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ABSTRACT

This paper concerns the problem of tracking acoustic sources in re-
verberant environments by using a particle filter. The localization
problem is transformed into the retrieval of the unobservable state of
a dynamical model through noisy measures. Though effective, two
problems are related to particle filter: the degeneracy phenomenon
(all particles but one are not significative) and the loss of diversity
(all particles collapse on the same point). By using Regularized par-
ticle filter (RPF) and Expectation Maximization (EM) we propose
a solution to both problems. Experimental results validate the pro-
posed solution: Regularized Particle Filter enables to obtain a RMS
error lower than 0.2m with a reverberation time of 0.6s.

Index Terms— Particle filter – Regularized particle filter – Ex-
pectation Maximization – Time Differences of Arrival – Blind Source
Separation

1. INTRODUCTION

The tracking acoustic sources is a problem that arises in a variety
of applications like seismology, sonar and speech processing. This
work is specifically concerned with the tracking of multiple acoustic
sources in reverberant environments.

The localization is typically achieved in two steps: first, mea-
sures related to the source position are obtained by a suitable al-
gorithm. In a second stage the source position is estimated by a
state-space model, in which the source position is the unobservable
state. In such a data model, the state is related to the noisy measures
through nonlinear equations.

When more than one source is present, Time Differences of Ar-
rival (TDOAs) are obtained through a separation algorithm as a pre-
processing stage. In particular, when no information about source
signals is available, Blind Source Separation (BSS) techniques are
generally used. Recently, the TRINICON algorithm [1] has received
a great deal of attention as an effective solution to the separation
problem in mildly reverberant environments. The extrema of the
de-mixing filters are related to the TDOAs of the sources [2]. In
presence of reverberation it is difficult to achieve the correct separa-
tion, but the extrema of the de-mixing filters are reliable for the most
part of their time. Thus TDOAs can be used by a filter to fulfill the
localization task.

Due to the strong nonlinearity of the measurement-state relation,
the Kalman filtering (KF) and the Extended Kalman Filtering (EKF)
(see [3]) are both unsuitable for the purpose of retrieving source po-
sition from noisy TDOAs. Recently particle filter [4] has gained a
great deal of attention as a solution for the problem of state estima-
tion in nonlinear, multi-modal and non-Gaussian PDFs.

An introductive survey on particle filter for tracking acoustic
sources was presented in the work of Ward et al. [5], where TDOAs

are obtained with Generalized Cross Correlation (GCC) and Adap-
tive Eigenvalue Decomposition Algorithm (AEDA). Though effec-
tive, this approach suffers from being applicable only when one source
is active.

Saiu et al. [6] have shown that localization of multiple acoustic
sources with particle filter is possible through a suitable clustering
algorithm: the algorithm presented in [5] is modified in the sense
that particles are labeled by a k-means algorithm. Each particle is
assigned to one of the sources. The state-space model is the same
as in [5]: particles are shifted along pseudo-random trajectories. A
problem related to the particle filter is the degeneracy phenomenon:
all but one particle are not significative. In order to overcome the de-
generacy problem, different strategies have been proposed in the lit-
erature. The first solution consists in re-sampling the set of particles
every time the fraction of significative particles is below a threshold
(see [7] for details) and by adopting a suitable importance density
function during the re-sampling step ([8]).

The re-sampling step introduces the problem of loss of diversity
among the particles, since particles are drawn from a discrete dis-
tribution and not a continuous one. A possible solution proposed
in literature is the Regularized particle filter (RPF): RPF is identi-
cal to the traditional particle filter except for the re-sampling stage:
the RPF re-samples from a continuous approximation of probability
density function ([9]).

Croene et al. [10] have recently proposed an alternative solution
to the degeneracy problem by using a different dynamical model:
the main idea is that at each iteration of the PF, the particle that best
explains the observations is assigned the role of “master”. All the
other particles change their velocity in order to follow the master
with some momentum. The degeneracy problem is overcome but
the set of particles concentrate in the proximity of the “master”, and
it exhibits a significative loss of diversity.

In this paper we propose an extension of the approach followed
by Saiu et al. [6] in order to account for the specificity of the acoustic
source tracking problem. In particular, we present a new method
based on the combination of Regularized particle filter (for details
see [4]) and Expectation Maximization which allows us to modify
in real-time the number of particles according to the uncertainty of
localization. In this way it is possible to track acoustic sources when
measures are not reliable.

