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ABSTRACT

In the past few years, a number of practical video coding schemes
following distributed source coding principles have emerged. One
of the main goals of distributed video coding (DVC) is to enable
a flexible distribution of the computational complexity between the
encoder and the decoder, while approaching the coding efficiency
of conventional closed-loop motion-compensated predictive codecs.
In this paper we perform a rate-distortion analysis of a well-known
Wyner-Ziv architecture, while focusing our attention on the impact
of the motion modeling that is used for generating the side informa-
tion at the decoder. Our analysis is structured according to a Kalman
filtering problem and it allows us to compare three different scenar-
ios: motion estimation at the encoder; motion interpolation at the
decoder; and motion extrapolation at the decoder.

Index Terms- Video coding, motion analysis, Kalman filtering

1. INTRODUCTION

Distributed Video Coding (DVC) is a new video coding paradigm
based on the principles of distributed source coding [1, 2]. DVC
enables a flexible distribution of the computational complexity be-
tween the encoder and the decoder, together with an increased ro-
bustness against channel losses. In this paper we consider the Wyner-
Ziv codec that was first presented in [2] and further developed in [3],
with the goal of evaluating the rate-distortion performance when dif-
ferent motion models are used.

The work presented in this paper is partially inspired by [4]. The
main differences lie in the fact that our analysis is based on a Kalman
filtering approach. This choice allows us to decouple the noise term
related to the natural evolution of scene motion, from the observa-
tion noise, which is introduced by motion estimation inaccuracy. In
addition, we explicitly model the case that uses motion interpolation,
and this is a widely adopted choice in the literature.

2. PDWZ VIDEO CODEC ARCHITECTURE

The pixel domain Wyner-Ziv (PDWZ) video codec we refer to in
this paper is based on the work in [2]. This coding architecture of-
fers a pixel domain intra-frame encoder and inter-frame decoder with
very low computational encoder complexity. The proposed encoding
scheme is by far (several orders of magnitude) less complex then tra-
ditional video coding that performs motion estimation at the encoder.
Figure 1 illustrates the global architecture of the PDWZ codec. Pre-
viously reconstructed frames are used at the decoder to generate the
side information. In the literature we distinguish two cases: motion
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Fig. 1. Block diagram of the pixel domain Wyner-Ziv codec.

interpolation, when the previous (Xt-1) and the next (Xt+±) frame
are used to synthesize the side information for Xt; motion extrap-
olation, when the the previous two frames (Xt-1, Xt-2) are used
instead. More complex algorithms can be used, which combine both
motion interpolation and extrapolation, although our analysis will
focus on these two cases only. Each pixel in the Wyner-Ziv frame is
uniformly quantized. Bitplane extraction is performed from the en-

tire image and then each bitplane is fed to a turbo encoder to generate
a sequence of parity bits. At the decoder, the generated side informa-
tion will be used by the turbo decoder and reconstruction modules.
The decoder operates in a bitplane-by-bitplane basis and begins by
decoding the most significant bitplane and it only proceeds to the
next bitplane after each bitplane is successfully turbo-decoded (i.e.
when most of the errors are corrected).

3. PROBLEM STATEMENT

Today's video coding architectures conforming to the Wyner-Ziv
paradigm are unable to achieve the coding efficiency of conventional
motion-compensated predictive codecs. The existing gap can be at-
tributed to different reasons:

1. Lack of side information at the encoder: Let X and Y be
two correlated random sequences. The problem here is to
decode X to its quantized reconstruction X, given a con-

straint on the distortion measure E[d(X, X)], when the side
information Y is available only at the decoder. Let us de-
note by Rxly(D) the rate-distortion function for the case

when Y is also available at the encoder, and by RXwjz (D) the
case when only the decoder has access to Y. The Wyner-Ziv
theorem states that, in general, Rx I y (D) > RX y (D) but

RXwIz (D) = Rx I (D) for Gaussian memoryless sources

and MSE as distortion measure. Therefore, a coding effi-
ciency loss AR1 = Rwz (D) -RXIy(D) is observed in
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applications when the hypothesis of the Wyner-Ziv theorem
are not satisfied.

