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In this article we propose an algorithm for fast reconstruction of 3D surfaces starting from large sets of
unorganized sample points. The proposed algorithm is based on the temporal evolution of a volumetric
implicit function. The evolving front can be thought as the surface that separates two different fluids
obeying specific fluid dynamics laws. One remarkable feature of this approach is its ability to model com-
plex topologies using a set of intuitive tools derived from fluid physics: Global and local surface descrip-
tors are used allowing the parallelization of the algorithm on different processes each of one can operate
on different sub-sets of the whole cloud with different resolutions and accuracies. Tests on large and
complex clouds of 3D points show an high efficiency of the proposed approach: between one and two
orders of magnitude faster than traditional implicit solutions.
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1. Introduction

The problem of building surfaces from unorganized sets of 3D
points has recently gained a great deal of attention. In fact, in addi-
tion to being an interesting problem of topology extraction from
geometric information, its applications are becoming more and
more numerous. For example, the acquisition of large numbers of
3D points is becoming easier and more affordable using, for exam-
ple, 3D-scanners [1]. There are a number of other applications
where objects are better described by their external surface rather
than by unorganized data (clouds of points, data slices, etc.). For
example, in medical applications based on CAT scans or NMRs it
is often necessary to visualize some specific tissues such as the
external surface of an organ starting from the acquired 3D points.
This can be achieved by selecting the points that belong to a spe-
cific class (organ boundary, tissue, etc.) and then generating the
surface from their interpolation. In most cases the definition of this
surface is an ill-posed problem as there is no unique way to con-
nect points of a dataset into a surface, therefore it is often neces-
sary to introduce constraints for globally or locally controlling
the surface behavior. As a matter of fact, the resulting surface often
turns out to exhibit a complex topology due to noise in the ac-
quired data or ambiguities in the case of non-convex objects [2].
In order to overcome such problems, surface wrapping algorithms
need to incorporate specific constraints on the quality of the data-
fitting (surface closeness to the acquired points), on the maximum
ll rights reserved.

).
surface curvature and roughness, on the number of resulting trian-
gles, etc.

The existing surface reconstruction methods can be classified
into two broad categories: the former describes the surface as an
implicit function while the latter describes it in an explicit form.
Explicit (boundary) representations describe the surface in terms
of point connections, and traditional approaches are based on Del-
aunay triangulation and Voronoi diagrams [3,4]. Another well-
known explicit approach is a parametric surface description based
on NURBS [5,6]. One example of surface-oriented solution, pro-
posed in [7,2] is based on the computation of the signed Euclidean
distance between each sample point and a linearly regressed plane
that approximates the local tangent plane. Curless and Levoy [8]
developed an explicit algorithm tuned for laser range data, which
is able to guarantee a good rejection of outliers (points whose coor-
dinates were not correctly acquired). Another well-known ap-
proach is the a-shape [9,10], which associates a polyhedral shape
to an unorganized set of points through a parameterized construc-
tion. Bajaj et al. [11] recently used the a-shape approach as a first
step in a complete reconstruction pipeline. Finally, algorithms
based on ‘‘Delaunay sculpting” were used for progressively elimi-
nating tetrahedra from the Delaunay triangulation, based on their
‘‘circumspheres” (see, for example, Boissonnat [12–14]) or other
approaches are based on the Medial Axis mesh reduction [15].
The explicit approach is usually very fast but it often requires a sur-
face subdivision into simpler sub-surfaces in order to correctly
model complex surfaces and avoid intersections of multiple trian-
gles. Implicit representations, on the other hand, define the surface
as a constraint in 3D space (volumetric representation), which
enables the description of complex surfaces through a simple
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1 In the Eulerian approach the dispersed particles are treated as a continuum and
turbulent dispersion is described by Fick’s diffusion equation, similarly to molecular
diffusion. Opposite to this approach is the Lagrangian one, which defines the
trajectory of a single particle by solving the particle motion equations assuming a
known turbulent fluid velocity field. Particle concentration is estimated from the
statistics of a large number of trajectories.
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volumetric description. This approach to surface modeling also
simplifies the 3D point location noise management; the merging
of different object portions irrespective of resolutions; and the
interpolation of poorly sampled regions.

