
Complete Object Modeling using a Volumetric

Approach for Mesh Fusion

Giovanni Dainese, Marco Marcon, Augusto Sarti, Stefano Tubaro

Dipartimento di Elettronica e Informazione - Politecnico di Milano
Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

dainese/marcon/sarti/tubaro@elet.polimi.it

1 ABSTRACT

In the past few years several systems for object
reconstruction based on the analysis of 2D images
have been proposed. In order for such systems to
be of practical use, the 3D data extraction process
is expected to be fast and reliable. In this paper
we propose a general approach for the reconstruc-
tion of complete objects based on a mesh fusion
algorithm. Every surface patch is obtained as a
depth map using an algorithm based on graph cuts
theory. Each depth map is then triangulated before
using it in a fusion algorithm based on a volumetric
function. The result of the process is a closed mesh
representing the object surface.

2 INTRODUCTION

Reconstructing an object’s tridimensional shape
for a set of cameras is a classic vision problem. In
the last few years, it has attracted a great deal of
interest, partly due to the number of application
both in vision and in graphics that require good
reconstructions. In order to get the complete mo-
del of an object, we must extract 3D informations
from a large set of cameras and this often leads to
a time-expensive process. In this paper, we show
how a divide and conquer approach can be used
to speed up the entire process guaranteeing a good
precision of the final model. In order to do this
task, we chose to create a complete model of the
interested object by linking together several sur-
face patches reconstructed rapidly by a graph-cuts
algorithm. The linking process is accomplished by
a mesh fusion algorithm based on a volume of fluid

approach, using a volumetric function.

3 DEPTH MAP RECONSTRUCTION

In this section we show how to reconstruct accu-
rately a portion of the surface of the object present
in the analyzed scene. This is the crucial step of the
reconstruction process. In fact we will link the sur-
face patches resulting from this step to obtain the
final complete object by the fusion algorithm de-
scribed in the next section. We have chosen to use
the known graph cuts approach [1, 2, 3, 6], adapting
it to the problem of depth map reconstruction.

In the next paragraph we propose a short de-
scription of the energy minimization approach; af-
ter that we will show how to formulate the problem
of depth map reconstruction in term of energy mi-
nimization.

3.1 Energy minimization approach

Our approach to depth map reconstruction is si-
milar to some recent work that give strong results
for stereo matching and image restoration. It is
well known that both problems can be elegantly
stated in term of energy minimization [2, 3]. In the
last few years powerful energy minimization algo-
rithms have been developed based on graph cuts
[2, 4, 5]. This methods are fast enough to be prac-
tical, but unlike simulated annealing, graph cuts
methods cannot be applied to an arbitrary func-
tion. In this paper we will use some recent results
[3] that give graph constructions for a quite general
class of energy functions.

The energy minimization formalism has several

advantages. It allows a clean specification of the
problem to be solved, as opposed to the algorithm
used to solve it. In addiction, energy minimization
naturally allows the use of soft constraints, such as
spatial coherence. In an energy minimization fra-
mework, it is possible to cause ambiguities to be re-
solved in a manner that leads to a spatially smooth
answer. Finally, energy minimization avoids being
trapped by early hard decision.

3.2 Problem formulation

Suppose we are given n calibrated images of the
same scene taken from different viewpoints (or at
different moments of time). Let us assume a ca-
mera as the preferred one and let P be the set of
pixels of the corresponding image. A pixel p ∈ P
corresponds to a ray in 3D-space. Consider the first
intersection of this ray with an object in the scene.
Our goal is to find the depth of this point for all
the pixel of the preferred image. So we want to find
a labelling f : P → L where L is a discrete set of
labels corresponding to increasing depths from the
preferred camera. Equivalently, we want to obtain
the depth map of the pixels in the preferred image.

A pair 〈p, l〉 where p ∈ P, l ∈ L corresponds
to some point in 3D-space. We will refer to such
points as 3D-points.

We define our energy function as consisting of
two terms:

E(f) = Edata(f) + Esmooth(f)

In their work, Kolmogorov and Zabih [1] for-
mulate the problem of scene reconstruction in a
slightly different manner that permits to obtain
a depth map for every image in the input set by
an energy minimization approach. This leads to a
computational expensive algorithm whose result is
an unorganized cloud of points representing the sur-
face of the visible part of the scene to reconstruct.
Moveover, to have an effective reconstruction from
the input set, cameras must respect some particu-
lar restrictive configuration, whereas with our defi-
nition we can treat a very large number of camera
configurations without distinctions.

