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ABSTRACT

We propose a human body action classifier based on a
3D representation of the body in terms of volumetric coordi-
nates. Features representing body postures are extracted di-
rectly from 3D data, making the system inherently insensi-
tive to viewpoint dependence, motion ambiguities and self-
occlusions. An Invariant Shape Descriptor of human body
is obtained in order to capture only posture-dependent char-
acteristics, despite possible differences in translation, orien-
tation, scale and body size. Frame-by-frame descriptions,
generated from a gesture sequence, are collected together
in matrices. Clustering of action matrices is eventually per-
formed, and through DTW (Dynamic Time Warping) (while
computing the distance metric), we gain independence from
possible temporal nonlinear distortions among different in-
stances of the same gesture.

1. INTRODUCTION

Systems that are able to recognize human gestures and ac-
tions, without any invasive device, have recently raised a
great deal of interest not only in the research community, but
also for industrial applications. All these techniques could
have direct applications to video surveillance problems [1],
human-computer gestural interaction projects, robot skill
learning and to all fields in which activity recognition is
needed. Multi-camera systems are considered nowadays
among the most promising techniques used in computer vi-
sion. 3D reconstructions derived from different views are
inherently able to solve ambiguities and viewpoint depen-
dencies, which are unavoidable in systems based on monoc-
ular views (see [2]. In this paper we consider volumetric 3D
reconstruction of a moving human body, in terms of voxel
occupancy in an assigned voxelset. This is the starting point
for developing a reliable set of features representing an ac-
tor performing a natural gesture.
A good selection of salient features from voxels coordinates
of the “actor’s body” has a great importance for the over-

all performance of the recognition system. In order to suc-
ceed in obtaining a robust representation of an action, we
developed a feature extraction method similar to [3], based
on a spherical Shape Descriptor obtained from a sampled
shape function, a cylinder, adapted on the fly to the size of
the body. Features are invariant to scale, translation and ro-
tation and constitute a meaningful representations of body
postures. These features vary continuously with body mo-
tions. The recognition stage is then performed through a
clustering of different instances of gestures formed by a col-
lection of shape distributions, one for each considered time
instance. Distance metric between sequences of features
is computed through the use of Dynamic Time Warping, a
method that accounts for possible nonlinear distortions in
action delivery speed.

1.1. Previous Work

In the past few years a great deal of research has been done
in the field of activity recognition with 3D data, for exam-
ples see [4] and [5]. Major effort has been put into the re-
search of invariant features with respect to viewpoint and
trajectory variations (see [6]). The classifier design is an
important part in recognition system projects, but it can-
not be considered separately from the evaluation of fea-
tures. Many recognition methods have been proposed, most
of them based on HMMs (Hidden Markov Models) theory,
such as in [7], [8] and in [9]. In our approach we decided to
adopt a simpler recognition algorithm, which is more com-
putationally efficient and is able to exploit the discrimina-
tion properties of our features.

2. DATA ACQUISITION AND FEATURE
EXTRACTION

2.1. 3D Volumetric Reconstruction

In order to have a 3D reconstruction of the moving body
into the scene, we apply the so called Volumetric Intersec-



tion method (see [10], [11]). Starting from eight different
viewpoints, represented by eight synchronized cameras, we
compute, frame by frame, the segmentation of body silhou-
ettes using a Chroma Keying algorithm [12]. Then, in a vir-
tual 3D environment, we build the generalized cones start-
ing from the optical center of each camera and intercepting
each respective silhouette. The volumetric intersection of
these cones, called Visual Hull, approximates the 3D recon-
struction of the actor and, sampling its convolution with a
smoothing filter, can be transformed in a 3D representation
compound of voxels coordinates (Fig. 1).

Fig. 1. Volumetric intersection. Example of voxelsets cre-
ation by 3D intersection of Visual Hulls projected from seg-
mented edges. This method is performed for each frame of
a gesture action sequence.

2.2. Invariant Shape Descriptor Method

The set of features that we extract is an extension of the
Shape Descriptor explained in [3], already used to infer a
body posture in a static environment. In this work we pro-
pose an adaptation of the method to a dynamic context: a
collection of postures across time.

