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1 Introduction 

Acquisition and real-time reconstruction of a detailed 
3D model of a face raises a great deal of interest due to 
modern multimedia applications: Advanced tasks, like 
video-conferences set in a virtual round table, biometrical 
recognition systems, multi-player video-games, etc. etc. 
requires affordable systems to extract the 3D facial information 
from the environment and for its processing. The approach 
that we propose here is derived from classical depth-map 
estimation algorithms based on multi-camera acquisition but 
the redefinition of typical energy terms makes minimization 
procedure much more fast and accurate. Traditionally these 
approaches are, time consuming, particularly when the 
accuracy is an issue. For this reason we adapted a classical 
approach for depth-maps reconstruction to obtain faithful 
facial models very quickly with millimetric precision. In 
particular our revisited approach is based on a global energy 
minimizer derived from graph-cuts algorithms that can be 
used to speed up the image-based modeling process while 
guaranteeing an accurate reconstruction. The final result is 
a detailed 3D texture-mapped VRML model of the acquired 
face, which can be easily integrated into other applications. 

Although the algorithm described in this paper was developed 
specifically for 3D face recognition purposes, its range of 
application is much wider than that, as it can be used whenever 
a fast and detailed depth-map from multiple calibrated images 
is needed. 

2 Depth Map reconstruction 

In this section we show how to accurately reconstruct the 
depth-map of a face from a set of images. In order to do so, we 
started from the well-known graph cuts approach [1, 3, 4, 9], 
and we adapted it and optimized it to the problem of depth-map 
reconstruction, 

In what follows we provide a brief description of the energy 
minimization approach that the graph cuts method is based on. 
After that we will show how to formulate the problem of depth 

2,1 Energy minimization approach 

It is well known that the problems of depth map reconstruction 
and image restoration can be elegantly approached in terms of 
energy minimization [3,4], with extremely appealing results. 
In the past few years powerful energy minimization algorithms 
have been developed based on graph cuts [3, 5, 24]. These 
methods are fast enough to be of practical interest, but unlike 
other methods such as simulated annealing, the solutions based 
on graph cuts cannot be applied to arbitrary functions. In this 
paper we will use some recent results [4] on graph construction, 
in order to extend the method to quite a general class of energy 
functions. 

The energy minimization formalism exhibits several 
advantages. It allows a detailed description of the problem to 
be solved. Moreover, energy minimization naturally enables 
the use of soft constraints, such as spatial coherence and a 
global smoothness term. This allows us to avoid ambiguities 
with spatially smooth answers that preserves discontinuities. 

2.2 Problem formulation 

Let us assume that n calibrated images of the same scene are 
taken from different viewpoints (or at different times). Let us 
choose a reference camera and let P be the set of pixels of 
the corresponding image. A pixel pEP corresponds to a ray 
in 3D-space. Consider the first intersection of this ray with 
an object in the scene. Our goal is to find the depth of this 
point for all the pixel of the preferred image. We thus want to 
find a labeling f : P --> £. where £. is a discrete set of labels 
corresponding to increasing depths from the preferred camera. 
Equivalently, we want to obtain the depth map of the pixels in 
the preferred image. 

A pair (p, I) where p E P,l E £. corresponds to some point in 
3D-space. We will refer to such points as 3D-points. 

We define our energy function as consisting of two terms: 

E(J) = Edatn (J) + Esmooth (J) 
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In their work, Kolmogorov and Zabih [I) formulate the 
problem of scene reconstruction in a slightly different fashion, 
which allowed them to obtain a depth map for every image 
in the input set by an energy minimization approach. This 
leads to a computational expensive algorithm whose result is 
a unorganized clouds of point representing the surface of the 
visible part of the scene to reconstruct. Moveover, in order to 
achieve an effective reconstruction from the input set, a further 
energy term (called visibility term) must be accounted for, in 
order to avoid mutual intersections of re�projected rays coming 
from different cameras (see [1] for more details). Whereas 
with our definition we can treat a very large number of camera 
configurations without these further limitations. 