It can be also noted that in our approach the visi-
bility term defined in [1] is no longer necessary . In
fact, assuming that the set of label corresponds to
the increasing depths from the preferred camera,

there cannot exists occluding pixels in the same
image and consequently the visibility term become
unnecessary. Moreover, also the other terms are
quite different. Our data term is defined as follow:

Edata(f) =
∑

p∈P
D(p)

where D(p) is a non-positive value which results
from the differences in intensity between correspon-
ding pixels. D(p) is computed for every pixel of the
preferred image (we indicate this image with the in-
dex j) by this steps:

1. from p, we get the corresponding 3D-point by
retroprojecting it from the preferred camera
center of projection with the selected depth
and then we project this 3D-point on each
other calibrated image obtaining a set of n− 1
corresponding pixels {q1, q2 . . . qi . . . qn|i 6= j};

2. on every non-preferred image we compute
the SSD (Sum of Square Difference) using a
square window centered on qi and the one
centered on p, obtaining the set of values
{d1, d2 . . . di . . . dn|i 6= j};

3. finally,

D(p) = min(0,

n∑

i = 1
i 6= j

di −K) (1)

where K is a positive constant large enough to
capture significant variation of the SSD func-
tion (a typical value is K = 30).

The smoothness term is quite similar to the one
used in [1] and its goal is to make neighboring pixels
in the preferred image tend to have similar depths.
The smoothness term is defined as follow:

Esmooth(f) =
∑

{p,q}∈N
V{p,q}(f(p), f(q)) (2)

This term involves a notion of neighborhood: we
assume that there is a neighborhood system on pi-
xel

N ⊂ {{p, q} | p, q ∈ P}

This can be the usual 4-neighborhood system:
pixels p = (px, py) and q = (qx, qy) are neighbors if
they are in the same image and |px−qx|+|py−qy| =
1.

In [1], the function V{p,q} assumes the following
form:

V{p,q}(lp, lq) =
{

U{p,q} if lp 6= lq
0 otherwise (3)

where the U{p,q} is the following non-decreasing
function:

U{p,q} =
{

3λ if ∆I(p, q) < 5
λ otherwise (4)

To make the reconstruction smooth while preser-
ving discontinuities, we choose to follow a particu-
lar strategy in the use of the smoothness term. In
fact, it is known that graph cuts techniques often
yields flat and blocky results. This may not be im-
portant for disparity maps, but is crucial for shape
reconstruction. To avoid this problem, we make a
first cycle of the reconstruction algorithm with a
limited set of labels, in order to reach rapidly a va-
lue of the energy near to the local minimum that
could be got at convergence with the original algo-
rithm. This corresponds to a good approximation
of the position of the 3D-points, that can be impro-
ved with a second cycle at double resolution where
we change the function V{p,q} defined in (3) with
this new function:

V̂{p,q}(lp, lq) =
{

U{p,q} if |lp − lq| > z threshold
0 otherwise

(5)
In fact, this function relaxes the penalty mecha-

nism of the smoothness term, giving a 0 penalty
not only to the neighboring pixels that lie at the
same depth but also to the ones that stay sufficien-
tly near one another. The idea is supported by the
fact that after the first cycle of the algorithm, only
some of the pixels are approximatively well positio-
ned in 3D-space by the consistency measure given
by the data term, while the other are positioned
only by the effect of the smoothness term which
forces them to lie on the same level of neighboring
pixel, resulting in flat blocks. Thus, relaxing the
constraint imposed by the first smoothness term,
neighboring pixels have greater chance to occupy
adjacent depths correctly.

3.3 Graph construction

We now show how to efficiently minimize E
among all configurations using graph cuts. The
output of our method will be a local minimum in a
strong sense. In particular, consider an input con-
figuration f and a disparity α. Another configura-
tion f ′ is defined to be within a single α−expansion
of f when for all pixels p ∈ P either f ′(p) = f(p)
or f ′(p) = α. This notion of an expansion was pro-
posed by [4], and forms the basis for several very
effective stereo algorithms [4, 9, 10, 11]. Our algo-
rithm is very straightforward; we simply select in
a fixed order a disparity α, and we find the unique
configuration within a single α − expansion move
(our local improvement step). If this decreases the
energy, then we go there; if there is no α that de-
creases the energy, we are done. Except for the
problem formulation and the choice of energy func-
tion, this algorithm is identical to the methods of
[4, 11]. Differently from the work of [1] we have
no restrictions on the initial configuration of the
depths. In fact, the absence of a visibility term
avoid the problem of the occluding pixels, cited in
[1]. The critical step in our method is to efficien-
tly compute the α − expansion with the smallest
energy. In this section, we show how to use graph
cuts to solve this problem.