A classical approach to implicit surface representation [16] is
based on a combination of smooth basis functions (primitives),
such as blobs, to find a scalar function where all data points are
close to one of its iso-contours, further approaches based on aniso-
tropic basic functions can be found in [17]. The basis functions are
coupled together and the change of a single data point could affect
the coefficients associated to all basis functions. This makes the
incremental updates, the deformation, and the interaction with
the surface quite difficult. Another approach uses the data set to
define a signed distance function on a cubic grid and identifies
the zero iso-contour (level-set) of the signed distance function as
the reconstructed implicit surface [18]. When dealing with dy-
namic systems, level-set representations can easily cope with
shape changes and track moving surfaces and their topological
changes. Level-set techniques were simultaneously introduced by
Osher and Sethian [19–21] and Zhao and Osher [48], and, with ref-
erence to different applications, by [22]. In their general form, such
techniques require the definition of a volumetric function, which is
updated at every time step until a certain amount of time has
elapsed, or until the evolving front (level-set) reaches a stable con-
figuration. In principle, the evolution of a volumetric function de-
fined on a voxel-set of N voxels per side, would require an order
of N3 voxels to be updated for a number of iterations that is propor-
tional to N (assuming that the front will pass through the whole
voxel-set). This number of voxels to be updated can be reduced
from an order of N4 to an order of N3 by limiting the volume of
interest to a ‘‘narrow band” surrounding the evolving front. A fur-
ther reduction to an order of N2log(N) updates can be achieved
using a multi-resolution approach [19,23]. Further application of
implicit function to triangular meshes deformation using meta-
balls is made by Ilic and Fua [24]. Implicit representations,
although computationally demanding and memory consuming, of-
fer numerous advantages over explicit ones:

� the surface can be easily manipulated by acting directly on the
implicit function;

� meaningful features such as the 3D skeleton of an object, can be
readily extracted;

� different portions of the same object can be smoothly merged
together by using simple logical operators on their implicit
functions;

� multi-resolution implementations can be quite easily
implemented;

� algorithms operating on the implicit function can be parallel-
ized, therefore the effort for complex object reconstructions
can be shared between different computers.

In the algorithm proposed by Zhao et al. [25], the basic surface
reconstruction problem was approached in the analog domain by
using differential geometry and Partial Differential Equations
(PDEs). In particular, the level-set method applied to the implicit
surface turned out to provide a powerful framework for the mod-
eling, the analysis, and the deformation of surfaces. In their ap-
proach, the implicit function represents the signed distance (in
the 3D space) from the surface, where the sign tells us whether
the considered point is inside or outside the object, and the zero le-
vel-set represents the surface.

Our approach, that was introduced in [26,27], significantly dif-
fers from the above level-set method in the definition of the volu-
metric function, which we derived from the Volume of Fluid (VoF)
description [28]. The VoF description is a popular interface tracking
algorithm used in fluid dynamics. This method, developed over
two decades ago by Youngs [29] from an original idea of Noh
[30], has since then become a frequent choice in Eulerian1 model-
ing of Interfacial flows, thanks to its robustness and effectiveness. As
a matter of fact, this solution has proven particularly effective for
those dynamics where interfaces are prone to undergoing topologi-
cal changes such as merging, splitting, hole piercing/filling, etc. In
our approach we adopt the ‘‘Piecewise Linear Interface Calculation”
(PLIC) suggested by Gueyffier et al. [28] to track the evolving surface.
In particular, we define the surface as the interface of separation be-
tween two incompressible fluids: one representing the internal vol-
ume of the object and one corresponding to the external volume. Our
algorithm has the remarkable advantage of dramatically reducing
the computational cost with respect to traditional level-set ap-
proaches [25] and enabling a more intuitive and physically plausible
parameter tuning. The time-evolution of our approach relies on the
Navier–Stokes (N–S) PDEs, which offer the most general description
of a fluid flow, unlike the classical level-set evolutive paradigm,
which is based on the Hamilton–Jacobi (H–J) PDE. It is important
to emphasize that the VoF approach allows us to effectively deal
with many phenomena and problems that often occur in data acqui-
sition, such as acquisition noise on the 3D data points, non-uniform
data density, surfaces of complex topology or shapes that are nor-
mally difficult to deal with (e.g. sharp blades, steep grooves, creases,
etc.).

