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Abstraci— We propose an action recognition algorithm in
which the image sequences capturing a moving human body
produced by a significant number of cameras are first vsed to
generate a volumetric representation of the body by means of
volumetric intersection. Classification is then performed directly
on 3D data, making the system inherently insensitive to viewpoint
dependence and motion trajectory variability. Suitable features
are extracted from the voxset approximating the body, and fed
to a hidden Markov model to produce a finite-state description
of the motion. The Kullback-Leibler distance is finally used to
classify new sequences,

I. INTRODUCTION

Multi-camera systems have recently gained popularity in
computer vision, thanks to a number of advantages that they
exhibit over algorithms based on monocular views. Ambi-
cuities in motion analysis due to perspective projection are
resolved, and desirable properties like viewpoint invariance
are inherently guaranteed. However, even if a few people have
started to pose the problem in the volumetric context [1], (2],
action recognition and activity detection algorithms are still
largely based on 2D approaches, despite the fact that they
can find more general and natural solutions in a multi-view
setup. Recognition is in fact a complex task, as actions can
be performed by different people in very different ways, with
various speeds, and even the emotional state of the person can
affect the evolution of the gesture.

In this paper we propose an action modeling and recog-
nition approach in which images of the scene captured by
a significant number of cameras are first used o generate a
volumetric representation of a moving human body in terms of
voxsets, by means of volumetric intersection. Recognition can
then be performed directly on 3D data, allowing the system to
avoid critical problems like viewpoint dependence and motion
trajectory vanability. We show how the use of appropriate
local 3D features, inherently invariant with respect to trajectory
variations, can significantly improve the performance of the
classification (see also [31).

One problem to consider is the so-called #ime warping issue:
as actions may have different durations, a direct comparison
between feature vectors at a given time is clearly impossibie.
Hidden Markov models ([4], [5]) have proven a quite success-
ful method to cope with the matter. We adopt this formalism
to model the action’s dynamics from the collected 3D dataset,
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and the Kullback-Leibler distance between HMMs to classify
new sequences.

Video surveillance problems [6] and activity detection for
the implementation of “smart” envirenments are natural appli-
cations of the volumetric technique presented here.

II. 3D RECONSTRUCTION AND FEATURE REPRESENTATION
A, Volumetric intersection

A simple but effective approach to volumetric reconstruction
is the so-called volumetric intersection method, which exploits
the silhouettes of an object extracted from all of its views.

Fig. 1.

Volemetric intersection, Left: the occlusion cones associated 1o the
silhouettes of the body in each view are intersected, yielding a visual hull
approximation of the actual object. Right: examples of reconstructions with
respectively no views, a single view, several views.

The object is bound to be contained in the gereralized cone
generated by all the lines originating from the optical center
of the camera and passing through the silhouette, It is then
also contained in the intersection of all the corresponding
“occlusion cones™ (Figure 1-left). As Figure l-right shows,
the accuracy of the reconstruction critically depends on the
number of viewpoints. The resulting visual hull will be the
3D reconstruction of the body.

A simple implementation of volumetric intersection starts
from the discretization of the volume of inlerest into a voxser
of reasonable size. Given a camera model and the associated
calibration parameters, we then determine whether each voxel
belongs to the object by checking whether it projects onto the
inside of each of the available silhouettes.

B. Feature extraction

As voxsets are redundant descriptions of the body volume,
we need to find a more concise representation (fearure) of the
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moving body, We chose a rather simple description in terms
of bodypart positions. We first estimate the motion direction
of the person by interpolating the sequence of centers of mass
Z(t) along time by means of a spline (locally polynomial
curve), and assuming as molion direction at time £ the tangent
to the interpolating curve in Z(t). We then define as body
reference frame at time ¢ the triad (d (t), d ~(2), ?Lwhere
7 is the vertical axes of the world reference frame, d {t) is
the motion direction, and d *(¢) is its orthogonal complement
in the zy plane of the world frame (Figure 2-left).

vertical axes

.............

---------

Fig. 2. Feature extraction. Body reference frame (left). Results of the 4-
means clustering applied to the voxset (right).

