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Abstract 

In this paper we propose (I novel algorithm for the 
reconstruction of surfaces from sefs of unorganized 
sample point.s, hosed on the temporal evolution of o 
volumetric ,function P level-set. The evolving front can 
be rhought ofas the surface thar separates huo difevent 
fluids that obey specific laws offluid dynamics. One 
remarkable feature of this approach is its abiliv to 
model complex topologies thank to a novel strategy 
that allows us to sleer the front evolulion using Voronoi 
surfaces in 3 0  space. Another remarkable feature qf 
this algorithm is ifs computational eflciency, which 
proved to between one and two orders of magnitude 
better than traditional level-set approaches [ I ]  

1. Introduction 
Modeling surfaces from unorganized sets of points, 

i.e., retrieving surface topology from surface geometry, 
.is a long-debated problem in the computer vision 
community. When the point-based data-set is very 
dense and the surface topology is not so complex to 
generate topological ambiguities, the solution to this 
problem is provided by a simple Delaunay triangulation 
equipped with appropriate distance-based criteria. 
Point-connection ambiguities, however, are easy to 
arise even with dense data-sets, and this is confirmed by 
a very rich literature on the topic. 
In general, the solutions to the considered problem can 
be classified into two broad categories: those that 
directly construct the surface (boundary representation), 
and those that define the surface as a constraint in 3D 
space (volumetric representation). Working with 
boundary representations has the advantage of speed 
and allows us to control shape in a very straightforward 
fashion. Surface-based solutions, however, are difficult 
to use when dealing with complex topologies. 
Conversely, volumetric solutions tend to be quite 
insensitive to topological complexity (they may 
accommodate self-occluding surfaces, concavities, 
surfaces of volumes with holes, or even multiple 
objects), but they require a more redundant (volumetric) 
data structure, and a much heavier computational load. 
One example of surface-based solution, proposed in 
[2,3], is based on the computation of the signed 
Euclidean distance between each sample point and a 

linearly regressed plane that approximates the local 
tangent plane. The final surface is then obtained by 
interpolating this distance function with a marching 
cubes algorithm. Curless and Levoy [4] developed an 
algorithm tuned for laser range dah, which is able 
guarantee a good rejection to point misalignments using 
the deviation from the local tangent plane. Another 
well-known approach is that of the a-shape [5,6], 
which associates a polyhedral shape to an unorganized 
set of points through a parametrized construction. Bajaj, 
Bernardini, and Xu [7] recently used the a-shape 
approach as a first step in a complete reconstruction 
pipeline. Finally, algorithms based on “Delaunay 
sculpting” are often used (see, for example, Boissonnat 
[SI and Amenta ed al. [9]). Such solutions progressively 
eliminate tetrahedra from the Delaunay triangulation 
based m theii~ ciicumspheres. 

Algorithms based on the temporal evolution of a 
level-set of a 3D function belong to the volumetric 
category of surface modeling solutions [ I ] .  Such 
methods require a volumetric function to be updated at 
every time step until the evolving front (level-set) 
reaches the desired configuration. If the volumetric 
function is defined on a voxset of N voxels per side, in 
principle the evolution requires an order ofN’ voxels to  
be updated for a number of iterations that is 
proportional N .  This number of updates can be reduced 
from an order of N‘ to an order of N’ by restricting the 
volume of interest to a narrow band sorrounding the 
evolving front [ I ] .  More recently, a multi-resolution 
approach to level-set’evolution was proposed in order 
to further reduce the number of updates to an order of 
N* log N [IO]. Still, all such solutions need further steps 
to sufficiently reduce the computational cost and bring 
volumetric methods to practical usability. 
In this paper we propose a novel approach to level-set 
evolution that dramatically reduces the computational 
cost of the method down to the level of surface-based 
solutions. In addition, the method that we propose 
further improves the ability of level-set methods to 
adapt’ to complex topological configurations using 
Voronoi point-sets. 
The time-space evolution model of the level-set is 
based on the Navier-Stokes equations [ I  I], which give 
the most general description of a fluid flow. The 
physical model of the system gives us a set of 
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parameters that allow us to accurately calibrate the front 
evolution. 
In order to speed up the convergence of the system the 
fronts of the fluids, instead of evolving freely, are 
oriented towards the nearest sample point. In addition, 
in order to guarantee a fast evolution and a smooth 
convergence, their speed is proportional to the distance 
from the nearest point. 

