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TOWARDS 3D FACE RECOGNITION

Abstract: 3D face recognition framework is analyzed
face lo-
calization, facial feature extraction, 3D face model
reconstruction from a few 2D images and 3D eigen-

with its basic counterparts presented i.e.

face. The main advantage of the proposed frame-
The most time
consuming step that is the 3D face model building
takes less than 3 seconds at Pentium 4 3GHz 1GB
RAM for image size about one milion pixels.

work is its fast processing time.

1 INTRODUCTION

Scientists and researchers all over the world have
been pursuing an automatic face recognition (FR) for
about two decades. The potential applications include
surveillance of the airports, rallway stations, stadiums,
etc. what becomes increasingly important these days
but also browsing of the multimedia content such as
films, video shots or streaming video. Face recognition
involves face localization process to state if there is a
face in the analyzed image and to precisely distinguish
it from the background. The recognition task itself can
be verification of a human identity given the database
of various persons photos. Though, more often some
number of the most similar facial images is needed what
is always the case when the database is huge and thus
impossible to be browsed manually.

A great number of different approaches to face
recognition have been proposed in the last twenty years
— a good overview of the first decade can be found in
[1]. The common approach is to learn a feature set
in course of processing two dimensional face images as
holistic patterns given that the training set covers suffi-
ciently broad range of face appearance variability. Un-
fortunately, these classic approaches suffer from major
drawbacks like illumination dependance of the recogni-
tion, lack of some face information due to a non-frontal
pose acquisition of the camera, confusing the recogni-

tion engine because of a planar image of the person,
etc.

Many of these problems can be either reduced or
avoided using a 3D approach where different spatial
models of the acquired faces are directly compared. For
this reason a classic approach for depth-maps recon-
struction that produces a detailed 3D texture-mapped
mesh of the acquired face from a few of its 2D images
is adapted. A face has to be first localized within the
2D image and crucial facial features describing eyes,
mouth, chins etc. extracted. These points are then
used during depth map reconstruction to apply nor-
malization in such a way that a 3D model is rotated
and scaled to obtain a frontal view with a constant dis-
tance between the two eyes. The transformation also
normalizes all the facial feature points to provide them
for a recognition module which is based on 3D eigen-
faces method.

We report in this paper the advanced state of re-
search on the 3D face recognition framework. In section
2 the face localization by the AdaBoost cascade is de-
scribed, in section 3 the most important facial feature
extraction methods are presented; section 4 contains
the main part of the paper that is a 3D face model
building algorithm based on a global energy minimizer
derived from graph-cuts techniques. In section 5 the 3D
eigenfaces method is sketched and section 6 concludes
the paper pointing out the future research directions.

2 FACE LOCALIZATION

Among many of face detection and localization meth-
ods [2] the AdaBoost cascade classifier introduced by
Viola and Jones [3] is proven to be one of the most
successful both in terms of accuracy and speed. Their
really novel approach has shown how local contrast fea-
tures found in specific positions of the object can be
combined to create a strong face detector. AdaBoost
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is known from the late 1980s as a multi-classifier and
a training procedure for a collection of weak classifiers,
e.g. having the success rate about 0.5, to boost them
by suitable voting process to very high level of perfor-
mance, Viola and Jones applied an early and subop-
timal heuristics of Shapire and Freund for AdaBoost
training algorithm [4].

The Adaboost cascade algorithm for object detec-
tion may be described as nested three-level process [5].
On the lowest level parameters of the best single weak
classifier are found, that on the higher level is incor-
porated into the set of such weak classifier forming
the strong classifier. The third and the highest level
creates serial connections between strong classifiers to
maintain the trade-off between crucial detection per-
formance measures, false acceptance rate and false re-
jection rate. The resulting final structure is called the
AdaBoost cascade.

2.1 The Weak Classifier

For each object window o, the weak classifier elaborates
a decision é,,(0) € {—1, +1} on the basis of membership
of the object o to one of two classes labeled by -1 (a
negative) and +1 (a positive) (Figure 1).