Finally, to detect the bodyparts of the moving person we
employ a k-means clustering algorithm with n = 4 clusters:

o in ¢t = 0 the n cluster locations X;, 7 = 1,...,n are

assigned at random;

« given the cluster locations in t = k, a new set of centroids

is achieved by
— computing the distance |z — X;|| between each point
 of the voxset and each cluster location;
— assigning each point x to the closer cluster;
— computing a new cluster location as mean of the
newly assigned points.

To guarantee the convergence of the four clusters to some
desired positions (upper torso, abdomen, left and right leg)
their initial positions in £ = 1 are assigned to appropriate
locations in the body reference frame (Figure 2-left). Fort > 1
the old cluster positions in ¢ are used as initial positions of
the k-means algorithm in £+ 1,

C. Linear discriminant analysis

Using the interpolated body trajectory 1o estimate the
motion direction can be hazardous when the person halts
or his/her motion is negligible. An alternative approach is
estimating the frontal direction as the direction from which

Fig. 3. LDA can be used to estimate the fromal view of the body by
determining the maximal separation subspace of dimension 2.

we have the largest separation between the legs (exactly as
humans do when asked to do the same). A mathematical tool
called linear discriminant analysis provides us with a formal
method to find the desired view,

Suppose that, given a dataset of N points z;, j=1,.., N
in BRY with mean g, pantitioned in X classes Ci with mean g,
we wish to find the subspace in which the separation between
the K clusters is maximum, This can be achieved through a
linear transformation

y=WTae W=51.5

where the two matrices Sy = Ele Nelpx — ) — )T
and S5, = Zf=l Yoec, (i — )y — px)T are called
between-class and within-class covariances respectively. W
projects the dataset inte a D-dimensional space. The target
space’s dimension can be reduced to d by selecting the first
d eigenvalues. k-means can then be applied in this new space
to detect the final clusters,

In our case, the legs’ voxels can be processed by means
of LDA, yielding the maximal separation subspace V with
dimension d = 2. Quite obviously the frontal direction of the
body will then be determined by the projection of the normal
vector v = V= onto the fioor plane xy in the world reference
frame (Figure 3).

I11. ACTIQN MODELING THROUGH HMMs

A hidden Markov model is a statistical model whose states
{X} form a Markov chain; the only observahle quantity is a
corrupted version yj, of the state called observation process.
Using the notation in [7] we can associate the elements of
the finite state space X = {1,..,n} to coordinate versors
ei = (0,..,0,1,0,..;0} € R® and write the model as

Xpg1 = AXp + Viea
Yer1:= CXy + diag(Wi 11 )X Xe

where {Vi41} is a sequence of martingale increments and
{Wk41} is a sequence of i.i.d. Gaussian noises M (0,1). The
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model parameters will then be the fransition marrix A =
(ai5) = P(Xg41 = €| Xx = e;), the matrix C collecting the
means of the state-output distributions (being the j-th column
C; = Elp(yr+1|Xs = e;)]) and the matrix = of the variances
of the output distributions,

The set of parameters A,C and £ of an HMM can be
estimated, given a sequence of observations, through the
Expectation-Maximization (EM) algorithm [7]

{v1,. 97} — A.C, L.

The likelihoods T*(yy41) of the measurements yx41 with
respect to 2ll the states e;,i = 1,....n, are used to drive the
recursive state estimation Xgpi1 = Yo, Ai{(Xp, T¥{yrs1))s
where n is the number of states, A; is the i-th column of A
and {-,-) is the usual scalar product.

Given a sequence of feature vectors extracted from the asso-
ciated voxsets, EM yields as output a finite state representation
of the motion, in which the transition matrix encodes the
action’s dynamics.

IV. EXPERIMENTAL RESULTS

For our tests we used a multi-camera TV studio at BBC
R&D, located in Kingswood Warren, UK, equipped with a
set of 12 calibrated, synchronized cameras placed in well
separated positions around a studio of 4 x 3.2 x 2.5 meters.
As we were interested in action estimation in non-optimal
conditions of acquisition, we selected /N = 5 cameras covering
the scene from a wide viewing angle.

