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ABSTRACT 

In a former work of ours [I], we proposed a new way to 
express and interpret the epipolar constraint using Geomet- 
ric Algebra, and we derived from it a novel and efficient 2- 
view camera calibration technique. In this paper we extend 
this GA approach to the 3-view case. Aiter expressing the 
trifocal constraint in t e m  of bivectors and trivectors, we 
provide an altemative geometric interpretation of the coeffi- 
cients of the trifocal tensor. On the basis of that, we propose 
a novel solution for the simultaneous determination of the 
focal lengths of the cameras and the rigid motion between 
three views. 

1. INTRODUCTION 

The smctnre from motion (SfM) problem is traditionally 
formulated in terms of geometric constmints, which areusu- 
ally expressed using tools of linear algebra [?I. A more 
effective approach to the StM problem exploits rank condi- 
tions on aproperly definedmulti-view matrix [8]. Withsuch 
a purely algebraic approach, however, i t  is quite difficult to 
visualize the constraints in a geometric space. lt would thus 
be highly desirable to devise and develop StM algorithms 
that allow us to devise and enforce complex constraints in 
a visual fashion without having to give up the effectiveness 
and the generality of the algebraic solutions available today. 

Geometric (Clifford) algebra (Gh) is a framework where 
geometry and algebra sinergically co-exist. Using GA the 
Sfh4 problem c:m 1% nicely formulated in a very evocative 
fashion (see [3, 7, 61). In a previous work of ours ([I]) 
we showed how GA can be used to compactly rewrite the 
epipolar constraint and to derive novel geometric insight 
on the matter. In particulx, we used an alternative c.unera 
fr‘une based on camera bivectors (which correspond to the 
camra axes), and showed thdt the fundamental matrix and 
the rotation matrix that link a pair of views correspond to the 
components at infinity and the finite compnents, respec- 
tively, of the frame’s bivectors (axes). We also proposed 
a novel ?-view self-calibration technique based on this in- 
terpretation. In this papx we extend this method to the 3- 
view case. In fact we will interpret the trifocal tensor and 
the camera motion in term of finite components and com- 
ponents at infinity of intersections between camem planes 
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(trivectors). Based on this method, we propose a 3-view 
calibration method that improves the performance of our 2- 
view calibration approach [I], which can be easily embed- 
ded in a camera tracking SW, as shown in the last Section. 

2. TIfE PROJECTIVE SPACE IN CA 

A generic point p of the prujective space P3 can be written 
in homogeneous form as p = ale, + me2 + a383 + e,. 
where el, ez,  e g ,  e, forma basis of p. The line 1 passing 
through a given pair of points PI and pz can be expressed as 
abivectorof theform1 = p l A p z ,  wherethe wedgeoperator 
denotes the outer product between vectors. Similarly, the 
plane passing through the three points P I ,  pz and p3 can k 
written as the grade-3 vector (trivector) ?i = p1 A p2 A pg.  
Taking the outer product of a plane with a p i n t  that does 
not lie on the plane, we obtain a scaled version of the entire 
space (14). called pseudoscalar. A generic multi-vector can 
be expressed as the linear combination oi  the basis element 
of the same grade. So a line 1 can he written as the linear 
combination of the basis bivectors as 

wherebl =ezAe3,b2=esAel,b3=elAeaarebivector 
on the plane at infinity T, (component ‘at infinity’), while 
bl = e4Ael, bZ = eaAe2 and b3 = e, Ae3 pass through 
the origin (‘finite’ component). Similarly, a plane can be 
expressed as a linear combination of the basis trivectors of 
P3, which a~ the three planes through the o r i q  (tl = e2 A 
e 3  Aea, t z  = e3 Ael A e4 and t 3  = el Aez Ae4) andthe 
plane at infinity ?ita (tr = e3 A el A ez). 

- - - 

3. THREE-VIEW ANALYSIS IN GA 

Let us assume, for the moment, that the focal lengths of 
the three cameras are equal to 1. As the trifocal constraint 
will be derived from a correspondence condition that in- 
volves line features on the image plane, it is imre conve- 
nient to parametrize the cameras through its camera planes 
(the planes spanned by its axes). 

Given a camera with center c and directions of the axes 
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Fig. 1. A camera is completely defined by its axes and center. or 
by the t h e  camera planes. and its foal  length 

XI, x2, x g  its camera planes are defined as 

Ti = c A X 2  AX3, 712 = C A X 3  Axl ,  7r3 = C A x 1  AX2 

Using the meet operator (V), that represents in GA the in- 
tersection of subspaces, the camera axes can be expressed 
as 

XI = ?Ta v 7r3, x2 = 713 v XI: x g  = TI v 7r2, 

and the optical center is c = ?il V 7r2 V 7r3 

A camera plane parametrization simplifies the specifica- 
tion of line features on the image plane. In fact, the back- 
projection XI of a line 1 = [ 11 / 2  13 ] on the image 
plane can he written as a linear combination 

TI = llTl + 12T2 + l3T3 (2)  

. 

T 

of the camera planes 7rl. n2 and r3.  