8(0)

Figure 1: Diagram of the weak classifier

In face and eyes detection region contrasts ¢(R) are
used as weak classifiers, where R is the sub-window of
the image window o:
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The regions used to evaluate contrast in our implemen-
tation of AdaBoost cascade, which were taken directly
from [3], are presented in Figure 2. The positive sub-
region R is drawn in white whereas the negative sub-
region R~ is drawn in black.

regionF tvpeA typeB typeC typeD
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Figure 2: Types of regions used to determine the weak
classifier

During the training process the optimal choice
of threshold # and parameter sequence (z,y,a,b,t) is

made, where a pair (z,y) is the anchor point of the re-
gion defined by the type ¢ € {4, B, C, D} and size a and
b in the object window o. The training is performed
with respect to two labelled datasets consisting of P
positives and N negatives respectively. The examples
referring to the case of face detection are illustrated in
Figure 3.

=1 =t
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Figure 3: Positive ezamples (faces) on the left and neg-
ative examples (non-faces) on the right used in the pro-
cess of the weak classifier training

2.2 The Strong Classifier

For each object window o, the strong classifier conducts
a procedure of weak classifier weighted voting where
each weight is called the cost of a decision ;(0) of the
corresponding weak classifier i.e. the error it causes
when applied to the training set (Figure 4).

In our version of the AdaBoost algorithm [6], (7]
it is assumed that the cost v, = [; of the negative
decision §(0) = —1 is k; times greater than the cost
vt = oy of the positive decision §(o) = 1.

A
S —

Figure 4: Diagram of the strong classifier

The fact that the weak classifiers within the strong
classifier are different follows from the main property
of the AdaBoost theory, namely the step of changing
the training examples weights after every single weak
classifier was found. The weights are uniformly initial-
ized i.e. w;1 = %,i =1,..., L and are modified due to
the formula:

w; te*’h(ﬂi)yi
L el
2 iy Wiges

The assumption about the relation v, = kiay with
ki 3 leads to the strong classifier that consists of
eight weak classifiers and has a false rejection rate fr =
0.0005, false acceptance rate fa = 0.48 on the training
set composed of P = 4000 faces and N = 8000 non-
faces. The respective contract regions overlayed on a
positive example are shown in Figure 5.

W il
i,t4+1 o
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Figure 5: Components of the strong classifier obtained
in course of AdaBoost training process applied to the
faces.

2.3 The Cascade

A stage of the cascade is built by the AdaBoost algo-
rithm i.e. the process of finding the strong classifier,
in which the termination condition is satisfied when
the false acceptance rate fa is below a threshold, while
the false rejection rate fr does not exceed a given level.
The specific values of these gnuantities have to be chosen
depending on the properties of the object that is to be
detected. For instance, the false acceptance threshold
for both face and eyes detection was set to 0.5 whereas
the false rejection level was set to 0.005 in case of face
detection and 0.01 for eyes detection.

The termination condition for the cascade consist-
ing of K stages is fulfilled if the total false acceptance
rate FFA = fry; x fro x -+ x frg drops below a thresh-
old which we assumed to be 0.000005 for face detection
and 0.001 for eyes detection. Value between 107% and
10~% in face detection case is widely reported in litera-
ture [3], but in case of the eyes it turned out that these
data differ too little between various examples from the
training set to reach such an extreme value of total false
acceptance. Hence the conclusion is that eyes detector
cannot be used to detect eyes in the whole input image
but only within the image of face found earlier with the
face detector.

In face localization case, the output AdaBoost cas-
:ade structure we trained consists of 17 stages and 972
weak classifiers, subsequent stages having respectively
8, 11, 18, 19, 26, 38, 48, 48, 62, 68, 65, 67, 91, 84, 100,
112, 107 weak classifiers. In eyes detection case output
structure consists of 8 stages and 596 weak classifiers,
subsequent stages having respectively 8, 16, 26, 45, 87,
99, 142, 173 weak classifiers. The much more rapid
growth of cascade stage size in eyes detector may be
noticed, it confirms that there is less discriminatory
information contained in eyes images. Also, about one
of every 100 object windows can pass through first 6
stages of the cascade, therefore high numbers of weak
classifiers in the further stages basically do not affect
speed of the detection process.

