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ABSTRACT

This paper illustrates an algorithm specifically designed
for encoding multiple views of the same scene taken from
calibrated cameras. The assumption here is that these
views are strongly correlated as they represent the same
content viewed from different perspectives. In order to
keep the encoding complexity low, the proposed algorithm
builds on PRISM (Power-efficient, Robust, hIgh compres-
sion, Syndrome-based Multimedia coding), a video coding
framework based on distributed source coding principles.
The encoder is constrained to perform a very cheap coarse 3D
reconstruction of the scene, whereas the decoder has access
to the best 3D reconstruction to be used as side information.
Preliminary results on synthetic objects demonstrate that it
is possible to achieve a coding efficiency gain with respect to
INTRA coding at a low encoding complexity.

1. INTRODUCTION

Traditional image and video coding are usually limited to
compress one source at a time, representing the scene from a
single viewpoint. With the proliferation of cheap acquisition
devices it is easier to take simultaneously several looks at the
same scene from different angles. At the receiving end, these
views can be blended together to form a 3D reconstruction
of the scene. Recent results [1] show that a 3D TV might
be a reality in the near future. An interesting application
scenario is characterized by cameras deployed as a sensor
network, consisting of a large number of sensing devices that
are low-power and with wireless communication capabilities.
Although the potential applications of sensor networks are
manyfold, ranging from home security to environment con-
trol, traffic monitoring and more, in this paper we concen-
trate on camera sensor networks. Each node, equipped with
a digital camera, views the scene from a different perspec-
tive and it communicates the sensed images to the central
node. As we are assuming that the communication medium
is wireless, without loss of generality we can state that the
neighboring nodes can listen to what is being transmitted
to the central node thus allowing some sort of exchange of
information among distributed nodes. In order to achieve a
good coding efficiency, it is mandatory to take advantage of
the geometrical correlation among the multiple views. Fig-
ure 1 shows an example of how the cameras can be deployed.
We want to encode the view taken from camera X exploiting
the views from the neighboring cameras A, B, and C. If the
encoder is not power constrained, a viable solution consists
in communicating A, B and C' to node X and to perform a
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3D reconstruction of viewpoint X using this information to
form the best predictor Y. The encoder transmits the pre-
diction residue N = X — Y, thus saving bits with respect to
INTRA coding. As the sensing cameras usually have limited
power, we want to move the complexity of the costly 3D vir-
tual reconstruction to the decoder side, located at the central
node. In order to achieve this we exploit the ideas of PRISM
[2][3], a video coding framework built on distributed source
coding principles. PRISM is able to flexibly distribute the
complexity by moving most or all of the motion estimation
task from the encoder to the decoder. In this paper we take
a similar approach, where motion estimation is replaced by
3D rendering. Briefly, the encoder at node X receives A,
B and C and builds a low-cost coarse 3D reconstruction of
the view, Y.. Based on this information the encoder tries
to infer the correlation with the side information that will
be available at the decoder, thus deciding the bit allocation.
The decoder has access to A, B and C' and not being power
constrained can build the best 3D reconstruction Y. Y is
used as a side information to decode the view X. Section 4
elaborates on this topic giving further details on the way the
correlation is estimated and how the side information can be
effectively used.

The problem of coding multiple views using a distributed
source coding approach has been recently explored in the lit-
erature. In [4] communication among cameras is not allowed
but some prior information about the geometry of the cam-
eras and the distance of the objects is required. This work
elaborates a strategy for efficiently encoding the positions of
the objects given that only the decoder will have access to
the other views. The work in [5] is related to the algorithm
proposed in this paper but the encoding process heavily re-
lies on the Wyner-Ziv codec presented in [6]. Low-encoding
complexity is achieved without communication among cam-
eras but a feedback channel is needed.

The rest of this paper is organized as follows. Section 2
reviews the rendering algorithm used to build the 3D virtual
reconstruction. Section 3 briefly illustrates the basic ideas of
PRISM while Section 4 details the proposed algorithm. Pre-
liminary experimental results on synthetic images are given
in Section 5.

2. 3D RENDERING ALGORITHM

In this section we briefly review the rendering method [7]
used in our coding scheme. The algorithm receives in input
three (or more) images from calibrated cameras. One camera
is chosen as the preferred one and a depth map is estimated,
indicating for each pixel of the image the depth of the object.
For a given depth map f, a cost function is defined as:

E(f) = Edata(f) + Esnwoth(f) (1)
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Figure 1: Camera sensor network. White circles represent
images to be INTRA coded while grey circles are images
encoded with the proposed algorithm.

