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ABSTRACT

In this paper we propose and test an action recognition al-
gorithm in which the images of the scene caplured by a sig-
nificant number of cameras uare first used o generate a vol-
umetric representation of 2 moving human body in terms of
voxsets by means of volumetric intersection. The recogni-
tion stage is then performed directly on 3D data, allowing
the system to avoid critical problems like viewpoint depen-
dence and motion trajectory variability. Suitable features
are extracted from the voxset representing the body, and fed
to a classical hidden Markov model to produce a finite-state
description of the motion.

1. INTRODUCTION

Multi-camera systems have recently gained popularity in
compuier vision, thanks to a number of advantages that they
exhibit over algorithms based on monocular views. Ambi-
guities in motion analysis due to perspective projection are
solved, and desirable properties like viewpoint invariance
are inherently guaranteed. Many promising works in the
field of body tracking are actually based on 3D data, like
Pentland’s 3D biobs [1]. However, action recognition and
activity detection algorithm are still largely based on 2D
approaches, despite the fact that they can find more general
and natural solutions in a multi-view setup. Action recogni-
tion is, in fact, a complex problem, as the dynamics of the
motion tend to introduce a strong variability. In particular,
actions ¢an be performed by different people in very differ-
ent ways. The same motion can be carried on with various
speeds, and even the emotional state of the person can affect
the evolution of the gesture.

In this paper we propose an aclion recognition algorithm
in which images of the scene captured by a significant num-
ber of cameras are first used to generate a volumetric rep-
resentation of a moving human body in terms of voxsets by
means of volumetric intersection. The recognition stage is
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then performed directly on 3D data, which allows the sys-
tem to avoid critical problems like viewpoint dependence
and motion trajectory variability. We show how the use of
appropriate local 3D features, inherently invariant with re-
spect lo trajectory variations, can significantly improve the
performance ol the classification.

One source of signilicant difficulties is the so-called time
warping issue, which expresses the fact that actions may
have ditterent durations. This problem makes it impossible
to perform a direct comparison between feature vectors al
a given time. In order to overcome this problem, Hidden
Markov models |2, 3]) have proven quite successtul. We
adopt this tormalism to model the action’s dynamics, and
use the Kullback-Leibler distance between HMMs to clas-
sify new sequences.

2. 3D RECONSTRUCTION AND FEATURE
REPRESENTATION

2.1. Volumetric intersection

A simple but effective approach to volumetric reconstruc-
tion is the so-called volumetric intersection method, which
exploits the silhouettes of an object extracted from all of its
Views,

Fig. 1. Modeling through volumetric intersection. Left: the
occlusion cones associated to the silhouettes of the body in
each view are intersected, which results in a visual hull ap-
proximation of the actual object. Right: examples of re-
constructions with respectively no views, one single view,

several views.



As the object is bound to be contained in the general-
ized cone generated by all lines that originate trom the op-
tical center of the camera and pass through the silhouette, it
is also bound to be contained in the intersection of all the
comesponding “occlusion cones™ (Figure 1a). As Figure 1b
shows, the accuraey of the reconstruction critically depends
on the number of viewpoints. The resulting visual hull will
be the 3D reconstruction of the body.

A simple and practical implementation of the volumet-
ric intersection method starts from the discretization of the
volume of interest into a vexset of reasoniable size. We then
determine whether each one of the voxels of the voxset be-
long to the object by simply checking whether that voxel
projects onto the inside of each one of the available sithou-
elles, in accordance with the the adopted camera model and
the available camera calibration parameters.

2.2. Feature extraction

As voxsels are redundant representations of the body vol-
ume, we need to adopt 2 more concise representation (fea-
rure) of the moving body. We considered a rather simple
description in terms of bodypart positions.