2. Level-sets and volume of fluid

The level-set approach is one of the most widespread methods
for representation and evolution of implicit surfaces (see, for
example, [31]). In this section we briefly describe how this ap-
proach can be applied to the point-cloud wrapping problem with
specific reference to the work of Osher and Zhao [25,32].

We define S as a general data set containing the 3D coordinates
of the points. Let dðxÞ ¼ distðx;SÞ be the function that describes
the distance between a generic 3D point x and the nearest point
in S. In order to measure how well a given surface C fits the data
set S, we can define the energy functional

EðCÞ ¼
Z

C
dpðxÞds

� �1
p

; 1 6 p 61; ð1Þ

which is computed over the set of all surface points, and ds is the
infinitesimal surface area. The energy functional (1) is independent
of the adopted surface description and is invariant under rotation
and translation. For p = 2 it measures the Root Mean Square
(RMS) distance. As p tends to infinity, E(C) tends to measure the
maximum distance. Intermediate values of p, indeed, exhibit an
intermediate behavior by attributing more or less importance to
distance peaks.

As described in [32], looking for the surface that minimizes the
functional (1) is similar to enveloping the data set with a mem-
brane with certain elastic properties and have this membrane to
evolve in time until it comes to rest. This time evolution paradigm
can be described as

oC
ot
¼ �

Z
C

dpðxÞds
� �1

p�1

dp�1ðxÞ rdðxÞ � nþ1
p

dðxÞj
� �

n; ð2Þ

and its minimum can be found by solving the Euler–Lagrange
equation



2 This is a conventional choice that allows us to set the levelset of interest to zero.
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dp�1ðxÞ rdðxÞ � nþ 1
p

dðxÞj
� �

¼ 0; ð3Þ

where n is the unit normal (pointing outward) and j is the mean
curvature. The term rd(x) � n in Eq. (3) describes the surface
‘‘attraction” while d(x)j accounts for surface tension. The scalar
function d(x) allows the surface to be more flexible in regions where
the data set is denser and to be more rigid where the sampling den-
sity is low.

The evolution equation (2) involves the surface’s mean curva-
ture and is a nonlinear parabolic equation. A stable time-explicit
scheme for solving this equation requires a restrictive time-step
size Dt ¼ Oðh2Þ where h is the spatial grid step-size.

2.1. Level-set evolution

Zhao [25,32] proposed an evolutive model based on the physical
phenomenon of convection: the convection of a flexible surface C
in a velocity field v(x) is described by the differential equation

oCðtÞ
ot
¼ vðCðtÞÞ: ð4Þ

The distance function d(x) to the data set S represents the potential
field for the convection model and the velocity field v is oriented to-
wards the minima of the potential field v = �rd(x). This leads to the
convection equation

oCðtÞ
ot
¼ �rdðxÞ: ð5Þ

Given a data set S, the evolving surface can be thought of as made
of a set of particles that move within the field described by the dis-
tance functional. Each particle is thus attracted to the closest point
in S unless it is equally distant from two or more data points. These
special locations in space correspond to the boundaries of the Voro-
noi volumes of the data points. It is important to notice, however,
that Voronoi boundaries always have a zero volumetric measure.
In fact, in the two-dimensional case, the Voronoi boundary is a
piecewise linear curve (each segment of the curve lies on the axis
of the segment that joins two data points). In the three-dimensional
case the boundaries of the Voronoi regions are represented by a
piecewise planar surface (each planar patch lies on the axial plane
of the segment that joins two data points). We will later show that,
since no volume is ever occupied by such Voronoi boundaries, such
sets of points do not interfere with surface evolution towards the
rest (final) condition. In Zhao’s approach [25] the ambiguity at
equi-distant points is avoided by adding a small surface force. This
tension, however, is automatically added by finite difference
schemes in the form of ‘‘numerical viscosity”. As a result, the
equi-distant points on the curve or surface get ‘‘dragged” by the
neighboring surface points so that the whole curve or surface will
globally evolve towards the data set until it comes to rest.

