose unknowns are both

"ij and the axes c(2) ^ x(2)j of the second camera. If we
compute the inner product between both sides of eq. (6) and
the bivector bi, we obtain

"ijI4 � bi = (bbi ^ (c(2) ^ x
(2)
j ) � bi)

using the known equalities I4 �bi =
bbi, and (A^B) �C =

A � (B �C), we can write

"ij
bbi =

bbi � ((c
(2)

^ x
(2)
j ) � bi) : (7)

Notice that the term (c(2) ^ x
(2)

j ) � bi in the right-hand side

of eq. (7) is a scalar, therefore we can write " ij = (c(2) ^

x
(2)
j ) � bi. As shown in eq. (5), the inner product between

a bivector l and the base bivector bi at infinity, returns the
relative coefficient �i, with a sign change. This shows that
the generic element "ij of the essential matrix is, in fact, the
coefficient of the component at infinity b i of the camera-2
axis x(2)j . We can thus conclude that, knowing the essential
matrix, we already have the components at infinity of the
camera-2 axes.

2.2. Rotation matrix

In order to determine position and orientation of the sec-
ond camera we still need to compute the coefficients of the
base bivectors blj that pass through the world origin. We
will show how this coefficients correspond to the elements
of the rotation matrix which brings from the first camera
to the second. With this goal in mind, we need a compact
notation for the axes of the second camera

c(2) ^ x
(2)
i = �ET

i b�R
T
i
bb; i = 1; 2; 3; (8)

where Ej =

�
"1j "2j "3j

�T
, j = 1; :::; 3, are the

columns of E; the vectors Rj =

�
r1j r2j r3j

�T
, j =

1; :::; 3, collect the unknowns; while b and bb are defined as

b =

�
b1 b2 b3

�T
and bb =

h bb1 bb2 bb3
iT

. We

will now prove that Rj , j = 1; :::; 3, are the columns of the
rotation matrix of the second camera.



One interesting property of a generic line (4) of the pro-
jective space P3 is that its orientation is given by its inter-
section with the plane at infinity �1 = e1 ^ e2 ^ e3, which
can be written as (�1 � I4) � l = l � ��

1
. We can write

(�1b1 + �2b2 + �3b3 + �1b̂1 + �2b̂2 + �3b̂3) � (�e4) =

��1b̂1 � e4 � �2b̂2 � e4 � �3b̂3 � e4 =

�1e1 + �2e2 + �3e3 :

Also, eq. (8) implies that the directions x(2)1 , x(2)2 , x(2)3 of
the camera-2 axes can be written as a function of the direc-
tions x(1)1 = e1, x(1)2 = e2, x(1)3 = e3 of the camera-1
axes

x
(2)
1 = �r11e1 � r21e2 � r31e3

x
(2)
2 = �r12e1 � r22e2 � r32e3

x
(2)
3 = �r13e1 � r23e2 � r33e3 :

It is now quite apparent that matrix of the unknowns R =�
R1 R2 R3

�T
is, in fact, the rotation matrix of the

second camera.

2.3. Retrieving the second camera

We now have enough tools to derive an alternative formula-
tion of the self-calibration problem. The essential matrix E
can, in fact, be computed using a few point-corrispondences
between the two views (see [1]), therefore all we need for
determining the orientation of the second camera are the
coefficients rij that describe the “finite” component of the
camera-2 axes. In order to estimate the coefficients of this
component, a set of constraints between the known and un-
known parameters needs to be found. First of all, the axes of
the second camera must meet in the optical center c2. This
leads to the following pairwise-incident conditions

(c(2) ^ x
(2)
1 ) ^ (c(2) ^ x

(2)
2 ) = 0

(c(2) ^ x
(2)
1 ) ^ (c(2) ^ x

(2)
3 ) = 0 (9)
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2 ) ^ (c(2) ^ x

(2)
3 ) = 0 ;

which can be rewritten as8<
:

ET
1R2 +ET

2R1 = 0

ET
1R3 +ET

3R1 = 0

ET
2R3 +ET

3R2 = 0

: (10)

Such equations, however, are only meant to imply that the
axes will meet pairwise, therefore we also need an addi-
tional orthogonality constraint on the axes. This could be
done by imposing that R be an orthonormal matrix with
unit determinant. However, it is more convenient to repre-
sent rotations with rotors, which better exploit the charac-
teristics of geometric algebra and are intrinsecally related

to quaternions. In fact, the generic rotor in the the metric
space E

3 is expressed as a multivector of the form Q =

q0 + q1b1+ q2b2 + q3b3, which has a scalar component q0
and a bivector component q1b1+q2b2+q3b3, subjected to
the normalization constraint

q
2
0 + q

2
1 + q

2
2 + q

2
3 = 1 : (11)

Incidentally, the bivector component q1b1 + q2b2 + q3b3
only involves bivectors at infinity in the projective space P3.
Represent rotations with rotors, the orthonormal constraint
on R is automatically satisfied.