2. Entropy coding losses: DVC coding schemes use channel
coding tools to perform source coding. Since the practical
channel codes used in the context of DVC (Turbo, LDPC,
etc.) only approach the Shannon's bound, a coding efficiency
loss AR2 stems from this fact.

3. Motion model inaccuracy: While motion-compensated pre-
dictive codecs do their best in order to accurately model the
motion at the encoder side, Wyner-Ziv video coders perform
the same operation at the decoder. Therefore, the side infor-
mation Y available at the encoder side, i.e. the best motion
compensated prediction of the current frame, is not available
at the decoder, where a worse version of Y, say Y, can be
generated by motion interpolation and/or extrapolation. This
results in a coding efficiency loss AR3. This paper will focus
on the estimation of this term.

4. ANALYSIS OF RATE-DISTORTION PERFORMANCE

Following the same steps as in [4], let X(t) denote the current frame
and X(k), k C D the previously-decoded frames in the frame buffer
D. Let Yi (t) be the side information generated by the side informa-
tion generator gi

Yi(t) = gi(X(k), k C D), i = 1, 2.

The residual frame is

ei(t) =X(t)Yi(t), i= 1,2.

The power spectrum of the residual frame can be expressed as

¢.ee(W) = TD,, (w) 2Re{<1>ce(w)} + TD,, (w)
I T 2

T(s (w)ec ~ W WI

(1)
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Fig. 2. Motion trajectory model.

5. MOTION MODELING

Wyner-Ziv video codecs generate the side information at the de-
coder, using previously reconstructed frames. Two main approaches
have been explored in the literature:

* Motion interpolation: One every N frames (most often N
2) is labeled as key frame and it is INTRA encoded. The re-
sulting group of picture (GOP) structure is I- WZ- .. -
WZ -I. For each Wyner-Ziv frame, the side information is
obtained by motion compensated interpolation of the previ-
ous and next key frame.

* Motion extrapolation: Only the first frame is a key frame and
is INTRA coded. The resulting GOP structure is I- WZ-
WZ -.... The side information for Wyner-Ziv frame is es-
timated through the motion extrapolation of the previously-
decoded frames (both Wyner-Ziv and key frames).

In this paper we want to compare these two approaches with the
(2) conventional case where the encoder performs motion estimation.

In order to be able to model both motion interpolation and motion
extrapolation we drift apart from the work in [4], introducing our
analysis based on Kalman filtering.

(3) We denote by m(t) = (mT(t), my(t)) the true motion that a
pixel/block is subjected to. Due to its nature, the motion is time-

(4) varying. We assume here a simple auto-regressive model

(5)
where A (=\A, Ay) is the motion vector error, i.e. the difference
between the motion vector used and the true motion vector.

(.ee(w) = 2TD,,(w) - 2TD,,(W)e 2 A (6)

¢I)ee(W) 2
D55 (w) 2e 2 A

The rate saving over INTRA-frame coding is [5]:

A\R= 8 21 j+7 H-r (Dee(W)dzA =8w2 log2 T55"(w)dw.

Hence, the difference between the two systems using two motion
vectors MV1 and MV2 is

AR1,2= AR1- AR2

8w2 J "J9g2 (I)e((Wdw87 7T (D~~~Tee,2(W)

1 r r 1 e aa<2A
81r2 10Ty log2 1 dw (9)87 e A~2

m(t) = pm(t -1) + z(t). (10)

Unlike [4], where m(t -1) is the motion associated to the same
spatial location at time t -1, here the autoregressive model is as-
sumed to be valid throughout the motion trajectories. This means
that m(t -1) is the motion vector corresponding to the spatial lo-
cation pointed by m(t). Figure 2 illustrates this fact by means of
an example for the case where only one of the two motion vector
components are considered.