2.4 Face Localization Results

The localization process by the AdaBoost cascade al-
gorithm is simply a scanning the input high-resolution
image, anchoring the object window in every single
pixel of the image and classifying it to one of two classes
i.e. object or non-object, using the AdaBoost cascade
structure. The cascade is completely described with
the parameter values of all its strong and weak compo-
nents thus forming the object, e.g. face, eyes detector.

In spite of a very low level of false acceptance rate,
the detector has to be prepared for the situations where
false alarms occur. Moreover, in the case of correct de-
tection we can expect for sure the more that one alarm
because more than one bounding box surrounds the ob-

ject, e.g. aface or an eye pair. The way of tackling such

a problem is based on assigning weights being level of
alarms to the objects that pass sufficient number of the
cascade stages. The higher stage is achieved the greater
weights is assigned. An analysis of the 323 neighbour-
hood of every pixel in so-formed alarm image reveals
it the given pixel is an anchor point of an actual face
area. It is always the case when the average alarm level
in the neighbourhood exceeds a specific threshold.

The threshold used to exclude some alarm points
during the face detection is selected heuristically, bas-
ing on the fact how small faces the designed detector is
to deal with. Actually, the faces in smaller scales have
smaller number of alarms than larger faces. Therefore,
lowering the threshold for small scale can help to de-
tect small faces but, on the other hand can include also
the false rectangles into the set of results. Example of
such a situation is presented in Figure 6.

Figure 6: Detection results in presence of smaller (up-
per row) and greater (bottom row) thresholds.

3 FACIAL FEATURE EXTRACTION

The extracted facial features serve as landmarks, so
as to obtain the specific facial information. Too
many features would increase computational complex-
ity, whereas too few would produce incomplete facial
information. Targeting variant facial features, the ex-
isting facial feature extraction approaches can be cat-
egorized into brightness-based and edge-based algo-
rithms. Bright-ness-based algorithms, typically tem-
plate matching [8] and region-growing search [9] etc,
employ the knowledge of the geometrical topology and
the brightness characteristics of facial features, such as
the eyebrows, eyes and mouth, to find the approximate
position of facial features. Edge-based algorithms, typ-
ically Hough transform [10], active contour model or
Snakes [11], and deformable template matching [12],
target contours of the mouth, eyes and chin, usually
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based on gradient images. Before these edge-based
algorithms are applied, the position of facial features
must be found first. Hence, brightness-based and edge-
based algorithms are viewed as mutually complemen-
tary in facial feature extraction. This section elabo-
rates an automatic algorithm to extract eight points
of the eyebrows and contours of the eyes, irises, mouth
lips and chin. These features are high-lighted in Figure

e

Figure 7: Illustration of extracted facial features.

3.1 Extraction of Eyes and Eyebrows

The algorithm introduced in [13] is used to locate the
eyes and eyebrows according to their brightness char-
acteristic and geometrical topology.

Figure 8: Pizels with mazimum gradient.

It is found that the conventional deformable tem-
plate matching algorithms used in eye contour extrac-
tion are limited to those images with low resolution.
Thus, instead of using deformable template matching
algorithm, we proposed a solution that only employs
the idea that the eye contours can be described as a
combination of several parabolas. After four feature
points, i.e. the left and right corners, and the upper
and lower middle points of the eyelids, are in turn ex-
tracted from the located eye using the method pub-
lished in [13], the eye contours can be extracted with
four fixed parabola templates. In addition, the irises
can be extracted using the Hough trans-form when the
eyes are open [10].