Notice also that in our approach it is no long necessary to define 
the visibility term like in [J]. In fact, assuming that the set of 
label corresponds to the increasing depths from the preferred 
camera, there cannot exists occluding pixels in the same image. 
As a consequence, a visibility term is no longer necessary. The 
other terms are also quite different. Our data term, for example, 
is defined as follow: 

Eduta(f) = 2: D(p) 
pEP 

where D(p) is a non�positive value which results from the 
differences in intensity between corresponding pixels. D(p) 
is computed for every pixel of the preferred image (we indicate 
this image with the index j) by this steps: 

1. from p, we get the corresponding 3D-point by back­
projecting it from the reference camera center of 
projection with the selected depth and then we project this 
3D-point on each other calibrated image obtaining a set of 
n� 1 corresponding pixels {qt, Cj2,.··, qi,· . . , qnli f j}; 

2. on every non-reference image we compute the SSD (Sum 
of Square Difference) using a square window centered on 

qi and the one centered on p, obtaining the set of values 
{dt,d2, .. ,d., .. ,dnli # j}; 

3. finally, we have 

D(p) = min(O, 2: di � K) 
i= 1 
i#j 

(1) 

where K is a positive constant that is large enough 
to capture significant variations of the SSD function (a 
typical value is K = 30). 

The smoothness term is quite similar to the one used in [1] 
and its goal is to encourage neighboring pixels in the preferred 
image to have similar depths. The smoothness term is defined 
as follow: 

Esmouth(f) = L V{p,q) (f(p),j(q)) (2) 
{p,q)EN 

This term involves the notion of neighborhood: we assume that 
there is a neighborhood system on pixel 

Nc{{p,q} I p,qEP} 

This can be the usual 4�neighborhood system: pixels p = 

(Px, Py) and q = (qx, qy) are neighbors if they are in the same 

image and Ipx � qxl + Ipy � qyl = 1. 

In [I], the function V{p,q} takes on the following form: 

V{ }(l I) = { U{p,g} p,q p' q ° 
if /p f lq 
otherwise 

where the U{p,q) is the following non-decreasing function: 

u � {3.\ if LlI(p, q) < 5 
{p,q} � .\ otherwise 

(3) 

(4) 

Where LlI(p, r) is the average of values IIntensity(p) � 

Intensity(rJI for all thtee bands(R,G,B). In order to obtain a 
smooth reconstruction that preserves discontinuities, we chose 
to follow a particular strategy in the use of the smoothness term. 
In fact, it is well-known that graph cuts techniques often yields 
flat and blocky results. This may not be important for disparity 
maps, but it is crucial for shape reconstruction. In order to 
avoid this problem, we make a first cycle of the reconstruction 
algorithm with a limited set of labels. in order to rapidly reach 
a value of the energy that is close to the local minimum that 
could be reached at convergence with the original algorithm . 
This corresponds to a good approximation of the position of the 
3D�points, which can be improved with a second cycle at twice 
the resolution, where we change the function V{p,q} defined in 
(3) with this new function: 

V, (1 I) � { U{p,q} {p,q} p, q - 0 
if lip -Iql > z_threshold 
otherwise (5) 

In fact, this function relaxes the penalty mechanism of the 
smoothness term, giving a 0 penalty not only to the neighboring 
pixels that lie at the same depth but also to the ones that stay 
sufficiently close to each other. The idea is supported by the 
fact that after the first cycle of the algorithm, only some of the 
pixels are approximatively well positioned in 3D-space by the 
consistency measure given by the data term, while the other 
pixels' locations are only decided by the smoothness term. 
This term, in fact, forces them to lie at the same level of the 



164 

neighboring pixel, resulting in flat blocks. Thus, relaxing the 
constraint imposed hy the first smoothness term, neighhoring 
pixels have greater chance to occupy adjacent depths correctly. 

2.3 Graph cuts Algorithm 

Thanks to our energy redefinition the results obtained from the 
standard graph cuts algorithm (as defined in [1]) are much more 
accurate. As shown in the next paragraph, further depth map 
optimization guarantees high fidelity in the reconstructed data. 

2.4 Depth map optimization 

Even though the graph cuts algorithm is able to reconstruct an 
accurate depth map, it works only with a limited set of depths 
and, therefore, it introduces a considerable quantization error 
in the positioning of each one of the 3D points. in order to 
overcome this problem, it is necessary to adopt an optimization 
step which produces more regular depth maps. The output of 
this process is a new depth map, where the discontinuities are 
preserved while the other parts tum out to be smoother. 

In order to do so, we consider the depth map as a functions 
of two variables defined on the preferred image and we apply 
a selies of 2D filters to it. In particular, we start with a 
median filter to eliminate possible outliers and then we apply 
a dithering technique: some white noise is added to the 
depth function and, then, a low pass filter is used to reduce 
depth quantization error and obtain a smoother map. In order 
to preserve discontinuities, the 2D low-pass filter keeps the 
information needed from the neighbors of a pixel only if the 
depth distance is below a certain threshold. The size of the 
filter windows and this threshold are empirically chosen on the 
basis of the current reconstruction. 