2.2. Volumetric functions in level-set methods

The level set method is based on a continuous PDEs that de-
scribes the temporal evolution of a volumetric function. As the sur-
face corresponds to the zero levelset of this function, a correct
steering of the evolving surface can only be achieved through a
proper definition and control of the volumetric function, of its
dynamics (PDE), and its initial condition.

The front evolution starts from an initial (closed) 3D surface
C(t)jt=0, and we assume that the final surface configuration is en-
closed in this initial surface. We need to control the front evolution
in such a way that, as time goes by, the surface will converge
towards the final solution. One way to do so is to force the local
front to move according to a local velocity vector v, which is
assumed to be locally normal to the surface and whose magnitude
is linked to the local curvature for reasons that will be clarified
later. Surface steering is achieved by including in the definition
of the velocity vector other terms that account, for example, for
data fitting or other local surface measurements.

Let /(x, t) be the scalar (volumetric) function whose zero level
set represents the evolving surface C(t). In order to define this
function, we start with specifying its initial condition as

/ðx; tÞjt¼0 ¼ D; ð6Þ

where D is the ‘signed’ distance between x and .C(t)jt=0, which is
positive (negative) when the point x is outside (inside) the surface.
This way we have a volumetric function / : R3 � Rþ#R that evolves
in time starting from a reasonable initial condition (signed Euclid-
ean distance from the C surface).

The evolution equations of the individual level surfaces define a
corresponding evolution of the scalar function /(x, t) where x 2 R3.
The level set of magnitude k at time t (i.e. the surface of distance k
from the surface at time t) is represented by

Ck ¼ fx j /ðx; tÞ ¼ kg: ð7Þ

By definition the surface Ck has constant level over time, therefore
its time derivative is zero

o/ðCk; tÞ
ot

þr/ðCk; tÞ �
oCk

ot
¼ 0; ð8Þ

therefore

o/
ot
¼ �r/ � oCk

ot
¼ jr/j oCk

ot
�N; ð9Þ

where N ¼ �r/=jr/j is the surface normal.
Using Eq. (5) the final evolutive equation for the level set is:

o/
ot
¼ rdðxÞ � r/: ð10Þ

This implementation suffers from inherent inaccuracy in its numer-
ical scheme and, even if the starting implicit function /(t)jt=0 is a
signed distance, its time evolution will generally divert from this
condition. In fact, all level sets in the convection model are simulta-
neously attracted to the data set, therefore they tend to become
more and more densely packed together. Different procedures were
proposed to avoid this source of numerical inaccuracy. One popular
solution consists of the re-initialization of the volumetric function
[33,34], which is used for locally re-distancing the level sets with-
out affecting the motion of the zero level set. An interesting alterna-
tive was proposed by Gomes and Faugeras [35], who defined a
different implementation of the Hamilton-Jacobi PDE that inher-
ently preserves the distance function.

2.3. Volumetric functions in VoF methods

Our volumetric function closely resembles that of the VoF
method, originally introduced by Noh and Woodward [30] to mod-
el the interface evolution between different materials. Since its
first appearance, the VoF method has been formulated in a variety
of forms and re-introduced under different names such as the ‘‘cell
method” and the ‘‘partial fractions method”. The key idea behind
this technique is to define a fixed computational grid and assign
to each grid cell a value that describes the relative proportions of
two materials contained in that cell. Our particular modeling met-
aphor is based on two immiscible fluids of opposite densities2 q = 1
and q = �1, which identify the surface’s outside and inside, respec-
tively. More specifically, cells completely filled with outer fluid take
on the value +1 while cells that are only filled with inner fluid will



Fig. 2. The outer fluid, coming from the boundary cells, flows inward until it fills
the space around the point cloud.
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take on the value �1. When filled with a mix of both fluids, the cell is
assigned an intermediate value in the ] �1,+1[ range, which mea-
sures the density of the mix. An example of the described VoF
description is shown in Fig. 1. Notice that the above metaphor is
quite common in computational physics for applications of interface
tracking [36–39]. In this section will show how to use it for the prob-
lem of three-dimensional surface reconstruction from a sparse
point-set.