2. A two-fluid evolution paradigm 
Our level-set evolution corresponds to that of two 

fluids of opposite mass that evolve in the volume. A 
volumetric function F is defined in such a way to 
describe the content of the two fluids in each voxel and 
we define as 'internal' voxels with a negative value of 
F and as 'external' the ones with a positive value. The 
resulting surface is then represented from the zero level 
surface of the F function that represents the interface 
between the two fluids. At the beginning of the 
evolution of the system all the space is filled with the 
internal fluid setting each voxel to a conventional value 
of -I. The external fluid sources are plaFed only on the 
boundaries of the whole space setting the value of these 
voxels to + I .  
From this initial condition the system is left free to 
evolve following an equation based on the Navier- 
Stokes model for-the conservation of the mass with a 
redefinition of the speed vector v as defined below. 
The law of mass conservation is a general statement of 
kinematic nature, that is, independent of the nature of 
the fluid or of the forces acting on it. It express the 
empirical fact that, in a fluid system, mass cannot 
disappear from the system nor be created. 
The quantity F is, in our case, the specific mass. The 
general form of conservation law for a system bounded 
by a closed surface S can he expressed in terms of 
variations of F due to fluxes that express the 
contributions from the surrounding points to the local 
value and through sources Q. The flux vector G 
contains two components, a diffusive contribution Go 
and a convective part Gc. In its general form, a 
conservation law states that the variation per unit time 
of the quantity F,within the volume n, i.e. 

a 
- JFdQ 

n 
should be equal to the net contribution from the 
incoming fluxes through the surface S,  with the surface 
element vector aS pointing outward: 

- b-ds 
S 

plus contributions from the sources of thd quantity F. 
These sources can be divided into volume and surface 
sources, Q. and Qw and the total contribution is: 

~ Q r . d Q + ~ Q S . ~  I 

n S 
Hence the general form for the conser&tion equation 
for the quantity F is 

or, with Gauss's theorem, for continuous fluxes and 
surface sources: 

This last leads to the differential form of the 
conservation law, since the last equation is written for 
an arbitraty volume R: 

An essential aspect of the conservation law lies in the 
fact that the internal variations of F, in the absence of 
volume sources,' depend only on the flux contribution 
through the surface S a n d  not on the flux values inside 
the volume R. 
Separating the flux vector into its two components Gc 
and Go we obtain a more precise form of the equation. 
Indeed the convective part of the flux vector Gc, 
attached to the quantity F in a flow of velocity v is the 
amount of F transported with the motion, and is given 
by C, =vF. 
The diffusive flow is defined as the contribution present 
in fluids at rest, due to the molecular, thermal agitation 
and is usually proportional to the gradient of F, 
i.e. G ,  = P F  ,where y is the diffusivity constant. 

in our algorithm we oriented the velocity v for the 
propagation of both fluxes towards the nearest sampled 
point. Each point, therefore, represents an attractor for 
both the internal and external fluids. The modulus of 
the speed vector is proportional to the distance from the 
nearest point allowing the-fluids to gent/y converge to 
the desired surface. A further diffusive behaviour is 
also taken into account to obtain a more natural flux 
and a smooth interpolating surface. 
We joined together the two contributions of the flux 
defining the convective part as above and implementing 
the diffusive part weighting the contributions from the 
near points with a Gaussian: with this formulation the 
standard deviation 0 plays a role similar to the 
diffusivity term y accounting the contribution of the 
whole region. 
We found experimentally that a good choice for.the 
evolution equation is ( I )  

df 

n 
Experimentally we found that a sharp square function 
that extends only to the nearest neighbours works as 
well as the gaussian, and this is particularly useful for 
discretiring eq. (1). 
i n  order to speed up computations, only the voxels 
where the derivative of the F(x) exceeds a threshold are 
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recomputed at every time step, while all the others are 

kept fixed. In ( I )  Iv(x)l is defined as Ix-pr where p 

is a vector indicating the nearest point to x while a 
regulates the speed of convergence: good values have 
been found in the range between 1.6 and 2.4. Unlike 
traditional level-set algorithms, our approach defines 
the distance as a positive number (a = 2), which results 
in a faster evolution (farther points are assigned a 
greater speed) and a more accurate convergence near 
the desired surface configuration. 

3. Medial axis steering 
Conventional level-set methods have a hard time 

producing a correct front evolution when dealing with 
thin blades, sharp spikes or deep and narrow holes, as 
they tend to round off sharp details, and level out holes. 
In our two-fluid model we can decide to look at the 
system from the inside or from the outside. From the 
inside, spikes and thin blades appear as narrow holes 
and grooves, respectively. Smoothing corners and 
spikes can thus be interpreted as a failure of the internal 
fluid to flow through such features. In order to get the 
fluids to penetrate into this type of features, a medial 
axis analysis, derived from the Voronoi diagTam, is 
performed. In volume space the mediul axis is the 
closure of the set of points with more than one closest 
point on the surface and this set of points constitutes 
surfaces that never meet the object but stay completely 
inside or outside. As a consequence, if any medial axir 
meets the level-set zero surface, then it means that we 
are in the presence of one of the features described 
above and that the fluid failed to flow inside it and 
stopped too early. This stagnation of the wrong fluid 
inside the feature can be solved by selecting the voxels 
that lie on the medial axis and setting them as sources 
of correct fluid. This allows us to locally restart the 
evolution of the system. 
In order to choose the correct type of source for each 
voxel on the medial axis we have to consider that each 
Voronoi surface outside the object reaches the volume 
boundaty so the external fluid sources belong to this 
type of medial axis. 
A 2D example of this situation is show in figure 1. The 
extension to the 3D case is quite easy and guarantees a 
correct identification of the points inside convex hulls. 
An example of the usage of the Voronoi surfaces on a 
3D object is shown in Fig. 2, where the image on the 
left-hand side is correctly reconstructed after having 
inserted "external" sources inside the dragon's mouth 
along the Voronoi vertices. The image on the right- 
hand side, on the other hand, is based on a simple fluid 
dynamic model therefore the mouth ends up not being 
correctly modeled. 