Due to relatively low intensity of the eyebrows,
an automatic eyebrow segmentation approach is pre-
sented as follows. Let I;; denote the intensity of a
certain pixel within the narrowed search area, where
the subscripts ¢ and j indicate the horizontal and ver-
tical coordinates of the image plane, respectively. The
downward intensity gradient at I; ; can be formulised
as g;; = I; j—I; j+1. Then we seek the maximum gradi-
ent value G; on the current column because the place
where the maximum gradient arises must be on the

border of the eyebrows. Figure 8 shows two vertically
adjacent pixels on the eyebrow border, where the ellipse
indicates the eyebrow. Once the boundary position of
the current column is discovered, we can determine the
threshold value of the column by averaging the inten-
sities of the two adjacent pixels as:

L=l + L)

b2 | =

To normalize the threshold, the mean of the determined
thresholds on all the columns of the eyebrows is finally
calculated:

where n denotes the number of calculated columns,
normally set to the width of the corresponding eye-
brow, and T is the finalized threshold value used to
segiment the eyebrows.

3.2 Mouth Extraction

Compared with other methods, the deformable tem-
plate matching algorithm is one of the most effective
ways to locate mouth lip contours due to its the conti-
nuity and flexibility, nevertheless it still has some chal-
lenges, such as template positioning, criterion of mouth
being open or closed, and selection of strength con-
straints. To solve these problems, we address an au-
tomatic mouth extraction algorithm with Staged De-
formable Templates (SDTs).

In this algorithm, mouth corners are used as two
reference points for placing the mouth templates. This
raises a problem of how to segment the mouth, and lo-
cate the corners. For mouth segmentation, the search
area can be narrowed into the lower half of the face.
Besides, the mouth lip region is rather sensitive to the
chrominance component, Cr, and always has local peak
value in Cr because mouth lips appear red (top left im-
age of Figure 9). Thus, based on the above knowledge,
a heuristic thresholding scheme [14] is adopted:

1. Select an initial estimate for T

2. Segment the image using T. This will produce two
groups of pixels: G consisting of all pixels with
gray level values > T and Gy consisting of pixels
with values < T

Compute the average Cr values p; and po for the
pixels in regions G; and G

Compute a new threshold value: 7' = (1 + pg)/2

. Repeat steps 2 through 4 until the difference in T
in successive iterations is smaller than a predefined
parameter Tp.

Initially Ty is set to zero, and the estimate for T
is chosen as a median of the search area, since the de-
sired mouth is small compared to the background of the
search area. To remove noise, a morphological opening
process is applied to the binarized image, followed by a

104




labelling process. The largest candidate is regarded as
the mouth, middle points of the leftmost and rightmost
of which are considered as the mouth corners. The bot-
tom left image of Figure 9 shows the extracted mouth
corners with a carphone video frame.

Figure 9: Mouth extraction.

@ ©
Figure 10: Staged rmouth extraction.

Discrimination of whether the mouth is open or
closed generally affects the selection of the mouth tem-
plates. The possible appearance of teeth usually in-
terferes with discrimination, so our proposed criterion
is based on the chrominance component, Cr, because
of its sensitivity to the red-appearing mouth lips, and
its insensitivity to the teeth. On the Cr image, if the
mouth is open, there is a valley inside (top left image
of Figure 9). But when the mouth is closed, the valley
disappears. Therefore, according to this characteristic
on the Cr image, a pixel P(z,y) with minimum inten-
sity value on the perpendicular bisector of the mouth
corners is explored with z,, < x < =z, where z,,
and xps are extrema of vertical coordinates of the seg-
mented mouth. Our criterion is to compare P(x,y)
with a predefined threshold T' If P(z,y) is less than T,
the mouth is considered open; otherwise, the mouth is
closed.

To suppress the occurrence of mismatch especially
if one of the mouth contours fails to be extracted, the
procedure of mouth contour extraction is broken down
to three stages, as shown in Figure 10 (a), (b) and
(c¢) in a mouth-open state: (a) Middle point extrac-
tion of inner lip contours: To avoid the effect of teeth
when the mouth is open, a method of calculating only
gradients of the pixels on the perpendicular bisector of
mouth corners is developed, which is unlike the existing
methods of taking edge in-formation along the inner lip

[ —2L >

Figure 11: Parabola template.