The rest of this paper is organized as follows: Section 2 shows
the essence of the TRINICON algorithm and explains the motiva-
tions of using a tracking technique to obtain reliable estimations of
the source positions. Section 3 focuses on the Regularized particle
filter, from both a theoretical and an implementation points of view.
Finally Section 4 shows the experimental results obtained with Reg-
ularized particle filter compared with those of traditional and Swarm
particle filter.



2. TRINICON ALGORITHM

In the BSS literature, the data model is a convolutive mixture, as it
represents the signal received by each of the P microphones as a
sum of filtered replica of the sources:

xp(n) =

QX
q=1

M−1X
k=0

hpq(k)sq(n− k), (1)

where Q is the number of active acoustic sources and hpq(k),
k = 0, ..., M − 1 denote the coefficients of the finite impulse re-
sponse (FIR) from the q-th source to the p-th microphone. In the
following it will be assumed that the number of microphones equals
the number of sources (Q = P ). The goal of BSS is to find a de-
mixing system where the output signals yq(n), q = 1, . . . , Q are
described by:

yq(n) =

PX
p=1

L−1X
k=0

wpq(k)xp(n− k), (2)

where wpq(k), k = 0, ..., L− 1 is the de-mixing filter weighting the
p-th sensor contribution to the q-th output signal.

The fundamental assumption of the TRINICON algorithm is that
sources are non-Gaussian and statistically independent. With this as-
sumptions in mind, adaptive estimation process of de-mixing filters
converges to the correct solution when the overall probability den-
sity function of the outputs can be factorized out in the product of the
marginal PDFs. Once de-mixing filters have been estimated, they
can be used to retrieve the DOAs of the active sources according
to following equations, in the case of two sources and two micro-
phones:

bτ1 = (argn max |w12(n)| − argn max |w22(n)|)f−1
s (3)

bτ2 = (argn max |w11(n)| − argn max |w21(n)|)f−1
s (4)

where fs is the sampling frequency. TDOAs determine a locus of po-
tential positions consistent with the observations. Such a locus is an
hyperbola but can be confused with a straight line when the distance
from the microphones is much larger than the distance between the
sensors. The triangulation of DOAs measured from different micro-
phone pairs can be used to assess the source position. Due to the per-
mutation problem between different pairs, at least three microphones
pairs are needed in order to correctly localize sources in space. To
achieve source localization, the position of global maxima/minima
is used, thus the information contained in de-mixing filters is only
partially exploited to determine the TDOAs. Figure 1) represents
the TDOA error with respect to the true source location measured by
TRINICON: we can observe that the sources are often confused, as
there is an error of more than 40 degrees, which is the angular sepa-
ration between the sources, therefore a simple localization algorithm
(i.e. triangulation) cannot be used to estimate the position of the
sources and a more sophisticated algorithm is needed. Moreover it
is possible to notice that the measurements error is caused not only
by the presence of reverberation but also by the discrete sampling
rate, that induces a finite set of TDOAs. Kalman filter assumes that
the relation between the state and the measures is linear and that the
probability density function of the state exhibits only one peak; Ex-
tended Kalman filter removes the linear assumption but fails with
multi-modal pdf’s. For such reasons tracking by a traitional Kalman
filter or Extended Kalman filter are both unsuitable, making the par-
ticle filter approach the most suitable solution.
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Fig. 1. Example of TDOAs error of a microphones pair

3. REGULARIZED PARTICLE FILTERING FOR SOURCE
TRACKING

3.1. Background on particle filter

In this section we will denote the state at time t and the set of states
from time 1 to time t with αt and α1:t respectively. Analogously
zt and z1:t are the observations at time t and the set of observations
from time 1 to time t, respectively.

The goal of the particle filter is to estimate the posterior prob-
ability p(αt|z1:t). Observing this problem from the point of view
of the Bayesian estimation framework, we can break it up in two
recursive steps [4]:

Step 1 p(αt|z1:t−1) =
R

p(αt|αt−1)p(αt−1|z1:t−1)dαt−1 , (5)

Step 2 p(αt|z1:t) =
p(zt|αt)p(αt|z1:t−1)

p(zt|z1:t−1)
. (6)

Equation (5) is referred in literature as prediction step as it is
based on the knowledge of the state evolution p(αt|αt−1) (e.g. a
dynamic model). Equation (6) is known as measurement step as it
represents the likelihood p(zt|αt) of the measure with respect to the
state .