I . 
as I 8 .  

Figure 1: Discrimination of internal and external 
points using Vonoroi vertices, circles represent a 
non-convex discrete cuwe and crosses are the 
Voronoi vertices that seep into hulls. 

Figure 2 Impact of Voronoi-set steering on front 
evolution. Carving voxels out of the mouth of the 
dragon (left) is enabled by Voronoi diagrams. 
Without this mechanism the results would be as in 
the right image. 

4. Improving the accuracy 
As already explained above, in order to avoid the 

definition of internal sources the whole volume is 
initialized with internal fluid with the exclusion of the 
boundary of the defined space. In this area we place the 
sources of the external fluid: This approach gives a 
good approximation of the desired surface as the fluids 
move towards it but the initial excess of the internal 
fluid may give rise to a lumpy surface. 
In order to overcome this problem, after the 
convergence and the Voronoi surface determination, a 
narrow band is defined around the surface and each 
voxel inside this hand is set to zero defining an 
equilibrated presence of both fluids. At the same time 
all the other voxels outside this band are saturated to + I  
or -1 accordingly to their sign. After this step the 
evolution is restarted but now with a substantial 
equilibrium for the two fluids which converge from the 
same distance towards the surface Now, however, both 
fluids come from opposite sides, giving a better and 
balanced reconstruction for the interface. 

5. Near-source local relaxation 
Sources that are placed too close to sample points 

can prevent a correct reconstruction of the surface. In 
fact, an excessive flow of fluid could result in an 
overflow through the desired surface. In order to  ' 

overcome this problem, we monitor the gradient of the 
interface between the two fluids: if it exceeds an 
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assigned threshold, then the intensity of the source is 
reduced in such a way to improve the match with the 
sample points location. This problem occurs, in 
particular, when modeling thin blades whose medial 
axis mns very close to the surface and to the volume 
boundary. One way to avoid this problem is to use a 
larger voxset at the cost of a heavier resource usage. 
In Fig. 3 we show the evolution of the:system in a 1D 
environment, we placed two points, at x=16.3 and 
x=86.4, placed in a space of 100 points. Their position 
is correctly honored from the level-set evolution as Ion 
as they are far from the boundary. In Fig. 4 we can see 
the evolution of a level-set when the point is very close 
to the volume boundary and the 'external fluid 
overflows pushing the level-set zero inside (the point is 
placed at x =4.2). 

Figure 4 Undesired overflow of the external sou rce  
(left) and  its correction reducing the source strenght 

(right). 

x Msltio" 

Figure 3 Temporal evolution of a 1D level-set. 

6. Implementational issues . i 
The new fluid dynamic model for the~level  set 

evolution has been implemented in 2D and in 3D. One 
remarkable feature of the algorithm is its speed. This is 
proved by the rendering times for some well-known 
data sets, which are reponed,in Table 1 for several 
resolution levels. Various implementational solutions 
have been adopted in order to boost the performance of 
the proposed algorithm. For example, we perform a pre- 
computation of the speed vector field .for each voxel 
and we update the volume following a spiral path. This 
way the updating process is oriented from the outside 
towards the inside following the evolution of the front. 

As far a i  the 3D algorithm is concerned the updating 
is obtained moving from the most external box towards 
the central point of the space; the update is then 
performed in concentric boxes each side of which is 
updated with a spiral path. 

In figure 5 there is the representation of the level sets 
for a circle made of 50~point with a radius of 30 points, 
The time required for the convergence is 3 s. 

. .  
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to model complex topologies by steering the front 
evolution using the medial axes of the data-set. 
The results in terms of both computational efficiency 
and topological flexibility are very encouraging, and 
make the approach extremely usable. 

Figure 6: "Bunny" model (initial voxset of 180 voxels 
per side), obtained by wrapping a cloud of points. 

Figure 7: "Happy Buddha" model (initial voxset of 
350 voxels per side) obtained by wrapping a cloud of 

points. 

Figure 8: Teapot model (initial voxset of 110 voxels 
per side) obtained by wrapping a cloud of points. 
The data-set was acquired with an image-based 

method applied to a real object. 
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