Notice however, that it is not difficult to derive the rota-
tion matrix from the rotor’s components
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An additional set of constraints can be derived from the
fact that the essential matrix E can always be written in
closed form as E = [t]�R, where t and R are the trans-
lation vector and the rotation matrix of the second camera
with respect to the first one, and [t]� is the skew-simmetric
matrix form of t [1]. This implies that each row of E is
bound to be orthogonal to the corresponding row of R, i.e.

ET
1R1 = 0; ET

2R2 = 0; ET
3R3 = 0 : (12)

This leads to an interesting property of lines in geometric
algebra. In fact, if we write a generic line (4) as the outer
product of two of its points in P

3, the coefficients of the
bivectors at infinity �i, i = 1; :::3, and the coefficients �i,
i = 1; :::3 of the “finite” base bivectors, must satisfy the
consistency constraint �1�1 + �2�2 + �3�3 = 0. This re-
sult can also be proven using classical tools of geometric al-
gebra. This constraint is equivalent to the Plücker consraint
mentioned in Section 2.1, which reduces the notational re-
dundancy of the bivector representations. Eqs. (10) and (12)

can be expressed in terms of
�
q0 q1 q2 q3

�T
. Along

with the normalization constraint on quadrivectors we end
up with a nonlinear system of seven equations in four un-
knowns. As E is a rank-2 matrix, only six of these seven
equations are, in fact, linearly independent. It is thus possi-
ble to compute position and orientation of the second cam-
era by numerically solving the system. This way we end
up with two solutions, only one of which corresponds to a
camera whose optical axis is oriented consistently with that
of the first camera.

2.4. Focal length estimation

In the previous Sections we made the assumption that the
focal lengths of the cameras were equal to one. We will



now remove this limitation and show how to estimate the
unknown focal lengths. Once again, with no loss of gener-
ality, we assume the first camera to be placed in the origin
of the world reference frame. In this case the epipolar con-
straint takes on the usual form mTFn = 0, where F is the
fundamental matrix. On the other hand, the coefficients " ij

of the axes of the second camera are still the elements of the
essential matrix E.

As we know, the relationship between the essential ma-
trix E and the fundamental matrix F is

E = K(2)TFK(2) (13)

whereK(1)
=diag(f (1); f (1); 1) andK(2)

=diag(f (2); f (2); 1)
are the matrices of intrinsic parameters (in this case only the
focal lengths) of the first and second camera, respectively.
Eq. (13) can be expanded as

E =

2
4 f11 f12 f13=f

(2)

f21 f22 f23=f
(2)

f31=f
(1)

f32=f
(1)

f33=(f
(1)

f
(2)

)

3
5 : (14)

Similarly to what done in the previous Section, we can
use the notation (8) to express the axes of the second cam-
era. The system of equations formed by (10), (12) and the
constraint on quaternions is still sufficient to retrieve both
orientation and focal lengths of the second camera. In fact
we now have seven nonlinear equations (six linearly inde-
pendent) in the six unknowns [ q0 q1 q2 q3 f

(1)
f
(2)

].
This system is fully constrained and allows us to find both
focal lengths, plus position and orientation of the second
camera with respect to the first one. Notice that the system
has more than one solution, only one of which is correct.
This solution can be easily determined as the one such that
f
(1)

> 0, f (2) > 0, and focal axes consistently oriented.

3. THREE-VIEW ANALYSIS IN THE GA
FRAMEWORK

We consider now the case of three cameras in the projec-
tive space. Let us assume, for the moment, that all the fo-
cal lengths of all three cameras are equal to 1. In order to
simplify the derivation of the trifocal constraint, we intro-
duce a new camera parametrization. As the trifocal con-
straint will be derived from a correspondence condition that
involves line features on the image plane, it is more conve-
nient to parametrize the cameras through its camera planes
(the planes spanned by its axes).

Given a camera with center c and axes x1, x2, x3 its
camera planes are defined as

�1 = c ^ x2 ^ x3

�2 = c ^ x3 ^ x1

�3 = c ^ x1 ^ x2 :

c
x1

x2

x3{

f

Fig. 1. A camera is completely defined by its axes and center, or
by the three camera planes, and its focal lenght.