The basic idea behind particle filter is to recursively estimate
p(αt|z1:t). Starting with a weighted set of particles {wn

t−1, α
n
t−1}Ns

n=1

approximatively distributed according to p(αt−1|z1t−1), new sam-
ples are generated from a suitably designed proposal distribution:
αn

t ∼ q(αt|αn
t−1, zt) for n = 1, ..., Ns.

The function q(αt|αn
t−1, zt) is known in literature as importance

function and the choice of the correct importance function is crucial
for the correctness of estimations. To maintain a consistent sample
the new importance weights are set to

wn
t ∝ wn

t−1

p(zt|αn
t )p(αn

t |αn
t−1)

q(αn
t |αn

t−1, zt)
. (7)

In order to grant that the new set of importance weights approximate
the posterior p(αt|z1t), a normalization step is performes:

NsX
n=1

wn
t = 1. (8)

Many different solutions have been proposed in the past years to
implement the particle filter, each of them being different from the
others for the choice of the importance density function. In particular
the Sequential Importance Sampling approach (SIS) ([11]) forms the



basis for other methods. SIS tries to approximate the posterior den-
sity through a set of discrete samples, whose weights are computed
according to the Importance Sampling theory. The main drawback
related to Sampling Importance Sampling is the degeneracy prob-
lem: after a few steps of recursion (5) and (6), all but one particles
have negligible weight. In order to characterize the degeneracy phe-
nomenon, Liu and Chen have introduced the effective sample size
Neff , defined as

Neff =
Ns

1 + Var(w∗n
t )

(9)

An exact evaluation of Neff is impossible, so an estimate N̂eff is
used.

Different approaches have been proposed to overcome the de-
generacy problem. The first solution resides in appropriately choos-
ing the importance density function: in fact the choice
q(αt|αn

t−1, zt) = p(αt|αn
t−1, zt) yields Var(w∗n

t ) = 0. The sec-
ond solution adopted in literature consists in re-sampling the set of
particles whenever N̂eff is below a threshold NT (see [8]).

The major drawback related to re-sampling is that the particles
suffers from loss of diversity: the new set contain many related
points. This problem, known also as sample impoverishment, is
severe in the case of small noise in the observations. A solution
consists in the regularization of the set of particles.

3.2. Regularized Particle Filter

The loss of diversity arises during the re-sampling step: this is due
to the fact that new samples are drawn from a discrete distribution
rather than a continuous one. A modified particle filter, known as
Regularized Particle Filter (RPF) was proposed as a potential solu-
tion to the above problem ([9]). The RPF re-samples from a contin-
uous approximation of the posterior density:

p(αt|z1:t) ≈
NsX

n=1

wn
t Kh(αt − αn

t ) , (10)

where
Kh(α) =

1

hsα
K

“α

h

”
is the re-scaled Kernel density K(·), h > 0 is the Kernel bandwidth,
sα is the dimension of the state vector α. The Kernel density is a
symmetric PDF with finite variance. The Kernel and the bandwidth
are chosen to minimize the Mean Integrated Square Error (MISE)
between the true posterior density and the regularized representation.
In the special case of an equally weighted sample, the optimal choice
of the Kernel is the Epanechnikov Kernel [9]:

Kopt =

 sα+2
2cαx

(1− ||α||2) if ||α|| < 1

0 otherwise
(11)

where cαx is the volume of the unit hypersphere in Rsα . When
the underlying density is Gaussian, with unit covariance matrix the
optimal choice for the bandwidth is

hopt = [8c−1
sα

(sα + 4)(2
√

π)sα ]
1

sα + 4
. (12)

The results are optimal only in the special case of equally weighted
particles and underlying Gaussian density. However the regulariza-
tion can still be used in the general case to obtain a suboptimal filter.
The RPF differs from generic particle only for the addition of the
regularization steps when conducting the re-sampling.