First we estimate the motion direction of the person by
interpolating the sequence ol centers of mass E(¢) along
time using a spline (locally polynomial curve), and assum-
ing as molion direction at time ¢ the tangent to the inter-
polating curve in &(t). We then define as body re_f?ence
frame at time ¢ the triad (d (), 4 -(t), 7') where d (£) is
the motion direction, El(t) its orthogonal direction in the
zy plane, and = the vertical axes of the world reference
frame (Figure 2a).

Finally, to detect the bodyparts of the moving person we
employ a k-means clustering algorithm with n = 4 clusters.

e int = 0 the n cluster locations X; are assigned at
randomn;

¢ given the cluster locations in ¢ = %, a new set of
means is achieved by

~ computing the distance || — X;|| between each
point z of the voxset and each cluster location;

~ assigning each point x to the closer cluster;

— computing a new cluster location as mean of the
newly assigned points.

To guarantee the convergence of the four clusters (o some
desired positions (upper torso, abdomen, left and right leg)
in{ = 1 their initial positions are assigned to appropriate lo-
cations in the body reference frame (Figure 2a). Fort > 1
the old cluster positions in ¢ are used as initial positions of
the k-means algorithmin ¢ 4- 1.

vertical axes

(2) (b)

Fig. 2. Feature extruction. a) Body reference tframe. b)
Results of the 4-means clustering applied to the voxset a).

Some problems could arise when the body speed is close
to zero, since the motion direction estimation is not reliable.
This can be fixed by adopting as « axes of the body frame
the principal axes of the ellipsoid fitting the projection of
the voxset onto the zy plane (Figure 3).

Fig. 3. View of the projection of a voxset onto the zy plane,
together with the estimated motion direction and the axis of
the ellipsoid which better fits the projected cloud.

3. ACTION MODELING THROUGH HMMS

A hidden Markov model is a statistical model whose states
{ X} form a Markov chain; the only observable quantity is
a corrupled version y,. of the state called observarion pro-
cess. Using the notation in [4] we can associate the elements
of the finite state space X = {1, ..., n} to coordinate versors
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e; =(0,.,,0,1,0,..,0) € R" and write the model as

Npp1 = AXL + Vi
Yit+1 = C"x‘.’k + (lirag(‘ifi’,.Jrl)E;‘(k

where {Vi.1} is a sequence of martingale increments and
{Wit1} is a sequence of i.i.d. Gausstan noises N (0, 1),
The HMM parameters will then be the transition matrix
A= (“ﬂij) = P(Xk+1 = Cg'lX_z_- = Gj), the matrix ¢
collecting the means of the state-outpit distributions (be-
ing ¢ = E[p(Y.11|Xn = e;)]) and the matrix ¥ of the
vaniances of the output distributions.

A fundamental property of this class of models is its
ability to self-leamn the set of parameters A, ¢’ and ¥ given
a sequence of observations produced by the modet through
an application of the EM technique [4]:

{yla cevy '.UT} L A: C"a X

In order to obtain the state estimate X +1 associated to
any new observilion we compuie the probabilistic distance
[*(yi41) between the measurement v,.( and each state
representative C - e; in the observation space

Xipr = Z AKX Tys))

i=1

where n is the number of states, A; is the i-th column of A
and (-, -} is the usual scalar product.

. 4. EXPERIMENTAL RESULTS

For our tests we used a multi-camera TV studio at BBC
Ré&D, located in Kingswood Warren, UK, equipped with a
set of 12 calibrated, synchronized cameras placed in well
separated positions around a studio of 4 x 3.2 x 2.5 meters.
As we are inferested in aclion estimation in non-optimal
conditions of abquisition, we selected N = 5 cameras, cov-
ering the scene from a wide viewing angle.

For these experiments we acquired 65 sequences, di-
vided into three categories according the particular action
performed: “walk”, “walk and wave”, and “‘pick” and object
from the ground. For each category of actions two different
people performed several instances of the motion, follow-
ing various trajectories and even changing direction in the
middle of the action.