This second parametrization is completely equivalent to the
previous one, as the camera axes and the optical center can
be easily obtained as intersections between the camera planes.
In GA, the intersection of subspaces is computed with the
meet operator (_), therefore the camera axes are

x1 = �2 _ �3

x2 = �3 _ �1

x3 = �1 _ �2 ;

and the optical center is

c = �1 _ �2 _ �3 :

A camera plane parametrization simplifies the specifica-
tion of line features on the image plane. In fact, the back-

projection �l of a line l =
�
l1 l2 l3

�T
on the image

plane can be written as a linear combination

�l = l1�1 + l2�2 + l3�3 (15)

of the camera planes �1, �2and �3.
Let us consider a line L in 3-space, which projects onto

the three image lines l(1), l(2) and l(3). The backprojections
of such lines
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(i)
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are bound to intersect in L.
The line L in 3-space can also be written in terms of the

meet operator as

L = �
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l
_ �

(3)

l
: (16)

Considering that the meet operator is distributive with re-
spect to the sum, the expression (16) can reworked as
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c
(1)

L

c
(2)

c
(3)l

(1)

l
(2)

l
(3)

Fig. 2. Three image lines are projections of the same line in the
space (i.e. satisfies the trifocal constraint) if and only if the cor-
responding back-projection planes intersect in a single line in the
3D space.

If the lines l(1), l(2) and l(3) are homologous (corre-
sponding to same line L), then the outer product of the in-
tersection (�

(2)

l
_ �

(3)

l
) and the center of the first camera

c(1) must be equal to the back projection plane �
(1)

l
. We

can thus write the trifocal constraint as

�
(1)

l
= c(1) ^ (�

(2)

l
_ �

(3)

l
) : (17)

We can simplify this expression by computing the outer
product between �

(1)

l
and the direction x(1)j , j = 1; 2; 3; of

each one of the axes of the first camera. Let us first consider
x
(1)
1 :
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As we can see from eq. (18), we end up with quadrivectors
only. In particular, if the directions x(1)

1 , x(1)2 and x(1)3 are

orthonormal, the term (c(1) ^ x
(1)
2 ^ x

(1)
3 ^ x

(1)
1 ) can be

proven to be equal to �I4, therefore eq. (18) becomes
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As all terms (c(1) ^x(1)1 ^ (�
(2)
s _ �

(3)
t )) are pseudoscalars,

they are all proportional to I4. The substitutions (c(1) ^

x
(1)
1 ^ (�

(2)
s _ �

(3)
t )) = �1stI4 lead to

l
(1)
1 =

3X
s=1

3X
t=1
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(2)
s l

(3)
t �1st :

Similar expressions can be derived for l
(1)
2 and l

(1)
3 . We

have thus re-derived the classic formulation of the trifocal

constraint, where the elements �rst are exactly the elements
of the Hartley tensor [1].

3.1. Trifocal tensor

Exactly as seen in Section 2.1, we will now show that the
elements of the trifocal tensor can be geometrically inter-
preted in terms of infinite components of the camera para-
metrization.

As seen above, the elements of the trifocal tensor can be
written in terms of GA operators as

�rstI4 = (c(1) ^ x(1)r ) ^ (�
(2)
s _ �

(3)
t ) : (19)

Like in the bifocal case, we assume that the axes of the
world coordinate frame are oriented like the axes of the first
camera, and that the origin of the world frame is in the cam-
era’s optical center. Then eq. (19) becomes

�rstI4 = (e4 ^ er) ^ (�
(2)
s _ �

(3)
t ) :

This expression is very similar to (6). In fact, in both cases
we have the outer product between an unknown bivector
((c(2) ^ x(2)j ) in the bifocal case, (�(2)

s _ �
(3)
t ) in the trifo-

cal case) and a base bivector. With a similar procedure to
that followed in the bifocal case, we can prove that the el-
ements �rst are the coefficients of the component at infinity
of the lines (�(2)s _�

(3)
t ). These lines are the intersections of

the planes of the second camera and the planes of the third
camera. Notice that in the bifocal case the unknown lines
were the axes of the second camera. Such axes are obtained
as mutual intersections between the 3 planes of the second
camera.

In the trifocal case we have three planes for the second
camera and other three for the third camera, therefore we
have nine lines of cross-intersection between planes of the
second and third camera. Each one of these lines has three
coefficients that characterize the infinite component, there-
fore we need 27 parameters to specify all infinite compo-
nents of the unknown lines. This number corresponds to
the number of elements of the trifocal tensor. Moreover, the
three lines obtained by intersecting one camera plane with
the three planes of the other camera are bound to be copla-
nar (linearly dependent), therefore only the coefficients of
six lines turn out to be linearly independent. This confirms
the fact that the trifocal tensor has 18 degrees of fredoom.

