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ABSTRACT

In a former work of ours [I], we proposed a new way to
express and interpret the epipolar constraint using Geomet-
ric Algebra, and we derived from it a novel and efficient 2~
view camera calibration technique. In this paper we extend
this GA approach to the 3-view case. After expressing the
trifocal constraint in terms of bivectors and trivectors, we
provide an alternative geomelric interpretation of the coeffi-
cients of the trifocal tensor. On the basis of that, we propose
a novel solution for the simultaneous determination of the
focal lengths of the cameras and the rigid motion between
three views.

1. INTRODUCTION

The structure from motion (SfM) problem is traditionaily
formuiated in terms of geometric constraints, which are usu-
ally expressed using tools of linear algebra [2]. A more
effective approach to the SfM problem exploits rank condi-
tians on a properly defined multi-view matrix {81, Withsuch
a purely algebraic approach, however, it is quite difficult to
visualize the constraints in a geometric space. 1t would thus
be highly desirable to devise and develop SfM algorithms
that allow us to devise and enforce complex constraints in
a visual fashion without having (o give up the effectiveness
and the generality of the algebraic solutions available today.

Geometric (Clifford) algebra (GA} is a framework where
geomelry and algebra sinergically co-exist. Using GA the
SfM problem can be nicely formulated in a very evocative
fashion (see (3, 7, 6]). In a previous work of curs ({1])
we showed how GA can be used to compactly rewrite the
epipolar copstraint and to derive novel geometric insight
on the matter. In particular, we used an alternative camera
frame based on camera bivectors (which correspond to the
camera axes), and showed that the fundamental matrix and
the rotation matrix that link a pair of views correspond to the
components at infinjty and the finite components, respec-
tively, of the frame’s bivectors (axes). We also proposed
a novel 2-view self-calibration technique based on this in-
terpretation. In this paper we extend this method to the 3-
view case. In fact we will interpret the trifocal tensor and
* the camera motion in terms of finite components and com-
ponents at infinity of intersections between camera planes
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{triveciors). Based on this method, we propose a 3-view
calibration method that improves the performance of our 2-
view calibration approach [11, which can be easily embed-
ded in a camera tracking SW, as shown in the last Section.

2. THE PROJECTIVE SPACE IN GA

A generic point p of the projective space P° can be written
in homogeneous form as p = aye; + aaez + azes + ey,
where ey, e, e3, e4 form a basis of P3. The line 1 passing
through a given pair of points p; and p; can be expressed as
a bivector of the form 1 = p; Aps, where the wedge operator
denotes the outer product between vectors. Similarly, the
plane passing through the three points p;, pz and p3 can be
written as the grade-3 vector {trivector) T = p1 Ap2 A Pa.
Taking the outer product of a plane with a point that does
not lie on the plane, we obtain a scaled version of the entire
space (L), called pseudoscalar. A generic multi-vector can
be expressed as the linear combination of the basis element
of the same grade. So a line 1 can be writlen as the linear
combination of the basis bivectors as

1= a1by + azbz + azbs + B1by + B2ba + 83Dz, (1)

where b) = esAes, bs = ezAe), by = e) Ae; are bivector
on the plane at infinity =, (component “at infinity”), while
Sl =eyhe, _Bz = eg A ez and 83 = e, A eg pass through
the origin (‘finite’ component). Similarly, a plane can be
expressed as a linear combination of the basis trivectors of
P2, which are the three planes through the origin (t; = ez A
esNey to =esAey Aegand ts = e; Aes Aey) and the
plane at infinily m, (ty = €3 A ey Aeg).

3, THREE-VIEW ANALYSIS IN GA

Lel us assume, for the moment, that the focal lengths of
the three cameras are equal to 1. As the trifocal constraint
will be derived from a correspondence condition that in-
volves line features on the image plane, it is more conve-
nient to parametrize the cameras through its camera pianes
(the planes spanned by its axes).

Given a camera with center ¢ and directions of the axes

I-305



e g play,

Fig. 1. A camera is completely defined by its axes and center, or
by the three camera planes, and its focal length.

X1, X2, X3 its camera planes are defined as
M =CAXpgAX3, Fg =CAX3AXy, T3 =¢cAX1 NXo.

Using the meet operator (Vv), that represenis in GA the in-
tersection of subspaces, the camera axes can be expressed
as

X] =Ta VT3, Xo ="z VT, Xz =11 Vg,

and the oplical centeris c = m; Vg V 3
A camera plane parametrization simplifies the specifica-
tion of line features on the image plane. In fact, the back-
Lo . T .
projection m of alinel = [ I Iz {3 | on the image
plane can be written as a linear combination

= hw +lawy + I37s )

of the camera planes 7y, 7z and 73.