contours into account. As stated before for Cr, since a
valley emerges if the mouth is open, the calculation will
be based on Cr. However, as the mouth is closed, the
valley disappears in Cr, whereas another valley rises
between the lips in luminance. So the calculation will
be based on the luminance. From the top of the mouth
to the pixel before P(z,v), the gradients between the
current and the next pixels along the perpendicular bi-
sector of mouth corners are evaluated. The pixel with a
maximum gradient value is treated as the middle point
of the inner upper lip contour. Similarly, the middle
point of the inner lower lip contour can be extracted
along the opposite direction. (b) Inner lip contour ex-
traction: With the extracted middle points, each of the
inner lip contours can be extracted, and formulated in
terms of a parabola, as shown in Figure 11:

Y= Hoxl = (=)t

(1=
where H and 2L symbolize the high and width of
the parabola, respectively. (c) Outer lip contour ex-
traction: Only two elaborately selected strength con-
straints are required:

18 =i I

where E, and E, are the edge strength and the region
strength, respectively, and given as:

1

Byt

e(z,y)ds (1)
L

2L

1
E, = —mf C(z,y)dr (2)

Al
In equation (1), 2L is the length of arc; e(x, y) denotes
the edge intensity; s indicates the trajectory of facial
feature contours. In equation (2), A stands for the area
of the regions, C(z,y) indicates chrominance intensity;
r represents the scanned area.

To eliminate the impact of teeth, the edge im-
age is derived from the chrominance Cr by using
gradient-based edge detection with Sobel gradient op-
erators. For the same purpose, calculation of the re-
gion strength is also based on Cr. The outer lip contour
template deforms outwards so that the best-fit outer lip
contours are found by minimizing the strength equation
(B22))8

For the closed mouth, a mouth-closed template is
similarly defined in Figure 10 (d), with the fact that the
point P(z,y) is directly regarded as the unique, shared
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middle point of the overlapped inner lip contours. Sev-
eral results are shown in Figure 9, which involve some
typical expressions as well as the two cases of mouth
open and mouth closed (the bottom right image).

e |

Figure 12: Facial feature extraction results.

3.3 Chin Extraction

Since there is a narrow shadow appearing between the
face and the neck, the chin contour can be extracted
using deformable template matching, as shown in Fig-
ure 7. The technical detail of the deformable template
match-ing for chin extraction can be found in [15].

Figure 12 shows some facial feature extraction re-
sults.

4 3D face model reconstruction

In this section we show how to accurately reconstruct
the depth-map of a face from a set of images. In order
to do so, we started from the well-known graph cuts
approach [16, 17, 18, 19], and we adapted it and opti-
mized it to the problem of depth-map reconstruction.

In what follows we provide a brief description of
the energy minimization approach that the graph cuts
method is based on. After then we will show how to
formulate the problem of depth map reconstruction in
term of energy minimization.

4.1 Energy Minimization Approach

It is well known that the problems of depth map re-
construction and image restoration can be elegantly
approached in terms of energy minimization [17, 18],
with extremely appealing results. In the past few years
powerful energy minimization algorithms have been de-
veloped based on graph cuts [17, 20, 21]. These meth-
ods are fast enough to be of practical interest, but un-
like other methods such as simulated annealing, the
solutions based on graph cuts cannot be applied to ar-
bitrary functions. In this paper we will use some recent
results [18] on graph construction, in order to extend
the method to quite a general class of energy functions.

The energy minimization formalism exhibits sev-
eral advantages. It allows a detailed description of the
problem to be solved. Moreover, energy minimization
naturally enables the use of soft constraints, such as
spatial coherence and a global smoothness term. This
allows us to avoid ambiguities with spatially smooth
answers that preserves discontinuities.

4.2 Problem Formulation

Let us assume that n calibrated images of the same
scene are taken from different viewpoints (or at differ-
ent times). Let us choose a reference camera and let
P be the set of pixels of the corresponding image. A
pixel p € P corresponds to a ray in 3D-space. Consider
the first intersection of this ray with an object in the
scene. Qur goal is to find the depth of this point for
all the pixel of the preferred image. We thus want to
find a labelling f : P — £ where £ is a discrete set
of labels corresponding to increasing depths from the
preferred camera. Equivalently, we want to obtain the
depth map of the pixels in the preferred image.