3.2. Retrieving the cameras

The trifocal tensor can be computed directly from line (or
point) correspondances on the images. In order to compute
position and orientation of the second and third camera we
must find a system of equations to retreive the expression



of the planes of the second and third camera from the trifo-
cal tensor. The first camera is assumed to be in canonical
position.

The camera planes are trivectors, and therefore linear
combination of the base trivectors of P3 that, in the follow-
ing, will be indicated with the notation:

t1 = e2;3;4

t2 = e3;1;4

t3 = e1;2;4

t4 = e3;1;2 :

In the case of trivectors we have that three of them represent
planes through the origin (t1, t2 and t3), and are therefore
finite planes, while the last base trivector (t4) corresponds
to the plane at infinity. The planes of the second and the
third camera can be written as

�
(2)
s = c

(2)
s1 t1 + c

(2)
s2 t2 + c

(2)
s3 t3 + c

(2)
s4 t4

�
(3)
t = c

(3)
t1 t1 + c

(3)
t2 t2 + c

(3)
t3 t3 + c

(3)
t4 t4 ;

where c
(k)
ij are the unknowns that we must retreive in order

to derive the position and the orientation of the cameras.
Given two of these planes we can directly compute their
meet as

(�
(2)
s _ �

(3)
t ) =

= (c
(2)
s1 c

(3)
t4 � c

(2)
s4 c

(3)
t1 )e2;3 + (c

(2)
s2 c

(3)
t4 � c

(2)
s4 c

(3)
t2 )e3;1+

+(c
(2)
s3 c

(3)
t4 � c

(2)
s4 c

(3)
t3 )e1;2 + (c

(2)
s3 c

(3)
t2 � c

(2)
s2 c

(3)
t3 )e4;1+

+(c
(2)
s1 c

(3)
t3 � c

(2)
s3 c

(3)
t1 )e4;2 + (c

(2)
s2 c

(3)
t1 � c

(2)
s1 c

(3)
t2 )e4;3 :

The elements of the trifocal tensor correspond to the coef-
ficients of the infinite components of the lines �

(2)
s _ �

(3)
t ,

r; s = 1; 2; 3. This provides us with a set of 27 equations of
the form

�rst = c
(2)
sr c

(3)
t4 � c

(2)
s4 c

(3)
tr ; (20)

which are 27 nonlinear constraints on the 24 unknowns.
We now need a second set of geometric constraints to

impose the orthogonality between the three planes of a same
camera. This constraint could easily expressed in terms of
the inner product:

c
(j)
11 c

(j)
21 + c

(j)
12 c

(j)
22 + c

(j)
13 c

(j)
23 = 0

c
(j)
11 c

(j)
31 + c

(j)
12 c

(j)
32 + c

(j)
13 c

(j)
33 = 0 (21)

c
(j)
31 c

(j)
21 + c

(j)
32 c

(j)
22 + c

(j)
33 c

(j)
23 = 0 :

By combining eqs. (20) and (21) we obtain a set of nonlin-
ear equations for the computation of position and orienta-
tion of the cameras from the trifocal tensor.

The constraints (21) can also be expressed using rotors.
In order to do so, let us consider the intersection of a plane

� with the plane at infinity �1. Using the meet operator we
can write

� _ �1 = (c1t1 + c2t2 + c3t3 + c4t4) _ �1

= c1b1 + c2b2 + c3b3 ;

which is a line on the plane at infinity.

The vector
�
c1 c2 c3

�T
formed by the coefficients of

the finite components of the plane identifies a line on �1.
Using the duality principle, this vector can also be inter-
preted as a point on �1. This point represents the direction
of all the lines that are orthogonal to �, therefore it charac-
terizes the orientation of �. This is in accordance to what
happens with lines, as their component at infinity provides
us with information on its orientation. As orthogonal direc-
tions imply orthogonal planes, we can impose the orthogo-
nality constraint of the i-th camera planes, directly on the
columns of the matrix

R(i)
=

2
64

c
(i)
11 c

(i)
21 c

(i)
31

c
(i)
12 c

(i)
22 c

(i)
32

c
(i)
13 c

(i)
23 c

(i)
33

3
75 :

Since rotating camera planes corresponds to rotating camera
axes of the same amount, this is the matrix that rotates the
first (normalized) camera into the i-th (normalized) camera,
i = 2; 3. Being a rotation matrix, R(i) can be represented
by a quaternion, exaclty as done in the bifocal case. This
reduces the number of unknowns from nine to four thus
leading to a more efficient and robust parametrization of the
rotation. In addition, the orthogonality constraint on the el-
ements of R(i) becomes a simple normalization constraint
(11) on the equivalent quaternion.