3.1. The Trifocal constraint 

Let us consider a line L in 3-space, which projects onto the 
three image lines I('), I(') and The back-projections of 
such lines 

3 
= ~j")7rj')+lpKp+$)nr) = CpT!") i = 1 , 2 , 3  

?=I 

are bound to intersect in L. 

meet operator as 
' h e  line L in 3-space can also he witten in terms of the 

(the meet operator is distributive with respect to the sum). 
If the lines I('), I(') and 1(3) correspond to the same line 

L, then the outer product of the intersection (n;') V R!~)) 
and the center of the first c m r a  c( ' )  must be equal to the 
back-projection plane 7r1('). We can thus write the trifocal 
constraint as 

n1(') = c ( ' )  A (~1(2) V . (3) 

Fig. 2. Three image tines are projections of the same h e  in the 
space (i.e. satisfie the tifowl constraint) if and only if the cor- 
Esponding back-projection planes intersect in a single line in the 
3-space. 

We can simplify this expression by computing the outer 
product between ?rl(l) and the direction xy'. j = 1 , 2 , 3 ,  
of each one of the axes of the first camera. Choosing for 
example x(11). the left memtxr becomes : 

+ A x ( ' ) =  1 1 ,  ( 1 )  (c ( l ) ~ ~ ~ l A ~ ) ~ ~ ~ ) ) = ~ ~ l ~ ~  (4) 

Therefore eq. (4) kcomes 

/y)14 = c(') A xy) A ($) V 7r'r3)) = 
3 3  

= 1i2)lj3)(d1) A xy) A (7ri') V a?')) . 

As all terms (dl) Ax?' A ($) V ~13')) are pseudoscalars, 
they are all proportional to Iq. The substitutions (dl) A 

x y )  A (K!') V T { ~ ) ) )  = T ~ ~ ~ I ~  lead to 

s = 1  t=1 

Similar expressions can be derived for l p )  and Zy). We 
have thus re-derived the clasic formulation of the trifocal 
constraint, where the elements T,.,, are exactly the elements 
of the H.utley tensor [?I. 

3.2. Geometric interpretation of the Trifocal tensor 

Exactly as seen in [I], we will now show that the elements 
of the trifocal tensor can be geometrically interpreted in 
terms of components at infinity of the camera pmmetriza- 
lion. As seen above, the elements of the trifocal tensor can 
he Mitten in terms of GA operators as 

T~.& = (c ( ' )  A xp)) A (T?) V ",'"I) . ( 5 )  

As in the hifmal case, we assume that the axes of the world 
coordinate frame are oriented like the axes of the first cam- 
era, and that the origin of the world frame is in the camera's 
optical center. Then eq. (5) hecomes 
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This expression, as shown in [l], is equivalent to T,..~ = 
(x!’) V 7 ~ : ~ ) ) .  b,: the 27 elements of the trifocal tensor T~~~ 

are, in fact, the coefficients of the component at infinity of 
the9 lines (xi’) V $I). These lines are the intersections of 
the planes of the second camera and the planes of the third 
camera. Notice that in the bifocal case the unknown lines 
were the axes of the second camera. Such axes are obtained 
as mutual intersections between the 3 planes of the second 
c‘unera. 

Since the three lines of intersection between one camera 
plane and the three planes of the other camera are b u n d  
to be coplanar, they cannot be independent. This leads to 
nonlinear constraints among the trifocal tensor entries (see 
[4, 51). which reduce to 18 the number of degrees of free- 
dom of the trifocal tensor. 

3.3. Retrieving the cameras 

The trifocal tensor can be computed directly from line (or 
p in t )  wrrespndences on the imges. In order to wmpute 
position and orientation of the second and third camera we 
need to find a system of equations to retrieve the expression 
of the planes of the second imd third camera from the trifo- 
cal tensor. The first camera is assumed to be in canonical 
position. The planes of the k-th ccmeracan be written as 

p) = Cil (k) tl + ci2 (k) tl + c p t 3  + C ( k ) t 4  
%‘I 1 

where tit) an the unknowns that we must retrieve. Given 
two of these planes we can drectly compute their nieef as 

The elements of the trifocal tensor correspond to the coeffi- 
cients of the component at infinity of the lines a?) V 7$). 

T, s = I! 2 ,3 .  This provides us with a set of 27 equations of 

which an 27 nonlinear constraints on the 24 unknowns. 
We now need a second set of geomtnc constraints to 

impose the orthogonality between the three planes of one 
camera. We know that the orientation of a subspace of P3 
can be obtained by computing its intersection with the plane 
at infinity x-. The meet of a plane x with rm i s  

which is aline on the plane at infinity I .  Notice that the vec- 
tor of the coefficients [ c1 cz c j  1’ of the intersection 

‘given two subspaces A and B whose join is the pseudoscalar. their 
meet em be rewillen as A‘ . B. where A‘ is L e  dud subspace of A [ I ] .  
Iherefore we.have 71, v 71 = 71& .?r = 71 . (-e4)) 

line is also the direction of the vector normal to the plane. 
It can be easily shown that, given the three orthogonal 

planes T::!?,,~ of the k-th camera, the matrix that rotates the 
‘finite’ basis t l ,  t a  and ts in x$E)l..3 is 

whose columns are exactly the first three coefficients of the 
planes 7rj2)l..3. Representing R(k) with a quatemion, ex- 
actly as done in the bifocal case, eq. (6) can be rewritten 
with a reduced number of unknowns (from nine lo four), 
thus leading to a m r e  efficient and robust parametrization 
of the rotation. In addition, the orthogonality constraint on 
the elements of R@) kwms a simple normalization cm- 
strain1 an the equivalent quatemion. 