Fig. 4. An example of simultaneous views of a same swdio scene. The
person was asked to walk from one comer of the studio to the opposite one.

We then acquired 65 sequences, divided into three categories
according the particular action performed: “walk”, “walk and
wave”, and “pick” (an object from the ground). For each action
category two different people were asked to perform several
instances of these movements, following various trajectories
and changing direction at will.

The BBC studio is equipped for a color segmentation of the
acquired scene, yielding new frames in which only the object
of interest is represented. The scene background was, in fact,
covered by a special fabric that appears biue when illuminated
by an appropriate light source. The desired segmentation is
then done through multi-leve! thresholding of the chrominance
channels, as these are much Iess sensitive to noise than
the luminance channel. This chroma-keying process does not
need to be too accurate, as the volumetric intersection takes
care of removing most of the volumetric outliers. Once the

Fig. . Volumetric representation (left) associated with a reat view (right).

sequence of silhouettes is produced, a sequence of volumetric
reconstructions can be buill through volumetric intersection
(Figure 3). At each time step a feature vector is extracted
as explained in Section II-B, so that a feature matrix is built
for each sequence by collecting all the feature vectors along
time, y(¢) for £ = 1,...,7". This feature matrix is then given
as input to the EM algorithm, yieiding the parameters of
the HMM representing the action. We expected these feature

Fig. 6. Trajectories in the Ty plane followed in the acquired instances of
the “walk™ action.

vectors to be invariant with respect to nuisance parameters
such as the trajectory followed, the size of the body, and
the small “qualitative™ differences between different people’s.
movements. In fact, being the bodypart locations related to a
reference frame associaled to the motion direction, a person
can walk along complex trajectories with no significant impact
on the feature matrix. Figure 6 shows the large variability
of the trajectories followed in the collected instances of the
action “walk”. Figure 7 instead compares two feature matrices
associated with two of those walks performed by different
people, showing a remarkable invariance.
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Fig. 7. Visual comparison between two feature matrices extracted from two
distinct instances of the action “walk”, performed by two different people
in different directions. The matrices show the temporal evolution (horizontal
axis) of the feature vectors extracted from the vohunetric data.

Finally, Figure 8 shows the resulting hidden Markov model
for the *“walk™ action. A mode! with 3 states proved to be
adequate to represent this action, each state being associated
with: the pose in which the left leg is extended; that in which
both legs are aligned; and the one in which the right leg is
thrust forward, respectively,
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Fig. 8. Hidden Markev model associated with the “walk™ action. The
topology of the graph representing the action is given by the A matrix, while
each state is represented by a feature vector c; which is the j-th column of
the mawix C.

Having built a model for each learned action category (walk,
wave and pick), a new sequence can be classified by computing
the associated model through the EM algorithm and directly
comparing it to the learnt ones by means of the classical
Kullback-Leibler distance [8). The learnt models allowed to
distinguish between instances of “walk™ and “pick” (Figure 9),
while the four-cluster representation of the body turned out to
be inadequate to distinguish “wave” from “walk” when using
a coarse volumetric representation. Nonetheless, even when
using low-resolution voxsets, the system could still recognize
“walk and wave” motions as instances of the “walk™ action.

V. PERSPECTIVES

These first experiments prove how treating the action recog-
nition task directly on 3D data is the most natural way
of overcoming critical problems like viewpoint dependence,
scale invariance, and other nuisance factors like trajectory
variations. Problems like muiti-body movements (for instance
in automatic surveillance contexts) or occlusions are naturally

Fig. 9. Convergence of the Kullback-Leibler disiance. The diagram plots
against the number of steps of the K-L algorithm the distance between each
model and a fixed HMM model chosen as basis. The K-L distances for
instances of "walk™ or “wave™ are drawn as solid lines, while instances of the
“pick™ action are associated with dotted lines, showing a decent separation.

dealt with before the recognition stage. This motivates us to
conduct more sophisticated analysis of the appropriate 3D
feature representation, and study realistic situations in which
the person performing the action is partially occluded from
other objects, or shares the environment with other people.
We are also cumently conducting experiments with higher
resolution voxsets, in order to detect arm motions through a
six-cluster representation,
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