3.3.1 Graph cuts

Let G = V, E be a weighted graph with two di-
stinguished terminal vertices {s, t} called the source
and sink. A cut C = Vs,Vt is a partition of the
vertices into two sets such that s ∈ Vs and t ∈ Vt.
(Note that a cut can also be equivalently defined as
the set of edges between the two sets.) The cost of
the cut, denoted |C|, equals the sum of the weights
of the edges between a vertex in Vs and a vertex
in Vt. The minimum cut problem is to find the
cut with the smallest cost. This problem can be
solved very efficiently by computing the maximum
flow between the terminals, according to a theorem
due to Ford and Fulkerson [7]. There are a large
number of fast algorithms for this problem (see [8],
for example), for example). The worst case comple-
xity is low-order polynomial; however, in practice
the running time is nearly linear for graphs with
many short paths between the source and the sink,
such as the one we will construct. We will use a

result from [3] which says that for energy functions
of binary variables of the form

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑

i<j

Ei,j(xi, xj) (6)

it is possible to construct a graph for minimizing
it if and only if each term Ei,j satisfies the following
condition:

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0) (7)

If these conditions are satisfied then the graph
G is constructed as follows. We add a node vii for
each variable xi. For each term Ei,j(xi, xj) we add
edges which are given in the appendix. Every cut
on such a graph corresponds to some configuration
x = (x1, . . . , xn), and vice versa: if vi ∈ Vs then
xi = 0, otherwise xi = 1. Edges on a graph were
added in such a way that the cost of any cut is equal
to the energy of the corresponding configuration
plus a constant. Thus, the minimum cut on G yields
the configuration that minimizes the energy.

3.3.2 α− expansion

In this section we will show how to convert our
energy function into the form of equation (6). Note
that it is not necessary to use only terms Ei,j for
which i < j since we can swap the variables if ne-
cessary without affecting condition (7). Although
pixels can have multiple labels and in general can-
not be represented by binary variables, we can do
it for the α − expansion operation. Indeed, any
configuration f ′ within a single α − expansion of
the initial configuration f can be encoded by a bi-
nary vector x = {xp|p ∈ P} where f ′(p) = f(p) if
xp = 0, and f ′(p) = α if xp = 1. Let us denote
a configuration defined by a vector x as fx. Thus,
we have the energy of binary variables:

Ẽ(x) = Ẽdata(x) + Ẽsmoothness(x)

where

Ẽdata(x) = Edata(fx),
Ẽsmoothness(x) = Esmoothness(fx).

Let’s consider each termseparately, and show
that each satisfies condition (7).

1. Data term.

Êdata(x) =
∑

p∈P
D(p)

Each term in the sum is a function of one bi-
nary variable, and so it automatically satisfies
the condition 7. In fact, we have:

Ei,j(0, 0) + Ei,j(1, 1) = Ei,j(0, 1) + Ei,j(1, 0)

because the four terms are indipendent from
the second variable.

2. Smoothness term

Êsmoothness(x) =
∑

p,q∈N
Vp,q(fx(p), fx(q))

Let’s consider a single term Ep,q(xp, xq) =
Vp,q(fx(p), fx(q)). We assumed that Vp,q is a
metric; thus, we have Vp,q(α, α) = 0 and then

Vp,q(f(p), f(q)) ≤ Vp,q(f(p), α) + Vp,q(α, f(q))

or, equivalently

Ep,q(0, 0) ≤ Ep,q(0, 1) + Ep,q(1, 0)

Therefore, condition 7 holds.

3.4 Depth map optimization

Even though the graph cuts algorithm is able to
reconstruct an accurate depth map, it works only
with a limited set of depths and, thus, it introduce
a considerable quantization error in the position of
each 3D-point. To overcome this problem, it is ne-
cessary an optimization step which yields the depth
map more regular. The output of this process is a
new depth map, where the discontinuities are pre-
served while the other parts become smoothed.

