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ABSTRACT

In the past few years several systems for face recognition
and identification based on the analysis of 3D data have
been proposed. In order for such systems to be of practical
vuse, the 3D data extraction process is expected to be fast
and reliable. In this paper we propose a general approach
to multi-view 3D surface reconstruction, specialized for
the specific problem of face modeling. Our method
determines correspondences between surface patches on
different views through a modeling of disparity maps
based on Markov Random Fields {MRFs). In order to
reduce the occurrence of cutliers the MRF-based modeling
is bound {o satisfy the epipolar constraint, We apply the
belief propagation algorithm to the MRF model in order to
perform a maximum-a-posteriori eslimation of such
correspondences .

1. INTRODUCTION

Systems for face recognition are steadily evolving towards
the analysis of 3D data, as it seems to offer more reliable

classification solutions. The performance of such systems

is strongly dependent on a fast and reliable acquisition of
3D data relative to human faces. When dealing with
solutions for multi-view 3D modeling, one crucial step is
that of correspondence matching. This problem is
generally approached using solutions that are closely
related to optical flow estimation [1]. In fact, such
methods use the brightness constancy constraint to
determine correspondences between points in multiple
views. This assumption, indeed, is a strong one as it
implies that the viewed surfaces be Lambertian and that
the illumination be diffuse. Nonetheless, the brightness
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constraint is widely known to provide reliable results for
the considered problem.

Like any optical flow method, we need further
constraints in addition to the brightness constancy. The
simplest choice would be to consider a smoothness
constraint on the correspondence field. This solution,
however, does not consider several problems that we need
1o face in depth estimation, and this is particularly true for
face modeling. Face modeling, in fact, suffers from
problems of occlusions and lack of image structure, The
former problem prevents us from finding correspondences,
while the latler makes the brightness constraint useless.
Our MRF-based approach offers a promising way to
overcome these difficulties [2] as it provides us with an
additional smoothness constraint while dealing with
occlusions and texturing problems.

As we know, the brightness constraint applied to
fextureless regions gives us no information, For this

‘reason, we adopt a MRF model to propagate information

contained in highly textured neighboring regions. We do
so by modeling the disparity field using a MRF whose
Gibb’s energy is made of two. terms: one accounts for
brightness constancy, while the other (clique potential)
describes the diffusion of information from neighboring
regions. As a direct computation of the marginal
probabilities in the MRF model is generally a
computationally intensive task {the complexity grows
exponentially with the number of grid nedes), we adopted
a fast algorithm to compute them, based on belief
propagation (BP).

As far as occlusions are concerned we can adopt (wo
different types of countermeasures. One is inherent in the
modeling process, as it consists of modifying the shape of
the belief function in order to account for depth
discontinuities. The other solution is associated to the
acquisition geometry and is specific of the application
scenario that we are considering (face modeling). In fact,
we use a calibrated trinocular system whose epipolar
geometry is known and can provide us with additional
constraints to reduce outliers. In addition, we work on
feature correspondence estimation in a pairwise fashion,

1943



because many of the face details are only visible to two of

the three cameras, therefore we can devise a suitable 3D _'

fusion process to integrate information coming from such
pairs.

2. TRINOCULAR 3D RECONSTRUCTION

What stated until now has a general validity, therefore
applies also to the trinocular calibrated camera system that
we used in order 10 acquire face images. In our system one
of the cameras, taken as a reference (masrer) has a
reasonable frontal, occlusions free, view, while the others
(slaves) show some occlusions. First the three cameras are

calibrated [3], then the images acquired synchronously can -

be processed. The proposed algorithm computes two
dense disparity maps betweeen the master and the other

two slaves views each map is modeled by one pairwise -

MREF [4]. We estimate marginal probability by performing
belief propagation iterations on the MRF. '

At the end of the process, we coupled the two MRF results
in order to satis{y epipolar constraint on the triplet of
images and hence to eliminate outliers.

2.1. Preprocessing -
The acquired triplets are low-pass filtered to reduce the

effect of noise. For the master view, the Euclidean norm
of gradient is calculated:
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in order 1o establish patch size for next steps. Starting

from a minimum patch size, in the master view, we expand
the patch until | V1| reaches a prefixed threshold or the size
reaches its maximum value. This shape adaptive window
provides high reliability around strong feature where high
values of | V1] are expected.

2.2, Stereo matching with MRF’s

2.2.1 MRF description )
A node i on the MRF grid represents the disparity d; of the
pixel in position w; on the master image, neighbour nodes
represent neighbour pixels, we propose to calculate

disparity fields by minimizing an energy expression’

involving a fidelity term and a smoothing term:

EQY=Y, [[Up W) -1, (w+d ) d w+
I welw) (2)
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where the sum on 7 is taken on the nodes of the grid and
the sum on i is over nearest neighbors on the lattice, W is

a bounded set around the point w;, [.qr and I, are
respectively the brightness of the master view and of one
of the siaves images with respect to the disparity is
calculated, A is a regularization parameter which balances
the influence between the two terms of Eq. (2).