As a first step we define a bounding box that completely en-
closes the point cloud. We assume that this box is completely filled
with inner fluid and that the whole space outside of the box is
filled with outer fluid. We define the rules of evolution so that both
fluids are set in motion by the presence of data points, which act as
attractors (see Fig. 2). This fluid migration takes place in compli-
ance with laws of conservation. According to such rules, the front
starts propagating inward (towards the cloud of points) and stops
only when the inner fluid is confined ‘‘inside” the cloud of points
and the interface between the two fluids wraps the point-cloud.

From an implementative standpoint, we need to define a voxel-
set whose voxels describe the local fluid density. As voxel-set can
only have a finite number of voxels, we cannot model the whole
outer space. Knowing, however, that the front propagates inward,
we can transparently replace the infinite space outside of the
bounding box with just an additional layer of voxels whose value
is permanently set to 1. Roughly speaking, this situation corre-
sponds to replacing the outer bulk of fluid with a closed membrane
that ‘‘essudes” outer fluid in sufficient quantity to compensate pos-
sible density changes caused by the propagating front. The situa-
tion is similar to replacing an electrical line of infinite length
with a resistor that matches the line’s characteristic impedance.

Setting the value of the outer layer of cells to 1 means prevent-
ing the outer fluid from thinning and keeping its density constant.
Indeed, we need to guarantee a similar behavior for the inner fluid.
We do not want, for example, the fluid to pile up inside the object
because it would antagonize the shrinking of the interface between
the two fluids with an action that depends on the initial condition
of the fluids (on the size of the bounding box). In order to avoid this
problem, it would seem reasonable to place one or more drains
somewhere within the object, which would act as valves for keep-
ing the inner fluid’s density constant. Drains of this sort correspond
to inner cells whose value is permanently set to �1. Although
implementing such drains is quite straightforward, this is an unde-
sirable burden to endure, as it needs to define the ‘‘inside” of the
point-cloud, which may not be a trivial topological problem to
Fig. 1. (Left) Fixed grid applied to a closed surface. (Right) The Volume of Fluid d
solve. A simpler solution consists of limiting the volumetric func-
tion through a simple clipping operator that guarantees that
j/(x, t)j 6 1. As the clipping would never take place near the inter-
face between the fluids, we could expect it not to interfere with its
propagation. We will see, however, that this clipping turns out to
be unnecessary as, in fact, our fluid conservation law is expressed
in differential form, therefore its range of validity is only local. The
implementation of the evolutionary equations will prevent fluids
from piling up far from the moving front.

One aspect that needs to be carefully assessed is the existence
of many different closed surfaces that could wrap the cloud of
points in a plausible fashion [40]. Dealing with multiple solutions
requires, as usual, the specification of additional constraints, which
could be local or global. A number of issues could be considered for
the definition of such constraints, which concern different condi-
tions of acquisition, instruments precision and resolution. Exact
surfaces that strictly honor the 3D data can be required in some
applications but usually, due to data acquisition noise, smooth
interpolating surfaces are preferable to avoid roughness. Further-
more, in some applications a highly structured surface could be re-
quired in regions where points are acquired with high density,
while smooth interpolating surfaces could be advisable for poorly
sampled and noisy regions. Traditional approaches [40,16] usually
face these constraints by defining a global energy functional that
escription (each cell value describes the relative amount of the two fluids).
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accounts for all such needs, which must then be minimized. For
example, an energy term that is aimed at minimizing the surface
roughness could be

E ¼
Z

X

o2s
ox2 þ

o2s
oy2 þ

o2s
oz2 þ 2

o2s
oxoy

þ
 

2
o2s
oyoz

þ 2
o2s
oxoz

!
dxdydz; ð11Þ

which measures the global curvature, where X is the whole domain
and s represents the surface. Another energy term that accounts for
data fitting can be Eq. (1). In our approach, on the other hand, due to
the specific differential formulation, most of the constraints can be
locally defined to steer the surface evolution towards the final re-
sult. More details follow in the next section.