We assume that the two components of the noise term z are sta-
tistically independent, and each of them can be modeled as a zero

2 2mean white random process with the same variance u- = (2
2O0 Y'
From equation (10), we can immediately derive that

o22 2 2 z
(Jm = (Jmx =-my 1 -p2

Intuitively, (Jm is an indication of motion complexity, i.e. a high
value of (Jm suggests that large displacements are expected. On the
other hand, p measures the temporal coherence of the motion model.
A value of p close to one indicates that motion has approximately
uniform velocity (no acceleration/deceleration), covered/uncovered
areas and scene changes are negligible. In spite of p, we use an

594

(1 1)

jwT(D,,(w) = (D,,(w)E[e-I
(D" (w) = (D" (w)



Table 1. a% and cSNR (Frame size QCIF, Block size 8 x 8
Sequence Foreman Coast. Carphone Stefan Table Silent
(J'j~ 9.46 0.76 7.23 15.40 2.09 1.93

cSNR(dB) 1.54 5.69 0.44 1 .58 1 .05 0.86

equivalent representation introduced in [4], the motion temporal cor-
relation signal-to-noise ratio

of the error on the state of the Kalman filter is related to the one of
the Kalman predictor by

E[(m(t) m(tlt))2] (19)
= P(t)- P(t)HT[HP(t)HT + V12]-HP(t).

Upon convergence, P(t) = P(t -1) = P. Using this equation into
(18) we obtain the ARE (Algebraic Riccati Equation) and we can
solve for P. We set pfilt p pHT[HpHT + 12]-1HP.

cSNR = 1 logl o
m

lO1og1O 1 p2 (12) ilt

Table 1 gives an indication of the parameters for a set of real se-
quences [4].

In the following, we distinguish three cases:

* Motion estimation (ME) at the encoder: The motion estima-
tion algorithm has access to X (t) andX (t- 1). The observed
motion is

n(t) = m(t) + w(t) (13)
The observed motion differs from the true motion m(t) only
because of motion vector accuracy (we neglect errors due to
quantization, reflections, illumination changes). If 1 M pixel
accuracy is used, the noise term wX,,,(t) can be assumed to
be uniformly distributed between -1 2M and +1 2M. The
resulting variance is a = a = a = 1/12M2

* Motion interpolation (MI) at the decoder: We assume here a
I- WZ -I GOP structure. The motion interpolation algo-
rithm has access to X(t -1) and X(t + 1). The estimated
motion is therefore

n(t) = m(t) + m(t + 1) + w(t) (14)

where w(t) is defined as above.
* Motion extrapolation (MX) at the decoder: The motion ex-

trapolation algorithm has access to X(t -1) and X(t -2).
The estimated motion is therefore

n(t) = m(t -1) + w(t) (15)

where w(t) is defined as above.

It is possible to combine equation (10) with equations (13), (14) and
(15), respectively, to write the problem in the canonical form pre-
scribed by Kalman filtering

m(t) Fm(t -1) + vi (t) (16)

n(t) Hm(t) + v2(t). (17)
Table 5 shows how the three aforementioned problems are mapped
onto a set of state-observation equations together with the other quan-
tities needed to solve the Kalman filtering problem.

Going back to our original problem, we want to obtain an esti-
mate m(t) = E[m(t) n(t), n(t -1), ... . n(O)] = m(tlt) of m(t)
given a noisy observation n(t). Kalman filter theory states that it is
possible to relate the variance of the error on the state of the Kalman
predictor (v(t) = m(t) -m(t t -1)) at time t + 1 with that at time
t via the RDE (Riccati Differential Equation)

P(t + 1) = FP(t)FT + V- K(t)(HP(t)HT + V2)KT, (18)

where P(t) = E[V(t)V(t)T] and the Kalman gain K(t) is defined
as K(t) = (FP(t)HT + V12)(HP(t)HT + V2) -1. The variance

where aI is used in equation (9) in order to evaluate the rate-distortion
gain of a given motion modeling scheme.

6. SIMULATION RESULTS

In this section, we compare the rate-distortion performance of the
three algorithms used to generate the side information: motion es-
timation (ME), motion interpolation (MI) and motion extrapolation
(MX). As a benchmark, we consider a system that encodes the differ-
ence between Xt and Xt-1, i.e. assuming zero motion. We dub this
system FD, for frame difference. In this case, the expected variance

2 2
is (JA = (Jm

For each of the three cases, we numerically evaluate oA for var-
ious values of p and au2 and we use equation (9) to assess the rate
rebate with respect to the FD system. Figure 3 plots AR as a func-
tion of cSNR for different values of a2 (from the rate-distortion
theory we know that APSNR 6AR).