A pair (p,l) where p € P, [ € L corresponds to
some point in 3D-space. We will refer to such points
as 3D-points.

We define our energy function as consisting of two
terms:

E(f) = Edam(f} o= Esmur)h‘l.(f)

In their work, Kolmogorov and Zabih [16] formu-
late the problem of scene reconstruction in a slightly
different fashion, which allowed them to obtain a depth
map for every image in the input set by an energy min-
imization approach. This leads to a computational ex-
pensive algorithm whose result is a unorganized clouds
of point representing the surface of the visible part of
the scene to reconstruct. Moveover, in order to achieve
an effective reconstruction from the input set, a fur-
ther energy term (called wvisibility term) must be ac-
counted for, in order to avoid mutual intersections of
re-projected rays coming from different cameras (see
[16] for more details). Whereas with our definition we
can treat a very large number of camera configurations
without these further limitations.

Notice also that in our approach it is no long nec-
essary to define the visibility term like in [16]. In fact,
assuming that the set of label corresponds to the in-
creasing depths from the preferred camera, there can-
not exists occluding pixels in the same image. As a con-
sequence, a visibility term is no longer necessary. The
other terms are also quite different. Our data term, for
example, is defined as follow:

Edatalf) = Y D(p)

pEP

where D(p) is a non-positive value which results
from the differences in intensity between correspond-
ing pixels. D(p) is computed for every pixel of the
preferred image (we indicate this image with the index
j) by this steps:
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1. from p, we get the corresponding 3D-point by
back-projecting it from the reference camera cen-
ter of projection with the selected depth and then
we project this 3D-point on each other calibrated
image obtaining a set of n— 1 corresponding pixels
{1, 02, iy @uli # 7)1

. on every non-reference image we compute the SSD
(Sum of Square Difference) using a square window
centered on ¢; and the one centered on p, obtaining
the set of values {d;, d» d; @il s

. finally, we have

n

Z di — K)

gl
s

D(p) = min(0, (3)

ol

where K is a positive constant that is large enough
to capture significant variations of the SSD func-
tion (a typical value is K = 30).

The smoothness term is quite similar to the one
used in [16] and its goal is to encourage neighboring
pixels in the preferred image to have similar depths.
The smoothness term is defined as follow:

Esmoalh(f) = Z V{,u.q} (f(P)s f(Q))

{p.atenN

(4)

This term involves the notion of neighborhood: we
assume that there is a neighborhood system on pixel

Nc{{pa} | paeP}

This can be the usual 4-neighborhood system: pix-
els p = (p:,py) and ¢ = (gz, gy) are neighbors if they
are in the same image and |p; — q| + [py — @] = 1.

In [16], the function Vi, 4 takes on the following

form:

where the Uy, o1 is the following non-decreasing
function:

if b, # I,

otherwise

Utp,a}
0

V{rw} (lp: L) (5)

3A
A

if Al(p,q) <5 :

Utp.a) = { otherEvise) (6)
In order to obtain a smooth reconstruction that
preserves discontinuities, we chose to follow a particu-
lar strategy in the use of the smoothness term. In fact,
it is well-known that graph cuts techniques often yields
flat and blocky results. This may not be important for
disparity maps, but it is crucial for shape reconstruc-
tion. In order to avoid this problem, we make a first
cycle of the reconstruction algorithm with a limited
set of labels, in order to rapidly reach a value of the
energy that is close to the local minimum that could
be reached at convergence with the original algorithm.