The choice of the function w; is made in order to
encourage smoothing within a region. Among the many
diffusivity function proposed [5] we adopled that
suggested by Geman and McClure [6]:

1
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Using this expression for y; in Eq. (2) we have:
d—d)
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Assuming:

20d) = ([ =100+ d)dw (5
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for every node i, we permit d; 10 assume values only on the
epipolar line on the slave image of the point w; on the
master image, ¥; therefore is a function of one variable.
The size of the patch W on which integration is performed
changes from node to node as described in previous
section.
If we define ‘evidence’ as

$(d)y=eH@T ©

and define the “compatibility” between the disparities at
neighboring nodes by

Y, (di,dj) = ¢ H e IT i)

where T is assumed to be constant equal to 1. The
probabilitiy distribution of a disparity map 4; will factorize
into a product function of the maximal cliques of the
graph,

1 .
pUdd=—T1r;@.d )] 1:) ®)
(i) i
Z is a normalization constant. Thus in the Markov model,
yy; and #; are the potential functions of the Gibbs energy
and minimizing E({d}) as defined in Eq. (2} corresponds
for the Eq. (8) to statistical MAP estimation [7];

pildh= %e'“{‘”’” ©®

2.2.2 Belief propagation -

In the BP algorithm [8] we introduce variables such as
m{d;} which can be understocd as a “message” from an
hidden node i to the hidden node j about what state node j
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should be in, see Fig. 1. The message my(d;) will be a
vector of the same dimensionality as o), with each
component being proportional to how likely node 1 thinks
it is that node j will be in the corresponding state.

To start BP we need to calculate the ‘evidence’ and the
‘compatibility’ functions to update iteratively the
messages. To perform BP first, we initialize all messages
my(d;} as uniform distribution; second we update myfd;),
iteratively lor k=1:K,

mfj“”(d‘,}z 2({5, (d)w,(d, d}) Hmﬁ’(d‘,) (1)
X, kNN
Note that in the right-hand side, we take the product over
all messages going into node / except for the one coming
from node j.
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Fig. 1. An illustration of the message passed
in BP in a square lattice pairwise MRF

In

the BP algorithm, the belief at a node { is proportional to
the product of the local evidence at that node {¢{d;)}, and
all the messages coming into node i:

bi(d)=k-¢,(d) [T m,(d) (1)
JeN ()
where £ is a normalization constant (the beliefs must sum
to 1} and Nfi) denotes neighboring i.
Then we compute MAP estimation of disparity d; as given
by BP with:

a"™" = arg max b,(d, } (12)
4 :
2.3. Outlier elimination
Results of the two disparity fields are coupled to discard

false correspondences matching. The disparity maps built,
automatically, satisfy epipolar constraint between the

master image and the slave image where disparity is
calculated to; nevertheless the malched points, on the
slave images are not guaranteed to stay on the epipolar
line of each other. We further check that all the matched
points, as outgoing from BP processes, salisfy this last
epipolar contraint. If this is not the case we are in presence
of outliers and points are rejected.

The process just described also could come automatically
with BP: if we add a term in the energy expression, Eq.
(2), that grows with the distance between the matched
point and the epipolar line on the other slave image.

2.4. Back projection
Poinis that remain after the outlier elimination are back-

projected in 3d space to obtain the estimation of the 3D
structure of the face.

Fig. 3. 3D reconstruction of “Face”

3. EXPERIMENTAL RESULTS

The proposed algorithm is applied to triplets of images
acquired with a trinocular calibrated camera system. As an
example of triplet of images acquired see Fig. 2. The size
of images are 800x600. In Fig. 3 an example of
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reconstruction is shown. The parameter A as defined in Eq.
(2) is determined heuristically, optimal values depend on
the images we are processing. The parameter can be
varied o gain some insight about the scene: for little
values of A in Eq. (2) the ‘evidence’ dominates the
‘compatibility’ and the resultant map disparity will depend
mostly on the first term of Eq. (2} little information about
disparity is exchanged between MRF nodes, for high
values of A the comparibility term dominates and the
disparity map will be smooth. Those matched points that
in the two cases change will be due to occlusion, or to
textureless regions.

In cyclic graph, like the pairwise MRF’s described above,
if we ignore the existence of loops and permit the nodes to
continue communicating with each other, messages may
circulate indefinitely around these loops and the process
may not converge to a stable equilibrium [9], we observed
experimentally this behaviour, for this we perform a time
average operation afier a fixed number of iteration. To
evaluate the number of iterations needed in the BP
algorithm, we present in Table 1 the average number of
false matching (where false is intended at distance major
than J;) as proposed in [10] versus the number of
iterations performed: BP algorithm does not need many
iterations in the sense of Marr {11]. '

Table 1. List of bad matching versus iterations.

Tteration %E.—(ldﬂ' - d‘.‘ =35,)
I 25.12
R 8.75
16 4.56
) 1.98
4. CONCLUSIONS

Face modeling is a critical task for 3D face recognition
systems. In order to perform this task we acquire images
by trinocular calibrated cameras and find correspondences
between the three views. Moreover, face modeling suffers
strongly of occlusions and textureless regions, to deal with
this probliems we model disparity maps with MRF’s, in
order to propagate information from textured to textureless
regions. We applied the BP algorithm, to obtain the
maximum a posteriori estimation of the disparity maps. In
order to reduce false matching due to occlusions we
eliminate outliers by epipolar constraint check.

As a result the proposed algorithm provides very accurate
3D face model.

One drawback of this implementation is that the parameter
A is found heuristically, one way to overcome this aspect
could be that of let A be a function of the node depending

inversely on the modulus of the gradient of the brightness
function in the masrer image, in so doing we permit to
propagate more information about disparity in
homogeneous regions and less around strong {eatures.

One of the virtue of the BP algorithm is that we can
compute marginal probabilities, at least approximatively,
in a time that grows only linearly with the number of
nodes in the system. The BP is an highly parallelizable
algorithm, as a future work, we want to speed up execution
time geing in this direction, further we want to investigate
if Generalized Belief Propagation [12] can improve
correspondences matching reliability.
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