3.4. Calibration in the trifocal case 

If we remove the assumption that the focal lengths are equal 
to one, the equation that describes a back-projected line as 
a linear combination of camera planes, Lxcomes 

R1 = I l fF,  + 12f7T’ + kx3 . (7) 

Let f(l), fi2) and f ( 3 )  be the focal lenghts of the first, sec- 
ond and third camera, respectively. Following the same 
steps as in the ‘normalised‘ case, we c.m start from eq. (7) 
and prove that 

1 
1 

(2)  (3) (1) (3) 

(2) (3) d J  (3) 
(+)m (+,TI12 ( $ 3 T 1 1 3  

(LsifT)T*21 (%)T122 ($)TI23 

($)7131 

(2) (3) ( 2 )  (3) 

(4) (3) ( J (9) 

( w ) T 2 1 1  (+)VI2 (%)VI3 

i 
1 

il = 

fi = (+)?ZI ( f r f r h z  ($)nz3 (8) 

( $ b . a B l  ($+%2 ( ? f i j ) f L 3 3  

(f(2)f(3))T321 ( f ( 2 ) f ( 3 ) h 2 2  f(2)T328 , 1 (J(~)P))Q~~ (J(~)J(~))Q~z f(2)n13 

J(3)7331 f ( 3 ) T B 3 2  TB33 [ i, = 

where i; i = L.3 are ‘slice’ matrices of the trifocal tensor 
in the case of unknown focal lenghts. while T?.~ are the el- 
ement of the trifocal tensor in the ‘essential’ (normalised) 
case. As eq. (6) holds true also in the case of unknown fo- 
cal lenghts, the variables f(l), f(’) and f(3) can be simply 
added as unknowns to the system of equations (6). which 
provide enough constraints to retrieve position and orien- 
tation of the second and third camera, as well as the focal 
lenghts. 

4. SIMULATION RESULTS 

In [ I ]  we proved that OUT 2-view calibration method per- 
forms comparably with state-of-art methods in the litera- 
ture. We conducted a series of experiments on noisy image 
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Fig. 3. Average relative enor on the focal length estimation in 
the case of three cameras with fixed focal length. The calibration 
method based on three views is more accnmte and stable than in 
the two-view case for all noise levels. 

Fig. 4. 
sequence. 

Actual, and estimated camera trajectories of the same 

wrdinates of point clouds with the goal of comparing the 
performance of our 3-view method with the 2-view one and 
assess the impact of the third view on the global accuracy. 
Fig. 3 shows the average relative errors in the estimation 
of a fixed focal length, obtained when using the two-view 
and the three-view methods. Notice,however, that the fun- 
damental mntrices of the ?_-view estimator are here robustly 
computed through using the trifocal tensor. This me,ms that 
what we measure now is what we gain from computing fo- 
cal lengths directly from the trifocal tensor. The calibration 
method based on 3 views, in spite of the increasing num- 
her of parameters to be simultaneously recovered, turns to 
k more accurate and stable than the 2-view based algo- 
rithm for all noise levels. In both the cases the system of 
equations to compute camera orientations and positions was 
solved numerically using a Newton-Raphson algorithm In 
order to test the effectiveness of the proposed calibration ap- 
proach in real applications, we also implemented a simple 
camera-tracker based on it. Our 3-view algorithm is here 
used to calibrate single triplets of fr,unes, in order to obtain 
pmial reconstructions, which rue then mrged into a global 
one. To do this, the value of the focal length was set to the 
average value computed from the triplets that showed the 
lowest back-projection error, and then the 3-view algorithm 
was re-run while holding the focal length fixed. The accu- 
r a q  evaluation of the camera tracker was conducted on se- 

quences with known motion. In order to do so, we mounted 
a camera on a high-precision mechanical arm whose motion 
was controlled by a F C  This way we could compare the 
estimated trajectory with the actnd (programmed) camera 
motion. The acquired scene contained two objects (a teddy 
bear and a puppet, each ahout 30 cm tall) with some natural 
texturing on them. The mechanical arm kept the camera at 
a distance of approximately 30-40cm from the objects. A 
visual comparison between estimated and actual trajectory 
c m  be seen in Fig. 4 on the right. As we can see, the es- 
timated camera trajectory turned out to be very close to the 
actual one. 

5. CONCLUSIONS 

In this p a p r  we proposed a novel geometric interpretation 
of the lrifocd tensor in terms of hivectors and trivectors in 
GA. From this parameterization we derived a procedure for 
computing unknown focal lengths as well as camera posi- 
tions and orientations, without introducing projective ,amhi- 
guities. 
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