Let us describe the general Shape Descriptor applied to
a volumetric voxelset:

• Shape Descriptor describes a 3D volumetric object
with regard to a reference shape, Θ: normally a sur-
face like a cylinder or a sphere is used.

• The surface of the reference shape is sampled regu-
larly in a sufficient number N of points, called control
points, according to some empiric criteria.

• For each control point, Pn:

- Each voxel is encoded in a spherical frame of
reference centered in Pn with dimensions ρ (from

0 to a suitable value), θ (from 0 to π rad) and ϕ
(from 0 to 2π rad).

- Each polar coordinate is uniformly sampled into
ten parts, obtaining a set of 1000 elements
{(ρi, θj , ϕk) : 0 ≤ i , j , k ≤ 9}.

- For each volume in spherical coordinates, de-
fined by a particular (ρi, θj , ϕk), we count the
voxels contained and build a spherical histogram
fn(i, j, k) containing these values (for more de-
tails see [3]).

• A spherical Shape Descriptor F (i, j, k) is computed
summing up all the corresponding values in the his-
tograms of the control points and normalizing all to
the maximum value:

F (i, j, k) =
N∑

n=1

fn(i, j, k)

maxi,j,k

(∑N
l=1 fl

(
i, j, k

))

Using a sphere centered in the body centroid with a ra-
dius that is proportional to body’s main direction, we obtain
a description of the body shape with complete loss of infor-
mation about position in space, actor’s height and 3D orien-
tation. In our project we use, as suggested in [3], a cylinder
with the axis crossing the centroid, vertically oriented and
fitting the body’s height. In our approach, instead of in-
scribing the body inside the reference shape, we optimized
the cylinder radius using a suitable value. The used value
is the radius of the major circle inscribed inside the projec-
tion of the entire voxelset on the floor (Fig. 2 right). This
way we obtain a representation that is independent from po-
sition, size, scale, body proportions and, possibly, invariant
to rotations on its own axis. We call it Invariant Body Shape
Descriptor.

We would like to point out an important aspect that con-
firms the rotational invariance of the shape descriptor: for
each polar reference frame, centered in its respective con-
trol point, we assume as zero-elevation and zero-azimuth
the direction of the segment lying on the horizontal plane
(zero-elevation) projecting the control point on the cylinder
axis.

Following the described method, we compute an Invari-
ant Body Shape Descriptor for each frame and the collec-
tion of these 1000 × 1 vectors throughout a sequence is the
data set that we use to represent a gesture (six examples are
shown in Fig. 4).

3. ACTION CLUSTERING STAGE

In order to evaluate the discriminatory abilities of the ex-
tracted features we use one of the simplest template match-
ing algorithms. The DTW is a definition of a distance metric
for measuring similarity between a known reference pattern



Fig. 2. Cylindrical Reference Shape. Left: Example of a
cylindrical reference shape adapted to body proportions.
The voxelset is here sub-sampled by a rate of 4 and each
voxel is represented only with its center in order to make
internal points visible. Right: Cylinder radius is adapted to
the major circle inscribed inside planar projection.

and a test pattern. This method accounts for the non-linear
distortions that could affect two sequences of features. If
we take two gestures, a direct comparison between two fea-
ture vectors at a given time is clearly impossible: this is
mainly due to the different duration of the gesture’s steps.
It follows that the whole action length has to be considered
(Fig. 4). Through DTW we are able to find optimal cor-
respondences between feature vectors of different matrices
according to an agreed cost function. In other words, we can
compare sequences of similar body postures in two actions
independently from their time index.