To do this work, we consider the depth map as
a function of two variables defined on the preferred
image and we apply a sequence of bidimensional
filters on it. In particular, we start with a me-
dian filter to eliminate possible outliers and then
we apply a dithering technique: some white noise
is added to the depth function and, then, a low pass
filter is used to yields the depth map smooth. To
preserve discontinuities, the bidimensional low pass

filter keeps the information needed from the neigh-
bors of a pixel only if the depth distance is below
a certain threshold. The size of the filters windows
and this threshold are empirically chosen on the ba-
sis of the current reconstruction. For instance, the
median filter must be small to avoid the appearance
of flat zones in the depth map (a typical window is
a square of 7x7 or 9x9 pixels), while the low pass
filter cannot be greater than 3x3 or 5x5, otherwise
the reconstructed map become too smooth, losing
details. The distance threshold can be measured
as a discrete number of depth levels. Typically the
number of the limited set of labels must be large
enough to capture the details of the object we are
reconstructing. In this point of view, two points
are along a shape discontinuity if they lay on two
depths which differs one another of about 8-12 le-
vels. So we usually choose the threshold as 10 depth
levels.

4 MESH FUSION BY A VOLUMETRIC
APPROACH

In this section we describe a volumetric approach
to the problem of mesh fusion. From the previous
section, we have seen how to compute depth maps
from a set of input image of a particular scene.
In the first paragraph we show how to compute
a triangulation of these depth maps, in order to
achieve a their topological representation. The re-
sult of this process is a set of overlapping meshes
that approximate the surface of the object in the
scene. In the next paragraph, we show how a fu-
sion algorithm can be used to melt together the
various meshes to obtain a final and closed mesh
that describe the object entirely.

4.1 Mesh triangulation

From the previous section we learnt how to com-
pute a depth map from a set of images of the inte-
rested object. We also said that every map can be
seen as a bidimensional function defined on the pre-
ferred image. Starting from this point, we can ea-
sily implement a triangulation algorithm that pro-
duce a mesh from a depth map on the basis of
the neighboring pixels. Consider four neighboring
points and the six possible connection shown in fi-
gure 1:

Figure 1: Six possible configurations for the creation of
triangles from four neighboring points.

when two neighboring pixels have depths diffe-
ring by more than some threshold, there is a step
discontinuity. The threshold can be directly de-
termined, as the maximum depth difference which
has to be considered a surface discontinuity. If a
discontinuity is present, a triangle should not be
created. Therefore, for four neighboring pixels, we
only consider 3D-points that are not along discon-
tinuities. If three of them satisfy this condition, a
triangle will be created in one of the last four style
in figure 1. If none of the four points are along a
discontinuity, two triangles will be created, and the
common edge will be the one with the shortest 3D
distance, as shown in the first two styles in figure
1.

4.2 A volumetric approach to mesh
fusion

Once we have triangulate the depths maps, we
are ready to melt them together. We have imple-
mented a method following the subsequent criteria:

• get good results rapidly;

• reproduce accurately the partial meshes obtai-
ned from the depth maps in the final mesh,
removing the uncertainty due to possible over-
lappings;

• produce a closed model made by a unique
mesh, overcoming the possible lack of infor-
mation in the object surface.

We have chosen a volumetric representation of
the scene that use a voxelset made of cubic vo-
xels, with an approach similar to the already known
volume-of-fluid technique. Each voxel can assume
a value in the [−1,+1] interval. The entire voxelset
can be seen as a volumetric function which repre-
sents the surface of the object as the zero levelset.
Negative values of the function indicate the space
inside the object while positive values stay for ex-
ternal space. Near the surface, each voxel assumes

an intermediate value on the basis of its distance
from the closer mesh. The algorithm starts initia-
lizing every voxel to the −1 value. By this way the
volumetric function represents a solid block where
subsequent steps will carve the surface of the ob-
ject. At this point, we select a mesh and assign a
value to each voxel of the voxelset with the steps
explained in figure 2 and following this criterion: a
voxel value can only be changed with a grea-
ter one.

Figure 2: Modelling of the volumetric function from a
mesh.

Each voxel falls in one of these four categories on
the basis of its position and of the distance between
its center and the current mesh:

(1) External voxels: they are situated between the
mesh and the current camera and their di-
stance is greater then the voxel semi-diagonal.