The BBC studio is equipped for a color segmentation of
the acquired scené, yielding new frames in which only the
object of interest is represented. The scene background was,
in fact, covered by a special fabric that appears blue when il-
luminated by an appropriate light source. Each one of the 12
cameras is equipped with such a projector. The desired seg-
mentation is then done through multi-level thresholding of
the chrominance channels, as these are much less sensitive
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Fig. 4. An example of simultanous views of a same studio
scene. The person was asked 1o walk from one corner of the
studio to the opposite one.

{0 noise than the luminance channel. This chroma-keying
process does not need to be oo accuare as the volumetric
intersection will take care of removing most of the volu-
metric autliers (see Figure 5).

Fig. 5. Volumetric representation of the person represented
in Figure 4 (left). Trajectories in the xy plane followed in
the inslances_ of the “walk” action (right).

Once the sequence of silhouettes is produced, a sequence
of volumetric reconstructions can be built through volumet-
ric intersection. At each time step a feature vector is ex-
tracted as explained in Section 2.2, so that a feature matrix
is built for each sequence by collecting all the feature vec-
tors along time, ¥(t) for ¢ = 1,...,7". This feature matrix
is then given as input to an EM algorithm, which computes
the parameters of the HMM representing the action.

We expected these feature vectors to be invariant with re-
spect to nuisance parameters, such as the trajectory chosen
by the person, the size of the body, and the small “qual-
itative” differences between walking or waving performed
by different people. In fact, being the bodypart locations
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related to a reference frame associated to the motion direc-
tion, a person can walk in complex curved trajectories with
no significant impacl on the feature matrix. Figure 5b shows
the large variability of the trajectories followed in instances
of the action “walk”. Figure 6 instead compares two fea-
ture matrices associated to two of those walks performed by
difterent people, showing a remarkable invariance.

Fig. 6. Visual comparison between two feature matrices ex-
tracted from two distinct instances of the action “walk”, per-
formed by two different people in different directions. The
matrices show the temporal evolution (horizontal axis) of
the feature vectars extracted trom the volumetric data.-

Finally, Figure 7 shows the hidden Miarkov model of the
“walk™ action. Given the feature matrices of Figure 6, a
model with 3 states proved to be suitable Lo represent this
action, each state being associated to: the pose in which the
left leg is extended; that in which both legs are aligned; and
the one in which the right leg is thrust forward, respectively.

O_0O_ 0O

ieft leg forward legs dligned right leg forward

130 O

Fig. 7. Hidden Markov model associated to the “walk™ ac-
tion. The topology of the graph representing the action is
given by the A matrix, while each state is associated to a
feature vector c; which is the j-th column of the matrix C.

Having built a model for each leamned action category
(walk, wave and pick), a new sequence can be classified by
computing the associated model through the EM algorithm
and by directly comparing it to the learnt ones by means
of the classical Kullback-Leibler distance [5]. The mod-
els we obtained proved good enough to distinguish between
instances of “walk™ and “pick”. The four-cluster represen-
tation of a body, on the other hand, does not allow us to dis-

tinguish between “wave” and “walk™ when using a coarse
volumetric representation (the arms ot the person require
high spatial resolution). Nonetheless even when using low-
resolution voxsets, the systems can still recognize the “walk
and wave™ aclion as an instance of the “walk™ action. As a
general remark, feature locality turns out to be a critical is-
sue in aclivity recognition.

5. PERSPECTIVES

These first experiments prove how treating the action recog-
nition task directly on 3D data is the most natural way of
overcoming critical problems like viewpoint dependence,
scale invariance, and other nuisance factors like trajectory
variations. Problems like multi-body movements (for in-
stance in automatic surveillance contexts) or occlusions are
naturally dealt with before the recognition stage. This mo-
tivates us 1o conduct more sophisticated analysis of the ap-
propriate 3D feature represenlation, and study realistic sil-
uations in which the person performing the action is par-
tially occluded from other objects, or shares the environ-
ment with other people. We are currently conducting exper-
iments with higher resolution voxsets in order to detect arm
motion through a six-cluster representation.
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