2.5 Mesh triangulation 

From the previous section we learnt how to compute a depth 
map from a set of images of the interested object. We also 
said that every map can be seen as a 2D function defined on 
the preferred image. Starting from this point, we can easily 
implement a triangUlation algorithm that produce a mesh from 
a depth map on the basis of the neighboring pixels. Consider 
four neighboring points and the six possible connection shown 
in figure I: 

Figure I: Six possible configurations for the creation of 
triangles from four neighboring points. 

when two neighhoring pixels have depths differing by more 
than some threshold, there is a step discontinuity. The 
threshold is detennined directly by the human operator, as 
the maximum depth difference which has to be considered a 
surface discontinuity. If a discontinuity is present, a triangle 
should not be created. Therefore, for four neighboring pixels, 
we only consider 3D-points that are not along discontinuities. 
If three of them satisfy this condition, a triangle will be created 
in one of the last four style in figure 1. If none of the four are 
along a discontinuity, two triangles will be created, and the 
common edge will be the one with the shortest 3D distance, as 
shown in the first two styles in figure I. 

II 

Figure 2: The acquisition system. Three cameras placed 
around a gate. 

Repeating these steps for every mesh will lead to a volumetric 
function whose zero leveset locates the object surface. The 
resulting object can be seen as a sort of convex: hull obtained 
by linking together the meshes and taking only the part of the 
3D space contained in their intersection. 

3 Experimental results and system description 

The proposed algorithm has been applied to a variety of test 
images (of faces) acquired with a calibrated trinocular camera 
system. The acquisition system is based on three synchronized 
cameras Powershot G3 from Canon as shown in figure 2. 
The acquired images are in 2272 x 1704 JPEG format and, 
after face segmentation, the area that is actually useful for 3D 
reconstruction uses about IMPixel of the 4 that are available. 

In figure 5 we show the three segmented facial images and the 
final 3D model. The reconstruction time is about 3 seconds 
on a Pentium IV 3GHz. In particular, using the described 
approach we can obtain a very good depth estimation of 
difficult facial zones were uniform skin color and highly non­
lambertian reflectance generate ambiguity in depth estimation. 
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Figure 3: A depth-map from a synthetic scene: In the first 
raw the three calibrated images generated with a 3D rendering 
program; in the second raw there are two virtual views of the 
generated depth-map 

Comparison with synthetic data obtained with a 3D rendering 
program gave an error in the depth estimation with a standard 
deviation 0.6 label distance (in figure 3 is shown the teapot 
reconstruction used to estimate algorithm accuracy). The 
parameters K of equation (1) and A of equation (4) are 
determined heuristically from a set of facial images. Anyway, 
we observed that the estimated values gives good values for 
every facial image analyzed. The parameters can be varied to 
gain some insight about the algorithm: for big values of A the 
smoothness dominates the correlation, resulting in a map with 
many flat blocks of pixels, whereas little values of A yields to 
an irregUlar depth map with many wrong discontinuities. In 
our experiment, we chose the values K = 30 and A = 5. 

4 CONCLUSIONS 

Fast 3D depth-map extimation from multiple calibrated images 
is a critical process. In order to perform this task we presented 
a reconstruction algorithm based on graph cuts theory. We 
defined an energy function whose minimum represents the 
solution to our problem and we implemented a technique 
to improve the obtained depth maps. The parameters were 
optimized for 3D face reconstruction. Anyway we also 
obtained good results with completely different categories 
of 3D objects. In figure 6 we give an example of a scene 
containing a dinosaur above a ship: in the second raw is 
possible to view the good results for a virtual viewer placed 
in different positions around the depth-map. In figure 4 is 
also possible to see the reconstruction of a skull with a dull 
texture that is not acquired with standard laser-scanner due 

"'" => 

(0) 

(b) 

Figure 4: A depth-map from a skull: In the first raw the 
three calibrated images acquired using a turntable and a single 
camera ; in the second raw tbere are two virtual views of the 
generated depth-map 

to its low reflectance in the dark regions. Another advantage 
of this approach is its computational efficiency. In fact, we 
obtain a depth-map of the analyzed scene USing images of 
about one megapixel in less than 3 seconds using normal 
hardware(Pentium4 3GHz with 1GB of RAM). 
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