3.1. The Trifocal constraint

Let us consider a line L in 3-space, which projects onto the
three image lines 11", 1) and 1®). The back-projections of

such lines
. . . . N . . 3
) = 00 = S0 i=1,2,3
=1

are bound to intersect in L.
The line L in 3-space can alsc be written in terms of the
meet operalor as

3 3
L= 7r52) v 7rl(3) = Z Z lgz)lga)(wgz) v 'rr,fs))
s=1 t=1

(the meet operator is distributive with respect to the sum).

If the lines 110, 12} and 1®) correspond to the same line
L, then the outer product of the intersection (71.'](2) vV rr](3))
and the center of the first camera ¢!? must be equal to the
back-projection plane wfl)‘ We can thus wrile the trifocal
constraint as

= e A (nf? vy 3

Fig. 2. Three image lines are projections of the same line in the
space (i.e. satisfie the trifocal constraint) if and only if the cor-
responding back-projection planes intersect in a single line in the
3-space.

We can simplify this expression by computing the outer
product between 7r1(1) and the direction x;”, i =123,
of each one of the axes of the first camera. Choosing for

example x(ll), the left member becomes :
w{l) l\x(ll) = l(ll)(c(l) A xgl) A xgl) A x(ll)) = 1(11)14 4)

Therefore eq. (4) becomes

L'(ll)L; = A x(il) A (ﬂ'fz) \Mr{s)) =
3 3
= o3P Ax{Y A D v )

3=1t=1

Asall terms (¢ Ax{P A (1l v 7)) are pseudoscatars,
they are all proportional to I4. The substiutions (c(l) A
x(ll) A (Trgz) v Tr§3))) = 11514 lead to

3 3
=35 P,

s=1 t=1

Similar expressions can be derived for lgl) and lgl). We
have thus re-detived the classic formulation of the trifocal
constraint, where the elements T,.,; are exactly the elements
of the Hartley tensor [2].

3.2. Geometric interpretation of the Trifocal tensor

Exactly as seen in [1], we will now show that the elements
of the trifocal tensor can be geometrically interpreted in
terms of components at infinity of the camera parametriza-
tion. As seen above, the elements of the trifocal tensor can
be written in terms of GA operators as

TraeLs = (€D AXU) A (2@ v 2Py &)

As in the bifocal case, we assume that the axes of the world
coordinate frame are oriented like the axes of the first cam-
era, and that the origin of the world frame is in the camera’s
optical center. Then eq. (5) becomes

Tratls = (s Aey) A (1@ v 7l)
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This expression, as shown in [1], is equivalent to 7.5 =
(7r£2) v 7r§3)) - b,.: the 27 elements of the trifocal tensor 7,.4¢
are, in fact, the coefficients of the component at infinity of
the 9 fines () v ﬂ,ga))_ These lines are the intersections of
the planes of the second camera and the planes of the third
camera. Notice that in the bifocal case the unknown lines
were the axes of the second camera. Such axes are obtained
as mutual intersections between the 3 planes of the second
camera.

Since the three lines of intersection between cne camera
plane and the three planes of the other camera are bound
to be coplanar, they cannot be independent. This leads to
nonlinear constraints among the trifocal tensor entries (see
i4, 51), which reduce to 18 the number of degrees of free-
dom of the trifocal tensor.

3.3. Retrieving the cameras

The trifocal tenscr can be computed directly from line (or
point) correspondences on the images. In order to compute
posilion and orientation of the second and third camera we
need to find a system of equations to retrieve the expression
of the planes of the second and third camera from the trifo-
cal tensor. The first camera is assumed to be in canonical
position. The planes of the k-th camera can be wrillen as

7 = s + Pt + s + Pt

where cg-“') are the unknowns thai we mus| retrieve. Given
two of these planes we can directly compute their meet as
(1 va) =

2) (3 2) (3 2) 3 2) (3
= (cgl)cgal) - C£4JC£1))62,3 + (Cg'z)CS::) - Ce(;q)cgz))e3,l+

2) (3 2) (3 2) (3 2) (3
+(C£3)C£4) - ng)cgs))em + (C.-(as)cgz) - c£2)6§3))e4,1+
2) (3 2) (3 2) (3 2) (3
- (Dol — el Nesn + (B — P elPesn

The elements of the trifocal tensor correspond to the coeffi-
cients of the component at infinity of the lines v wf’),
7,5 = 1,2, 3. This provides us with a set of 27 equations of
the form
T = ey — el ©

which are 27 nonlinear constrainis on the 24 unknowns.