This corresponds to a good approximation of the po-
sition of the 3D-points, which can be improved with a
second cycle at twice the resolution, where we change
the function Vi, oy defined in (5) with this new func-
tion:

if |lp — lg| > z-threshold
otherwise

V{p.q}(lpelq) B { g{:ﬂ-f]}
(7)
In fact, this function relaxes the penalty mecha-
nism of the smoothness term, giving a 0 penalty not
only to the neighboring pixels that lie at the same
depth but also to the ones that stay sufficiently close to
each other. The idea is supported by the fact that after
the first cycle of the algorithm, only some of the pixels
are approximatively well positioned in 3D-space by the
consistency measure given by the data term, while the
other pixels’ locations are only decided by the smooth-
ness term. This term, in fact, forces them to lie at the
same level of the neighboring pixel, resulting in flat
blocks. Thus, relaxing the constraint imposed by the
first smoothness term, neighboring pixels have greater
chance to occupy adjacent depths correctly.

4.3 Graph cuts Algorithm

Thanks to our energy redefinition the results obtained
from the standard graph cuts algorithm (as defined in
[16]) are much more accurate. As shown in the next
paragraph, further depth map optimization guarantees
high fidelity in the reconstructed data.

4.4 Depth map optimization

Even though the graph cuts algorithm is able to re-
construct an accurate depth map, it works only with
a limited set of depths and, therefore, it introduces
a considerable quantization error in the positioning of
each one of the 3D points. in order to overcome this
problem, it is necessary to adopt an optimization step
which produces more regular depth maps. The output
of this process is a new depth map, where the disconti-
nuities are preserved while the other parts turn out to
be smoother.

In order to do so, we consider the depth map as a
functions of two variables defined on the preferred im-
age and we apply a series of 2D filters to it. In particu-
lar, we start with a median filter to eliminate possible
outliers and then we apply a dithering technique: some
white noise is added to the depth function and, then,
a low pass filter is used to reduce depth quantization
error and obtain a smoother map. In order to preserve
discontinuities, the 2D low-pass filter keeps the infor-
mation needed from the neighbors of a pixel only if the
depth distance is below a certain threshold. The size
of the filter windows and this threshold are empirically
chosen on the basis of the current reconstruction.
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4.5 Mesh triangulation

From the previous section we learnt how to compute a
depth map from a set of images of the interested ob-
Ject. We also said that every map can be seen as a 2D
function defined on the preferred image. Starting from
this point, we can easily implement a triangulation al-
gorithm that produce a mesh from a depth map on the
basis of the neighboring pixels. Consider four neigh-
boring points and the six possible connection shown in

figure 13:
{

Figure 13: Siz possible configurations for the creation
of triangles from four neighboring points.

when two neighboring pixels have depths differing
by more than some threshold, there is a step disconti-
nuity. The threshold is determined directly by the hu-
man operator, as the maximum depth difference which
has to be considered a surface discontinuity. If a dis-
continuity is present, a triangle should not be created.
Therefore, for four neighboring pixels, we only consider
3D-points that are not along discontinuities. If three of
them satisfy this condition, a triangle will be created
in one of the last four style in figure 13. If none of
the four are along a discontinuity, two triangles will be
created, and the common edge will be the one with the
shortest 3D distance, as shown in the first two styles
in figure 13.

Figure 14: The acquisition system. Three cameras

placed around a gate.

Repeating these steps for every mesh will lead to a
volumetric function whose zero level set locates the ob-
ject surface. The resulting object can be seen as a sort
of convex hull obtained by linking together the meshes
and taking only the part of the 3D space contained in
their intersection.

To get the real time savings from the filtering the
additional features should be:

e fast in extraction;

o fast in their usage for filtering condition comput-
ing;

e pre-computed in the database

If several filtering features are proposed then they
are used in a cascade manner.

Denote by f(z) the filtering feature computed as
a function [ for feature .

As a rule the additional feature f(z) is a scalar
feature. In the vector case the bounding of features is
performed in vector intervals instead of ordinary inter-
vals.

Let fmin(e, 1), fraz(c, k) denote the lower and the
upper bounds of filtering features f(x) for all original
features z which belong to the interval [c,c + h).

Let also fo(cquery)s f1(€query) denote the lower and
the upper bounds for f(z) for all x from intervals which
successfully passed filtering performed so far in the
searching process for elements located near to cquery.