3.3. Calibration in the trifocal case

If we remove the assumption that the focal lengths are equal
to one, the equation that describes a back-projected line as
a linear combination of camera planes, becomes

�l = l1f�1 + l2f�2 + l3�3 : (22)

Let f (1), f (2) and f
(3) be the focal lenghts of the first, sec-

ond and third camera, respectively. Following the same
steps as in the “normalized” case of the previous Section,
we can start from eq. (22) and prove that
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2
6664
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Fig. 3. Average error in focals estimation in the case of cam-
eras with different focal lengths. The proposed methods and the
Newsam method produce almost exactly the same results for ev-
ery noise level, in fact only two lines, one for the first and one for
the second focal, are visible instead of four.

where �̂i i = 1::3 are “slice” matrices of the trifocal tensor
in the case of unknown focal lenghts, while �rst are the el-
ement of the trifocal tensor in the “essential” (normalized)
case. The equations (23) play the same role as eq. (14) in
the bifocal case. As eq. (20) holds true also in the case of
unknown focal lenghts, the variables f (1), f (2) and f

(3) can
be simply added as unknowns to the systems of equations
(20) and (21), which provide enough constraints to retrieve
position and orientation of the second and third camera, as
well as the focal lenghts.

4. SIMULATION RESULTS

A series of experiments have been conducted on noisy im-
age coordinates of clouds of points with the goal of com-
paring the proposed solution with existing others. First we
compared the focal lengths and rotations that we estimated
with our approach in the bifocal case, with the same param-
eters derived with Newsam’s method ([5]) and the canoni-
cal decomposition of the Essential matrix (see [1]), respec-
tively. Finally, we compared the performance of our 2-view
method with the 3-view method that we proposed in Sec-
tion 3.3, in order to assess the impact of the third view on
the global accuracy.

In figure (3) we can see how Newsam’s method and the
proposed method produce almost exactly the same results
for every noise level on the images. However, figure (4)
shows that the rotation retrieved with the proposed method
is more accurate than the one obtained using the canoni-
cal composition of E. This can be explained considering
that our method computes simultaneously both focal lengths
and rotation, distributing more efficiently the noise on these
quantities, and it employees quaternions to represent rota-
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Fig. 4. Average rotational error in the case of cameras with arbi-
trary focal lengths. Rotational error is measured as the magnitude
of the Euler vector that describes the estimated rotation matrix.
The proposed method exhibits a more stable behavior, and its ac-
curacy turns out to be better than in the case of canonical decom-
position of the essential matrix.

tions, that are intrinsically less sensitive to noise than rota-
tion matrices. The proposed method has also been tested
in the case of cameras with fixed focal lengths, and has
produced results comparable with the previous case. The
experiments confirmed our method’s accuracy to be com-
parable with state-of-the art methods in the literature. Our
method, however, enables the estimation of both intrinsic
and extrinsic camera parameters simultaneously and with
no ambiguities.

In the three-view calibration case, the comparison is done
between bifocal estimation and trifocal estimation. The two-
view estimation, however, incorporates a preliminary step in
which a trifocal tensor is computed in order to make a more
robust estimation of the Fundamental matrices. This means
that what we measure now is what we gain from computing
focal lengths directly from the trifocal tensor. Fig. 5 shows
the average relative errors in the estimation of a fixed fo-
cal length, obtained when using the two-view and the three-
view methods. The three-view calibration method turns out
to be more stable and more accurate than the other one, as
expected.

5. CONCLUSIONS

In this paper we proposed a novel geometric interpretation
of essential and rotation matrices, and of the trifocal tensor
in terms of bivectors and trivectors in geometric algebra.
From this parametrization we derived two procedures, one
for the bifocal case and one for the trifocal case, for comput-
ing unknown focal lengths as well as camera positions and
orientations, without introducing projective ambiguities.



0.092 0.184 0.276 0.368 0.42 0.522 0.644 0.736

0

0.13

0.26

0.39

0.52

0.65

0.78

F-Based algorithm
T-Based algorithm

Image noise STD in pixel

P
er

ce
nt

ag
e

m
ea

n
er

ro
r

%

Fig. 5. Average relative error on the focal length estimation in
the case of three cameras with fixed focal length. The calibration
method based on three views results as being more accurate and
stable than in the two-view case for all noise levels.
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