We now need a second set of geometric consiraints to
impose the orthogonality between the three planes of one
camera. We know that the crientation of a subspace of P2
can be obtained by computing its interseciion with the plane
at infinity 7.,. The meet of a plane 7 with 7, is

4 3

TV T = :E::j::l(zitj Vo, = :E::j::l Cj])j N
which is a line on the plane at infinity . Notice that the vec-
tor of the coefficients [ &2 e ¢ ]T of the intersection

Igiven two subspaces A and B whose join is the psendoscalar, their
meet can be rewritten as A* - B, where A* is the dual subspace of A [7],
therefore wehave oo VT =2, -7 = 7 - (—e4))

line is also the direction of the vector normal to the plane.
It can be easily shown that, given the three orthogonal

planes ﬂ'l(_i)l 3 of the k-th camera, the matrix that rotates the

“finite’ basis ty, tz and t; in 7&@1..3 is

k % K
woc | B D
I
Cig Co3 €33
whose columns are exactly the first three coefficients of the
planes 7} .. Representing R™® with a quaternion, ex-
actly as done in the bifocal case, eq. (6) can be rewriiten
with a reduced number of unknowns (from nine to four),
thus leading to a more efficient and robust parametrization
of the rotation. In addition, the orthogenality constraint on
the elements of R becomes a simple normalization con-

straint on the equivalent quaternion.

3.4. Calibration in the trifocal case

If we remove the assumption that the focal lengths are equal
to one, the equation that describes a back-projected line as
a linear combination of camera planes, becomes

m o= fm +Hlafre +lamy . )]
Let fU, @) and £ be the focal lenghts of the first, sec-

ond and third camera, respectively. Following the same
steps as in the ‘normalised’ case , we can start fromeq. (7)

and prove that
CEfPmn (Eof e (Gapma

1
= {2) p(3) (gl (3) (2)
o= (f!l{j iz (ff({, 122 (‘%T;)Tma
(3) (3)
(-j%y)ﬂsl ({m)"’mz (}(1)—))"‘133
(@) ;13) (2) (3) 2
(£ £({) )re11 (fg({, Iz (f-(—f Ty )7218

{ { )
fo= | Chme G me (Gpme | ®

(3 3
(hmmss (hmpmse (Gy)7ess
FOFmyy (FO BN fPrga
f3 = O fOyragr (FP )0 fPrgea y
F3r3g FASIE TN Ta33

where #; 4 = 1..3 are ‘slice’ matrices of the trifocal tensor
in the case of unknown focal lenghts, while 7,.,, are the el-
ement of the trifocal tensor in the ‘essential’ (normalised)
case, As eq. (6) holds true also in the case of unknown fo-
cal lenghts, the variables f(1, £ and @) can be simply
added as unknowns to the systems of equations {(6), which
provide enough constraints to retrieve position and orien-
taition of the second and third camera, as well as the focal
lenghts.

4. SIMULATION RESULTS

In [1] we proved that our 2-view calibration method per-
forms comparably with state-of-art methods in the litera-
ture. We conducied a series of experiments on noisy image
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Fig. 3. Average relative error on the focal length estimation in
the case of three cameras with fixed focal length. The calibration
method based on three views is more accutate and stable than in
the two-view case for all noise levels.

Fig. 4. Actual and estimated camera trajectories of the same
sequence.

coordinates of point clouds with the goal of comparing the
performance of our 3-view method with the 2-view one and
assess the impact of the third view on the global accuracy.
Fig. 3 shows the average relative errors in the estimation
of a fixed focal length, obtained when using the two-view
and the three-view methods. Notice however, that the fun-
damental matrices of the 2-view estimalor are here robustly
compuied through using the trifocal tensor. This means that
what we measure now is what we gain from computing fo-
cal lengths directly from the trifocal tensor. The calibration
method based on 3 views, in spite of the increasing num-
ber of parameters to be simultaneously recovered, turns to
be more accurate and stable than the 2-view based algo-
rithm for all noise levels. In both the cases the system of
equations to compute camera orientations and positions was
solved numerically using a Newton-Raphson algorithm. In
order to test the effectiveness of the proposed calibration ap-
proach in real applications, we also implemented a simple
camera-tracker based on it. Our 3-view algorithm is here
used (o calibrate single tripleis of frames, in order to obtain
partial reconstructions, which are then merged into a global
one. To do this, the value of the focal length was set to the
average value compuied from the triplets that showed the
lowesl back-projection error, and then the 3-view algorithm
was re-run while holding the focal length fixed. The accu-

racy evaluation of the camera tracker was conducted on se-

quences with known motion. In order to do so, we mounted
a camera on a high-precision mechanical arm whose motion
was controlled by a PC. This way we could compare the
estimated trajectory with the actual (programmed) camera
motion. The acquired scene contained two objects (a teddy
bear and a puppet, each about 30 cm tall) with some natural
texturing on them. The mechanical arm kept the camera at
a distance of approximately 30-40cm from the objects. A
visual comparison between estimated and actual trajectory
can be seen in Fig. 4 on the right. As we can see, the es-
timated camera trajectory turned out to be very close to the
actual one.

5. CONCLUSIONS

In this paper we proposed a novel geometric interpretation
of the trifocal tensor in terms of bivectors and trivectors in
GA. From ihis parameterization we derived a procedure for
computing unknown focal lengths as well as camera posi-
tions and orientations, without introducing projective anbi-
guities.
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