3.3. Particle Filter for Source tracking

Let us call with αt the state of the underlying dynamical model at
time t. The state is composed by the position and velocity of the
source:

αt = [X(t), Y (t), Ẋ(t), Ẏ (t)]T . (13)

At time t a new set of TDOAs becomes available. The source mo-
tion is modeled as a Langevin process, which is specified, for the x
coordinate by the following equations:

Ẋt = aXẊt−1 + bXFXt , (14)
Xt = Xt−1 + ∆TẊt , (15)

where FXt ∼ N(0, 1), ∆T is the discretized time step and

aX = exp(−βX∆T ) , (16)

bX = vX

p
1− a2

X , (17)

with vX the steady state root mean square velocity. Equations from
(14) to (17) specify a dynamic model according to the first-order
Markov assumption. In particular we can write that

p(αt|αt−1) = p(Xt|Xt−1, Ẋt)p(Ẋt|Ẋt−1) (18)

p(Yt|Yt−1, Ẏt)p(Ẏt|Ẏt−1) .

The system we have used is composed by four microphone pairs
indexed by m. Each pair provides two TDOAs, denoted as τ̂ (m,1)

and τ̂ (m,2). The likelihood function is thus

p(zt|αt) =

MY
m=1

X
k=1,2

qkN(ταt ; τ̂
(m,k), σ2) + q0 , (19)

where N(x, µ, σ2) is the probability of extracting x from a Gaussian
distribution having mean µ and variance σ2, zt is the measure set
(the collection of TDOAs). The value of q0 is the prior probability
that none of the potential locations is due to the source location and
qk = (1−q0)/2. It is important to notice that the TRINICON needs
an initialization period to reach the numerical convergence. Con-
sequently, before using TDOAs, it is necessary to perform a check
of measures stability. In order to initialize the Regularized particle
filter, we decided to use an initialization step based on the Expecta-
tion Maximization algorithm. During the startup of the system, each
source in the environment is localized and distinguished. After this,
a Regularized particle filter is assigned to each source. In order to
achieve a reliable estimation of the source position in the initializa-
tion phase, we applied a particle filter similar to [6]. When particles
are concentrated in a small portion of space a clustering algorithm
is applied, calculating mean anda variance of each cluster. The clus-
tering algorithm used in this work is the Expectation Maximization
(EM). EM is used in statistics to find maximum likelihood estimates
of parameters in probabilistic models, where the model depends on
unobserved variables. EM is called in this way because it alternates
between an expectation (E) step, which computes an expectation of
the likelihood by including the latent variables as if they were ob-
served, and a maximization (M) step, which computes the maximum
likelihood of the parameters by estimating the expected likelihood
found in the E step. The parameters found on the E step are then
used to begin another E step and the process is repeated. In this
work we use EM to estimate the parameters of the Gaussian Mixture
Model related to the likelihood function p(zt|xt) of the measures
with respect to the state.



4. EXPERIMENTS AND RESULTS

To evaluate the algorithm explained in this paper we use a simulated
dataset, using speech male segments sampled at fs = 44.1KHz as
original source signals. The impulse responses from each source to
each microphone have been simulated using a fast beam tracing al-
gorithm every 0.125s along the source path. In particular, the dataset
was obtained considering two sources moving in a room with dimen-
sions 5m×5m×2.7m and using four couples of microphones each
positioned at the side of the room.

The trajectory followed by sources and an example of localiza-
tion in mildly reverberating conditions (T60 = 250 ms) is depicted in
Figure 2.

(a) (b)

Fig. 2. Tracking results obtained with synthetic data without (a) and
with (b) sources pause

These experiments are conducted with different reverberation
times (from 0.11s to 0.61s) and the results are compared with those
of Swarm particle filter [10], SIS particle filter and triangulation. In
the special case of this work, the comparison index is the Root Mean
Square localization error (RMS) computed as the average distance
between the ground truth data (the real position) and the localization
results. The Figure 3 shows how the algorithm proposed, based on
RPF, outperforms the other techniques in environments with rever-
berations, keeping the localization error under 0.23m.
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Fig. 3. RMS localization error of different algorithms as a function
of reverberation time

In Figure 2b it is possible to observe the same experiment con-
ducted in presence of pauses. The pause occurs in proximity of a
direction change of the target in the top-right of the room. It is im-
portant to notice that when the source returned active the RPF recov-
ered quickly the correct source pose.

5. CONCLUSIONS

In this paper we have presented a new algorithm for localizing and
tracking acoustic sources in reverberant environment. The exper-
imental results demonstrate that the solution proposed works well
both with active and inactive sources.

In order to make the algorithm more general, the a priori knowl-
edge about the number of sources in the environment can be re-
moved, and it can be retrieved by analyzing the data and estimating
the number of sources in the initialization step.
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