(2) External narrowband voxels: they are situated
between the mesh and the current camera and
their distance is smaller then the voxel semi-
diagonal.

(3) Internal narrowband voxels: they are situated
after the mesh starting from the current ca-
mera and their distance is smaller then the vo-
xel semi-diagonal.

(4) Internal voxels: they are situated after the
mesh starting from the current camera and
their distance is greater then the voxel semi-
diagonal.

Repeating this steps for every mesh will lead to a
volumetric function whose zero levelset locates the
object surface. The resulting object can be seen as
a sort of convex hull obtained by linking together
the meshes and taking only the part of the 3D space
contained in their intersection.

5 EXPERIMENTAL RESULTS

The proposed algorithm has been applied to a
set of images of a synthetic teapot and then to
a set of images of a real object, a skull, acquired
with a trinocular calibrated camera system. The
teapot has been modeled by a 3D software and se-
veral snapshots have been rendered from it. The
skull has been placed on a turntable and a sequence
of snapshots has been taken for every position of
the turntable. For both objects, some images have
been selected in triplets. From each triplet a depth
map is reconstructed. Figure 3(a) shows a triplet
of images of the teapot, while figure 3(b) shows
the corresponding reconstructed surface patch; the
complete object reconstructed by the volumetric al-
gorithm is visualized in figure 3(c). Analogously,
figure 4(a) shows a triplet of images of the skull,
while figure 4(b) shows the corresponding surface
patch; the complete model of the skull is shown in
figure 4(c). Both the final teapot and skull model
have been obtained by melting together eight sur-
face patches taken from different position.

The parameters K of equation (1) and λ of equa-
tion (4) are determined heuristically: optimal va-
lues depend on the images we are processing. The
parameters can be varied to gain some insight
about the algorithm: for big values of λ the smooth-
ness dominates the correlation, resulting in a map
with many flat blocks of pixels, whereas little values
of λ yields to an irregular depth map with many
wrong discontinuities. In our experiment, we chose
the values K = 30 and λ = 5.

5.1 Conclusions

3D reconstruction from a set of images is a criti-
cal process. In order to perform this task we pre-
sented a reconstruction algorithm based on graph
cuts theory. We have defined an energy function
whose minimum represents the solution to our pro-
blem and we implemented a technique to raffinate
the obtained depth maps.

A virtue of this approach is the algorithm speed.
In fact, we chose to build up a complete model of
an object linking together several depth maps, re-
ducing the computational effort either in the time
needed and in the memory space required for re-
construct each of them. A volumetric approach has
been used to do this task.

A APPENDIX: EDGES FOR TERMS Ei

and Ei,j

In this section we show how to add edges for the
terms Ei and Ei,j in the equation (6) assuming that
condition 7 holds. This is a special case of a more
general construction given in [3].

1. terms in the form Ei:

• if E(0) > E(1) then we add an edge (s, vi)
with the weight E(0)−E(1), otherwise we
add an edge (vi, t) with the weight E(1)−
E(0);

2. terms in the form Ei,j:

• if E(1, 0) > E(0, 0) then we add an edge
(s, vi) with the weight E(1, 0) − E(0, 0),
otherwise we add an edge (vi, t) with the
weight E(0, 0)− E(1, 0);

• if E(1, 0) > E(1, 1) then we add an edge
(vj , t) with the weight E(1, 0) − E(1, 1),
otherwise we add an edge (s, vj) with the
weight E(1, 1)− E(1, 0);

• the last edge that we add is (vi, vj) with
the weight E(0, 1) + E(1, 0) − E(0, 0) −
E(1, 1).

We have omitted indices i in Ei and i, j in Ei,j for
simplicity of notation. Of course it is not necessary
to add edges with zero weights. Also, when several
edges are added from one node to another, it is
possible to replace them with one edge with the
weight equal to the sum of weights of individual
edges.

References

[1] V. Kolmogorov and R. Zabih. ”Multi-camera
Scene Reconstruction via Graph Cuts”. In Eu-
ropean Conference on Computer Vision, 2002.

[2] V. Kolmogorov and R. Zabih. ”Computing Vi-
sual Corrispondence with Occlusion via Graph
Cuts”. In International Conference on Com-
puter Vision, 2001.