We notice the same behavior in all cases. When we keep the
variance of the motion vectors au2 fixed, increasing temporal co-
herence of motion (cSNR), we expect larger gains with respect to
FD, that does not exploit motion at all. We can gain a further in-
sight comparing the plots in Figure 3 for the same value of ( M. In
fact, we notice that the maximum rate rebate is obtained for ME,
followed by MI and finally by MX. For example, setting a%2 = 1,
ARME/MI is as large as -0.8 bpp, while ARMIlMX is as large as
-3.5 bpp. We notice that the gap between MI and ME gets narrower
increasing cSNR and decreasing a%2 . This is reasonable, since mo-
tion interpolation works well when the temporal coherence is high
and displacements tend to be small.

We have to point out that these figures refer to the encoding of
a single Wyner-Ziv frame. In a complete video coding architecture,
the total rate, including key frames, should be considered. While
for ME and MX all frames (but the first one) take advantage of inter
frame dependencies, for MI one every N frames (N = 2 in this case),
is intra coded. Therefore, these results tend to overestimate the per-
formance of motion interpolation. A fairer analysis should take into
account the rate needed to encode key frames. The latter depends on
the spatial power spectral density of the sequence (I.% (w)), whereas
our simplified analysis depends only on considerations based on mo-
tion.

Table 3 compares the performance of practical algorithms used
to generate the side information [4]. The behavior suggested by our
analysis is confirmed by these figures. In fact, ME outperforms the
other approaches for all of the tested sequences, followed by MI and
MX in this order. The gain ofME over MI ranges between +0.44dB
for Coastguard up to +2.08dB for Carphone. We notice that these
two sequences are characterized by the highest and lowest temporal
correlation (cSNR) respectively, validating the conclusions of our
analysis.
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Table 2. Systems of equations corresponding to the three motion models: ME - Motion Estimation, MX - Motion Extrapolation, MI - Motion
Interpolation.
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Fig. 3. Comparison of the rate-distortion performance between motion estimation (ME), motion interpolation (MI) and motion extrapolation
(MX). The rate rebate with respect to simple frame differencing (FD) is shown

FD
MX

MI

ME

28.17
30.66
32.56
33.21

Coast.

27.32
30.82
32.17
32.61

Carphone
29.77
29.03
31.72
33.80

Stefan

19.48
22.88
23.54
24.84

27.10
30.48
32.20
33.86

Table 3. Comparison of different algorithms used to generate the
side information (in dB)

Forea Tl Sen

Sequence
32.43
33.62
36.09
38.11

ME -FD +5.04 +4.29 +4.03 +5.36 +6.76 +5.68
ME -MX +2.55 +1.79 +4.77 +1.96 +3.38 +4.49
ME -MI +0.65 +0.44 +2.08 +1.30 +1.66 +2.02

7. CONCLUSIONS

In this paper we analyze the coding efficiency of a Wyner-Ziv coding
architecture, with respect to conventional schemes that perform mo-
tion estimation at the encoder. Unlike similar approaches recently
appeared in the literature, our analysis builds upon Kalman filtering
in order to explicitly model the case that performs motion compen-
sated interpolation at the decoder. The results of the analysis are

validated by experimental results on real test sequences. Our cur-

rent activities focus on studying the rate-distortion performance of
other motion modeling schemes adopted in the literature such as

mixed motion extrapolation/interpolation [6], motion interpolation
with longer GOP size and motion extrapolation using hash functions
[7]. We need to emphasize that the results presented in this paper
are valid for the coding architecture summarized in Section 2. In

fact, they do not apply to other distributed source coding based cod-
ing schemes such as PRISM [1], where the decoder is able to build
a motion model comparable to the one that can be obtained by per-
forming motion estimation at the encoder.
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