Our data term is defined as a non-positive value which re-
sults from the differences in intensity between corresponding
pixels. It is computed for every pixel p of the preferred image
(we indicate this image with the index j) by these steps:

1. from p, we get the corresponding 3D-point by retro-
projecting it from the preferred camera center of pro-
jection with the selected depth and then we project this
3D-point on each other calibrated images obtaining a set
of n — 1 corresponding pixels q1, 2, ..., i, ---qn|t # J

2. on every non-preferred image we compute the SSD (Sum
of Square Difference) using a square window centered on
q; and one centered on p, obtaining the set of values
di,day....di,...dp|i £ 5

3. finally

Eaata(f) =min(0, Y di—K) (2)

pEI=ji]

where K is a positive constant large enough to capture

significant variation of the SSD function (a typical value

is K = 30).
The smoothness term is quite similar to the one used in [8]
and its goal is to make neighboring pixels in the preferred
image tend to have similar depths. In order to minimize the
multi-variate cost function E(f) we use an approach based
on graph cuts [8]. This methods are fast enough to be prac-
tical, but unlike simulated annealing, graph cuts methods
cannot be applied to arbitrary functions. We use some re-
cent results [9] that give graph constructions for a quite gen-
eral class of energy functions. The optimal depth map is
then filtered to remove outliers and to reduce the quantiza-
tion noise. Finally, in order to create a complete model of
the object we blend together the several surface patches ob-
tained with the previous graph cuts based method. Further
details can be found in [7]. Figure 2 shows as an example the
views taken from the four calibrated cameras. Figure 3 de-
picts the rendered views using each of the three surrounding
cameras as the preferred one. We can notice that depending
on the chosen reference the quality of the reconstruction in
each region varies. In both cases the central image is the one
we are encoding.

3. BACKGROUND ON PRISM

The PRISM video coder is based on a modification of the
source coding with side-information paradigm, where there is
inherent uncertainty in the state of nature characterizing the
side information. The Wyner-Ziv Theorem [10] deals with
the problem of source coding with side-information. The
encoder needs to compress a source X when the decoder has
access to a source Y. X and Y are correlated sources and Y

Figure 2: Original views taken from viewpoints A, B, C' and
X. The latter is encoded with the proposed algorithm.

YB YC

Figure 3: Rendered images Ya,Yp and Y¢ from viewpoint
X obtained using A, B and C as preferred image in the
rendering process.

is available only at the decoder. From information theory we
know that for the MSE distortion measure and X =Y + N
where N has a Gaussian distribution, the rate - distortion
performance for coding X is the same whether or not the
encoder has access to Y.

For the problem of source coding with side information,
the encoder needs to encode the source within a distortion
constraint, while the decoder needs to be able to decode the
encoded codeword subject to the correlation noise (between
the source and the side-information). While the results of
Wyner and Ziv are non-constructive and asymptotic in na-
ture, a number of constructive methods to solve this problem
have since been proposed (such as in [11][12][6]) wherein the
source codebook is partitioned into cosets of a channel code.

For the PRISM video coder [2], the video frame to be en-
coded is first divided into non-overlapping spatial blocks of
size 8x8. The source X is the current block to be encoded.
The side-information Y is the best (motion-compensated)
predictor for X in the previous frame and let X =Y + N.
We first encode X in the intra-coding mode to come up with
the quantized codeword for X. Now, we do the syndrome
encoding, i.e., we find a channel code that is matched to the
”correlation noise” N, and use that to partition the source
codebook into cosets of that channel code. The encoder
transmits the syndrome (indicating the coset for X) and a
CRC check of the quantized sequence. In contrast to MPEG,
H.26x, etc., it is the decoder’s task to do motion search, as
it searches over the space of candidate predictors one-by-one



to decode a sequence from the set labeled by the syndrome.
When the decoded sequence matches the CRC check, decod-
ing is declared to be successful. For further details please
refer to [3].