[3] V. Kolmogorov and R. Zabih. ”What energy
functions can be minimized via graph cuts?”
In European Conference on Computer Vision,
2002.

[4] Y. Boykov, O. Veksler and R. Zabih. ”Fast
Approximate Energy Minimization via Graph
Cuts”. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 2001.

[5] Y. Boykov, O. Veksler and R. Zabih. ”Mar-
kov Random Fields with efficient approxima-
tions”. IEEE Conference on Computer Vision
and Pattern Recognition, 1998.

[6] D. Snow, P. Viola and R. Zabih. ”Exact Voxel
Occupancy with Graph Cuts”. In Proc. Com-
puter Vision and Pattern Recognition Conf.,
2000.

[7] L. Ford and D. Fulkerson. ”Flows in Net-
works”. Princeton University Press, 1962.

[8] F. Maffioli. ”Elementi di programmazione ma-
tematica”. Casa Editrice Ambrosiana, 2000.

[9] S.B. Kang, R. Szeliski, and J. Chai. Handling
occlusions in dense multi-view stereo. In IEEE
Conference on Computer Vision and Pattern
Recognition, 2001. Expanded version available
as MSR-TR-2001-80.

[10] S. Birchfield and C. Tomasi. Multiway cut for
stereo and motion with slanted surfaces. In In-
ternational Conference on Computer Vision,
pages 489-495, 1999.

[11] V. Kolmogorov and R. Zabih. Visual corre-
spondence with occlusions using graph cuts.
In International Conference on Computer Vi-
sion, pages 508-515, 2001.

Figure 3: (a) teapot image triplet. (b) corresponding surface patch (c) complete model of the teapot

Figure 4: (a) skull image triplet. (b) corresponding surface patch (c) complete model of the skull

	Index
	Conference Info
	Welcome Message
	Venue
	Sponsors
	Committees

	Sessions
	Wednesday, 13 April, 2005
	WedAmOR1-Special Session on Video Surveillance I
	WedAmOR2-Special Session on Semantic Multimodal Analysi ...
	WedAmOR3-Special Session on Video Surveillance II
	WedAmOR4-Special Session on Semantic Multimodal Analysi ...
	WedPmOR1-Special Session on Semantic Multimedia Analysi ...
	WedPmOR2-Face Detection and Recognition I
	WedPmOR3-Special Session on Semantic Multimedia Analysi ...
	WedPmPO1-Posters I

	Thursday, 14 April, 2005
	ThuAmOR1-Video Coding and Transmission
	ThuAmOR2-Audio-Visual Processing
	ThuAmOR3-Special Session on Mixed and Augmented Reality
	ThuAmOR4-Special Session on Real-Time Object Tracking: ...
	ThuPmOR1-Special Session on Universal Multimedia Access ...
	ThuPmOR2-Special Session on Media Security
	ThuPmPO1-Posters II
	ThuPmOR3-Face Detection and Recognition II

	Friday, 15 April, 2005
	FriAmOR1-Search and Retrieval
	FriAmOR2-Analysis and Classification I
	FriAmOR3-Special Session on Personalised Knowledge Syst ...
	FriAmOR4-Watermarking
	FriPmOR1-Special Session on 3D Reconstruction and Rende ...
	FriPmOR2-Analysis and Classification II
	FriPmOR3-Special Session on 3D Reconstruction and Rende ...
	FriPmPO1-Posters III

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	Ó
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Multimedia content analysis and understanding
	Content generation and manipulation
	Content-based browsing, indexing and retrieval of image ...
	2D/3D feature extraction
	Advanced descriptors and similarity metrics for audio a ...
	Relevance feedback and learning systems
	Supervised and unsupervised segmentation of objects in ...
	Identification and tracking of regions in scenes
	Voice/audio assisted video segmentation
	Analysis for coding efficiency and increased error resi ...
	Analysis and understanding tools for content adaptation
	Multimedia content adaptation tools, transcodingand tra ...
	Content summarization and personalization strategies
	Data hiding and copyright protection of multimedia cont ...
	Semantic mapping and ontologies
	Multimedia analysis for advanced applications
	Multimedia analysis for surveillance, broadcasting, mob ...
	Knowledge-Assisted Multimedia Analysis
	Semantic Web and Multimedia

	Search
	Help
	Browsing The Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations And Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Stefano Tubaro
	Augusto Sarti
	Marco Marcon
	Giovanni Dainese