3. Front evolution

As already explained in the previous section, the front evolution
follows a computational scheme that complies with a two-fluid
quasi-physical paradigm based on the conservation of fluid mass
in its differential (local) form. The volume is initially filled with in-
ner fluid (all inner voxels are assigned the value �1). An outer layer
of voxels is kept at the value +1, which means that such voxels are
kept full of outer fluid. During the evolution both fluids are at-
tracted towards the data points. As shown in Fig. 2, the outer fluid
invades the space until the interface between the two fluids wraps
the point cloud.

The outer fluid is prevented from flowing inside the point cloud
because, once it closely wraps the data points, the inner fluid
antagonizes further front propagations, and also because of a cer-
tain inherent viscosity in the outer fluid.

The solution that we propose is local, as all constraints and
operators depend on parameters and features of local validity.
The only global constraint that we use is in the stopping condition
for the PDE evolution. Further details are given in Section 7

A first initialization step to rapidly find an initial guess could
also be used, a possible approach could be based on a fast tagging
algorithm, as suggested in [25], where external and interior grid
points correspond to the exterior and interior fluid of the proposed
approach, anyway, most of these approaches require structures
(e.g. heap tables, . . .) updated at each step and sorting algorithms
that could be time consuming.

Starting from an arbitrary initial condition, the surface evolu-
tion follows a time-dependent PDE. The ‘time’ parameterizes a
family of implicit functions / (whose zero level-set is the evolving
surface) that converges towards the minimization of its energy.
The PDE that we use is a simplified version of the Navier–Stokes
equation for the mass conservation, as shown in [41].

The law of mass conservation is independent from the nature
of the involved fluid or of the forces that act upon it. This law
expresses the empirical fact that fluid mass can neither disap-
pear nor be created except through sources or drains. This fact
allows us to realistically model the motion of the fluid within
the system. In our specific problem, we use this postulate to lo-
cally describe the behavior of the two fluids near the zero level-
set. In its general form, the conservation law applied to a fluid
confined in the volume X can be expressed in terms of the vari-
ations of the implicit function q; the fluxes that cross the vol-
ume boundary B; and the fluid sources Q. The flux vector G
represents the amount of fluid per second that crosses an infin-
itesimal surface element dB in the perpendicular direction. This
vector includes two components, a diffusive contribution GD and
a convective one GC. Generally speaking, the mass conservation
law states that the rate of change o

ot

R
X qdX of the fluid density

q within the volume X is equal to the net contribution from
the sources and from the fluxes that cross the region boundary
B, i.e.
o

ot

Z
X
qdX ¼

Z
B

G � dBþ
Z

X
QV dXþ

Z
B

QB � dB; ð12Þ

where the surface element vector dB points inward, QV represents
the isotropic volume sources, while QB are the oriented surface
sources whose net contribution depends on the orientation of the
surface element vector dB. If we consider the Gauss theorem for
continuous fluxes and surface sources, we obtain:

o

ot

Z
X
qdX ¼

Z
X
r � G � dXþ

Z
X

Q V dXþ
Z

X
r � QB � dX: ð13Þ

This expression is valid for an arbitrary volume X, therefore it also
defines the conservation law in its differential form

oq
ot
¼ r � Gþ Q V þr � QB: ð14Þ

In the absence of volume sources these temporal changes of q de-
pend only on the flux contribution through the surface B and not
on the flux values inside the volume X. A more detailed description
can be given if we split the flux vector into its two convective (GC)
and diffusive (GD) components. Given a density q in a flow of veloc-
ity v, the convective term GC is given by GC = vq, which corresponds
to the amount of fluid per volume unit that is transported by that
motion. The diffusive flow, on the other hand, is defined as the den-
sity changes that take place in fluids at rest due to thermal motion.
This term is usually proportional to the gradient of q, i.e. GD = nrq
where n is the diffusivity constant. The conservation law can then
be written as

oq
ot
¼ r � ðvqÞ þ r � ðnrqÞ þ Q V þr � QB ð15Þ

In order to solve this equation on a discrete grid (voxel-set) we use
the implicit function / that describes the relative proportions of the
two fluids that occupy each cell volume, as proposed in the VoF
method. In our case, the definition of this function can be modified
to accommodate the fluid density function q: for further details see
[28].