Feature rejection condition for @ € R? has the
form:

() & [folcquery), f1(query)]s

Interval rejection condition for [e,c+ h):

U.min(c; h'): fmu.;z:(ca h}] n [jU ((:qu.(‘.ry): fl (Cquer'y)] = w
Remarks:

e The bounds fin(c,h) and fraee(c, k) are joined
to interval id dictionary when the identifier is in-
serted into the dictionary.

o The filtering feature f(x) is joined to the feature
vector © when z is inserted into the system.

e The updating technique for the acceptance inter-
val [fo, f1] depends strongly on the filtering func-
tion f and will be specified for each introduced

f.

4.6 Experimental Results

The proposed algorithm has been applied to a vari-
ety of test images (of faces) acquired with a calibrated
trinocular camera system. The acquisition system is
based on three synchronized cameras Powershot G3
from Canon as shown in figure 14. The acquired im-
ages are in 2272x1704 JPEG format and, after face
segmentation, the area that is actually useful for 3D
reconstruction uses about 1MPixel of the 4 that are
available.

In figure 15 we show the three segmented facial
images and the final 3D model. The reconstruction
time is about 3 seconds on a Pentium IV 3GHz. In
particular, using the described approach we can obtain
a very good depth estimation of difficult facial zones
were uniform skin color and highly non-lambertian re-
flectance generate ambiguity in depth estimation. The
parameters K of equation (3) and A of equation (6)
are determined heuristically from a set of facial im-
ages. Anyway, we observed that the estimated values
gives good values for every facial image analyzed. The
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Figure 15: A depth-map from a face: a) the acquired
images. b) three different views from ‘virtual observers’
of the depth-map

parameters can be varied to gain some insight about
the algorithm: for big values of A the smoothness dom-
inates the correlation, resulting in a map with many
flat blocks of pixels, whereas little values of X yields to
an irregular depth map with many wrong discontinu-
ities. In our experiment, we chose the values K = 30
and A =5.

5 3D eigenfaces method

Depth maps enable representation of faces as cloud
of N points together with associated color informa-
tion. Typically such spatial set contains more than 10°
points in 3D space (N > 10°) and it is too complex as
a 3D model for face recognition [22].

It appears that the collection of head clouds, ob-
tained for a large group of L persons (L > 50), and con-
sidered as a set of points in a high N dimensional space
can be approximated by a hyperplane (subspace) of rel-
atively low dimension M (typically M = 50). One of
possible linear algebraic bases spanning this hyperplane
is obtained by Principal Component Analysis (PCA -
cf. [23]) as eigenvectors of covariance matrix for the

given training set of points.
M=5 M =50
Figure 16: 2D views from reconstructed 3D model.

original M=1

In case of 2D facial images PCA eigenvectors
are called eigenfaces [24] and by the analogy for 3D
facial cloud of points, PCA eigenvectors are recog-
nized as 3D eigenfaces [25]. Having M 3D eigenfaces

, Fy and average face Iy, any 3D face /7 can be
approximated by a linear combination of 3D eigenfaces
where coeflicients a; are appropriate dot products (cf.
fig. 16):

M
FxFy+) aiFj, o (F-FR)F
i=1

3D eigenfaces are built by Singular Value Approx-
imation [26] (SVA) what allows to avoid building pro-
hibitively large covariance matrices. In the current ex-
periments each 3D eigenface consists of the depth and
the color maps which are next used to compute color
cloud of points.

6 CONCLUSIONS AND FUTURE

WORK

In the paper a concept of advanced 3D face recognition
framework was split into a few basic steps, namely face
localization, facial feature extraction, 3D face model
reconstruction from a few 2D images and 3D eigenface
method. All steps were completed and the results on
real facial examples were presented.

The main advantage of the proposed framework
is its fast processing time. The most time consuming
step that is the 3D face model building takes less than
3 seconds at Pentium 4 3GHz 1GB RAM for image size
about one milion pixels.

The future research basic need is gathering large
database of 3D face models to be able to check the 3D
eigenfaces method performance in recognition as well
as develop other recognition methods to fully utilize
the 3D facial information.
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