4. PROPOSED ALGORITHM

We refer in the following to the camera configuration of Fig-
ure 1. Cameras A, B and C as well as all the other cameras
marked in gray encode images in INTRA mode, i.e. without
reference to other cameras. Cameras marked in white use
the proposed algorithm based on distributed source coding.
We focus on camera X. At the encoder A, B and C encode
the respective views and send to the central node the quan-
tized versions A, B and C'. Node X listens to what is being
transmitted and uses these three views to build a coarse vir-
tual reconstruction of X, Y., using the rendering algorithm
described in Section 2. In order to reduce the computational
complexity at the encoder, the rendering of the virtual view
is carried out at reduced resolution. In our implementation
we downsample the received images by a factor of four in
both direction before feeding them to the rendering algo-
rithm. The encoder processes the image on a block-by-block
basis. For each block, the encoder checks the correlation
existing with the co-located block in the coarse virtual re-
construction Y., computing MSE. = Zl |X* — YZ|?. Based
on this measure, the encoder tries to infer the correlation
that will be observed at the decoder N = X — Y, where
Y represents the best predictor that can be found at the
decoder side. The decoder is free from power constraints
and can thus use all the information available to build the
best side information. The rendering algorithm we are us-
ing gives different results based on the image that is chosen
as reference. This is due to the fact that it adds a depth
measure only to the locations visible from the image chosen
as the reference. In order to get a better side information,
we can actually perform three different 3D reconstructions,
using respectively A, B and C as reference, producing in
output Ya, Yg and Y¢ as shown in Figure 3. The decoder is
able to use as a predictor any of these images. It is possible
to note that depending on the spatial region of interest, we
would pick the one that gives the best predictor. Moreover,
the rendering algorithm is not able to produce a result that
has a precise reconstruction at the pixel level. This might
not be an issue in computer vision applications, but it is not
satisfactory when it is used to build a predictor for encoding
X. For this reason we allow the decoder to perform a motion
search in small range about the co-located block in each of
the rendered views Y4, Y and Y¢, in order to increase the
correlation of the encoded image with its side information.
The missing link between the encoder and the decoder is
assured by an off-line module that collects correlation noise
statistics defining a mapping between what is observed at
the encoder and the best predictor disclosed at the decoder.
The proposed algorithm inherits most of the coding tools of
PRISM. While PRISM computes at the encoder the M SE at
zero motion (co-located block in the reference frame), we cal-
culate here the M SE between the block and the co-located
block in the coarse rendered view Y.. On the other hand,
at the decoder PRISM searches for the best prediction in
the reference frame, whereas our algorithm searches in the
three high quality rendered views Y4, Yp and Yc. Let us
summarize the steps carried out by our algorithm:
Encoder:

e receive the images A, B and C

e compute a coarse low-resolution rendering of X, Y. using
A, B and C

e for each block

— compute the MSFE between X and the co-located
block in Y.

— compute the DCT transform of block X

— INTRA encode block X

— read the statistics collected by the classifier to infer
the correlation noise and to perform bit allocation

— send syndrome bits and the CRC signature of the
quantized block

Decoder:

e receive the images A, B and C
e compute three high-quality high-resolution reconstruc-
tions of X, Ya, Yp and Yc¢ using A, B and C
e for each block
— read syndrome bits and CRC
— perform a motion search around the co-located blocks
in Ya, Yp and Yo
— when the CRC of the decoded block matches with
the CRC sent by the encoder, a decoding success is
declared and motion search is stopped (see Section 3)
— recover the reconstructed block by IDCT

The decoder continues the motion search until it finds
a predictor whose correlation with the block to be decoded
is below the noise margin for which the channel code was
designed (see Section 3). When this happens a decoding
success is declared. If the motion search concludes without
a match, decoding fails and a simple error concealment tech-
nique is employed by pasting the co-located block of one of
the three rendered views. In order to increase the decoding
speed, predictors are visited in such a way that a decoding
success occurs as soon as possible. A spiral search searches
for predictors in each of the images Y4, Y5 and Yo starting
from zero motion (co-located blocks). The same candidate
motion vector is tested for all the three images before pro-
ceeding to the next predictor.

5. EXPERIMENTAL RESULTS

We performed some preliminary tests on synthetic objects.
Both teapot and pitbull have been modeled by a 3D software
and several snapshots have been rendered from it. At the
encoder the rendering algorithm is fed with images having
one sixteenth of the original resolution, resulting in a speed-
up of a factor of 100 with respect to the full quality recon-
struction performed at the decoder side. We compared the
rate-distortion performance of the proposed algorithm with
INTRA coding. For the latter we used the H.263+ INTRA
mode as a benchmark. Figures 4 and 5 shows the recon-
structed image quality as a function of bit-rate for teapot
and pitbull. The numbers indicated in the plot refer to the
quantization parameter (QP) used (the actual quantization
step is 2- QP). At low bitrates the proposed algorithm out-
performs INTRA coding whereas at high bitrates there is a
PSNR penalty. This is due to the fact that a couple of blocks
are incorrectly decoded and the error concealment technique
pastes the co-located block from Y4. This PSNR drop does
not reflect the perceived quality though. At the same quanti-
zation step size, reflecting the subjective quality better than
PSNR in this case, we observe a bit saving of around 20%.
Figures 6 and 7 show the decoded teapot and pitbull images
at QP = 8. Although we haven’t run specific simulations
in this direction, we expect to be able to exploit the robust-
ness features of PRISM. Let us say for example that A is
not available at the decoder. The decoder can pick another
neighboring camera and still perform a 3D rendering of X. If
the new side information is still within the noise margin the
decoder will still be able to decode. This is because PRISM
is not tied to a single deterministic predictor but it encodes
for the statistical correlation between the block and its side
information.
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6. CONCLUSIONS

We proposed a coding algorithm for multi-camera views
based on distributed source coding. Preliminary results show
promising results with respect to INTRA coding. We are
currently investigating the use of other parameters other
than MSE. (i.e. estimated surface angle, local smoothness,
etc.) to drive the bit allocation at the encoder. Moreover we
think that this approach can be extended to multi-camera
video, in such a way that both temporal (from past frames)
and spatial (from rendered views) predictors can be used at
the decoder.
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