4. Velocity field

One major difference between our method and the level-set ap-
proach is in the fact that, instead of steering the evolution of the
implicit function / using a velocity field that corresponds to the
distance gradient (see Eq. (5)), we use directly the distance vector
field. With this choice of velocity field, a point will be assigned a
velocity that is proportional to the vector v that joins that point
to the closest data point. This way data points act as attractors
for both fluids and, therefore, for the evolving front.

Even if this attraction field has no physical equivalent, it is
physically consistent thanks to its irrotational characteristic (as
we will see later). This fact guarantees algorithmic convergence.
The motion of both fluids can be easily handled by specifying the
evolution of the implicit function / as shown in Section 5 since it
indicates their relative presence in each voxel. In Fig. 3 we show
an example of a two-dimensional non-convex cloud of points;
the velocity vector in each point is shown in Fig. 4 along with
the iso-velocity contours.

As the velocity is oriented towards the nearest data point, the
velocity field depends only on a specific data point inside the Voro-
noi region of the point itself. In order to illustrate this concept
more clearly, the velocity field inside the regions A and B of
Fig. 4 is shown in Figs. 5 and 6.

As already said before, the magnitude of the velocity vector is
proportional to the distance vector. This causes the interface be-
tween the two fluids to slow down as it approaches the cloud of
points, and guarantees a gentle convergence towards the desired



Fig. 3. An example of a two-dimensional non-convex cloud of points.
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surface. In what follows we will show how the viscosity acts on the
final wrapping result.

If we look further into the 2D example, we notice (see Fig. 6)
that in the proximity of the line that connects two data points
the velocity field is almost parallel to the line itself because

� the two fluids keep being separated when, after the evolution, a
stable solution is reached (steady state);

� the outer fluid ‘‘does not penetrate” the cloud of points
� the interface between the two fluids turns out to be a ‘‘good sur-

face” for wrapping the 3D data points

Notice that, due to the discretization of the velocity field, the
outer fluid can find its way between two data points. In this case
the vector field in that region would push the outer fluid back until
an equilibrium between the two competing fluids is reached (see
Fig. 6 on the left). This action on the part of the velocity field, how-
ever, this approach does not prevent the outer fluid from penetrat-
ing concave regions of the data set. An example of this situation is
shown in Fig. 6, where the outer fluid can cross the dotted line on
Fig. 4. The velocity vector field is oriented towards the nearest point and is proportion
regions are expanded in Figs. 5 and 6, to explain the behavior of the fluids in convex an
the right-hand side while is not possible in the left side. Notice that
the front evolution convergence is guaranteed by the fact that each
Voronoi cell contains a local central field. This implies that the con-
tribution of each sample point can be considered zero outside its
cell. The global velocity field can then be considered as the super-
position of all the contributions from non-overlapping cells and it
maintains irrotational and conservative behavior, which grants a
stable and unique solution [42].

5. Fluid evolution equation

Wherever no sources are present Eq. (15) becomes

o/
ot
¼ r � ðv/Þ þ nr2/: ð16Þ

This equation can be readily completed with proper initial condi-
tions and a Dirichlet condition to describe the virtual fluid sources
at the boundary

o/ðx;tÞ
ot ¼ r � ðv/ðx; tÞÞ þ nr2/ðx; tÞ t P 0; x 2 X

/ðx; tÞ ¼ þ1; t P 0; x 2 B

/ðx; 0Þ ¼ �1; x 2 X

8><
>: ð17Þ

The first equation of (17) is a first-order PDE, which can be discret-
ized using a standard finite differences scheme. The second term of
the right-hand side of this equation accounts for the contribution of
a parabolic second-order PDE with the same formulation as the
Heat Equation [43]; The second equation of (17) is a standard
Dirichlet condition for border constraint while the third equation
represents the system’s initial condition. We recall that solving
the classical Heat Equation is equivalent to performing a Gaussian
filtering [44]. In what follows, for the sake of simplicity, we propose
a one-dimensional example to explain this fact, but its extension to
the n-dimensional case is rather straightforward.