DTW is based on the Dynamic Programming theory. If
we have a reference pattern, say ri, i = 0, · · · , I , and a test
pattern tj , j = 0, · · · , J , where, in the general situation,
I �= J , we can find a distance measure between the two
sequences building a 2D grid with points on respective axis
assigned to their feature vectors. Each node (i, j) is associ-
ated with a specific value of a cost function c(i, j) measur-
ing the “distance” between the respective elements of the
strings, ri and tj . We are now looking for a path through
the grid from an initial node (i0, j0) to a final one (iF , jF )
that minimize the overall cost C defined as:

C =
F∑

k=0

c(ik, jk)

Using this formula we can compute the so-called Min-
imum Distance Grid (Fig. 3-left), in which every node is
now associated to the minimum cost from the initial node.
This matrix is computed incrementally in such a way that
its node (iF , jF ) contains the minimum cost Cmin(iF , jF )
to reach the final node starting from the initial one, (i0, j0).
Besides, we can take into account each optimal predecessor

for each node of the grid in order to be able to construct the
optimal path backtracking from (iF , jF ) (Fig. 3-right).

Fig. 3. Dynamic Time Warping. Left: Minimum Distance
grid between the two “KICK” sequences of Fig. 4. Right:
the same grid with the overall optimal path (the one across
the valley from (0, 0) to (I, J))

In this work we consider: (i0, j0) = (0, 0) and (iF , jF ) =
(I, J) which means that we are searching for the optimal
path from the initial node to the node corresponding to final
feature vectors of both sequences. Note that each sequence
is composed of an isolated instance of a single action.

4. EXPERIMENTAL RESULTS

We tested the system with different instances, performed
differently by the same person or by another one, of three
simple actions: “POINTING AT”, “CROUCHING DOWN”
and “KICK”. With the word “simple” we refer to actions
that are not repeated for a random number of times, there-
fore different instances must contain corresponding feature
vectors. For each gesture we collected at least two differ-
ent realizations. This constraint avoids problems due to the
low-level comparison made by the DTW. Only by comput-
ing a statistical model of a gesture we can get rid of this
limitation.

The first recognition can be made as shown in Fig. 4,
where similarities between instances of the same action are
quite apparent.

Using the DTW algorithm we built a matrix in which
each element (n,m) has the distance value from the se-
quence n to the sequence m (Fig. 5). In Fig. 5(left) ele-
ments 1, 2, 3 correspond to “POINTING AT” actions: we
can see that the minimum distances between each one of
these sequences and another one (notice that the distance of
a sequence from itself is zero, hence the black main diag-
onal) are concentrated inside the “POINTING AT” cluster
(3 × 3 dark upper-left sub-matrix). The farthest ones from
these sequences are the “CROUCHING DOWN” actions
(white and light grey columns or rows) while the “KICK”
gestures are a bit closer (grey sub-matrices). The same be-
havior is underlined by the other two clusters represented
by the elements 4, 5 for “CROUCHING DOWN” action



Fig. 4. Examples of feature matrices. The upper two ma-
trices are instances of “POINTING AT” gestures, the mid-
dle ones are two “CROUCHING DOWN” actions while the
lower graphs correspond to two “KICK” sequences.

(note the central dark square) and the elements 6, 7 for
“KICK”(lower-right corner square). The only difference
among distances from “CROUCHING DOWN” is that “KICK”
gestures are a bit closer (grey columns or rows) than “POINT-
ING AT” ones. In conclusion “KICK” has an intermedi-
ate position between “POINTING AT” and “CROUCHING
DOWN” according to DTW-computed distance.

Fig. 5. Distances between sequences: Comparison among
7 sequences: {1, 2, 3} = “POINTING AT”; {4, 5} =
“CROUCHING DOWN”; {6, 7} = “KICK”.

5. SUMMARY AND CONCLUSIONS

In this paper we proposed an action-clustering system based
on volumetric 3D data. Features have been represented by a
Shape Descriptor computed frame-by-frame and adapted in

order to be independent from position, size, scale, body pro-
portions and, possibly, be invariant to rotations. We used a
rather simple, but robust, pattern recognition algorithm, Dy-
namic Time Warping, to compute distances among gestural
actions.

The performance shown by the experiments have high-
lighted the abilities of this system based on Shape Descrip-
tor not only to recognize postures, as shown in [3], but also
to be tuned up in a dynamic context. The simulations that
have been carried out have demonstrated the ability of the
proposed method in classifying the different considered ac-
tions.
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