Let consider a one-dimensional implicit function whose
temporal evolution is governed by the following PDE:

ouðx; tÞ
ot

� o2uðx; tÞ
ox2 ¼ 0: ð18Þ

The explicit solution of a PDE with an initial condition of the form
u(x,0) = u0(x) is given by
al to the distance from it. The iso-velocity contours are also shown. The ‘A’ and ‘B’
d non-convex regions.



Fig. 5. Voronoi subdivision of the inner region ‘A’ of Fig. 4, in each cell the field is strictly central and oriented towards the point.

Fig. 6. (Left) Velocity field in square B of Fig. 5: flux from outside is unable to flow inside due to the repulsion. (Right) Velocity field in lower part of square A of Fig. 5, velocity
is always oriented towards the inner part of the hole allowing outer fluid to penetrate the convex-hull honoring non-convex clouds of points.
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uðt; xÞ ¼
Z

R

G ffiffiffiffi
2t
p ðx� yÞu0ðyÞdy ¼ ðG ffiffiffiffi

2t
p � u0ÞðxÞ; ð19Þ

where the operator ‘*’ denotes a convolution, while Gr(x) repre-
sents the Gaussian kernel:

GrðxÞ ¼
1

2pr2 exp � jxj
2

2r2

 !
: ð20Þ

This corresponds to low-pass filtering u0. Eq. (19) gives the corre-
spondence between the time t and the scale parameter r of the
Gaussian kernel. In our case this corresponds to smoothly interpo-
lating the surface over the 3D data set. It should be quite clear
how the diffusive constant n has an impact on the final surface:
low values of n imply that the surface will be follow more closely
the sample points at a price of an increased roughness. High levels
of n, on the other hand, produce a smoother surface that is able to
dampen the impact of noisy sample points, further details about
the choice of the diffusive constant will be given in Section 6.

We will now show the 1-dimensional case of the evolutive algo-
rithm of the proposed PDE. The extension to the 3-dimensional
case is trivial. If we consider only the first term, the PDE becomes:
/ðx;tþ1Þ�/ðx;tÞ¼1
2

vðxþ1Þ/ðxþ1;tÞ�vðx�1Þ/ðx�1;tÞð Þ; ð21Þ

where the initial value condition (Cauchy problem) consists of a
/ = �1 everywhere in the bounding box (the inner fluid fills all
the available space) except for the boundary B where / is always
kept equal to +1 due to the presence of outer fluid sources. The sec-
ond term represents a parabolic PDE and its finite difference
approximation becomes

/ðx; t þ 1Þ � /ðx; tÞ ¼ nð/ðx� 1; tÞ � 2/ðx; tÞ þ /ðxþ 1; tÞÞ: ð22Þ

If we merge the two Eqs. (21), (22) and the Cauchy condition, we
obtain

/ðx; t þ 1Þ � /ðx; tÞ ¼ 1
2 ðvðxþ 1Þ þ 2nÞ/ðxþ 1; tÞ
�2n/ðx; tÞ � 1

2 ðvðx� 1Þ � 2nÞ/ðx� 1; tÞ
/ðx; 0Þ ¼ �1 x R B

8><
>:

ð23Þ

The flux of the outer fluid from the boundary of the system domain
is described by



Fig. 7. Evolution of the implicit function /(x, t) in the one-dimensional case: dashed
lines are used for representing the implicit function at different time steps while
arrows indicate the evolution towards the final value. At the last iteration the outer
fluid fills all the external space outside the two points on the horizontal axis in
positions 16.3 and 86.4. The inner fluid shrinks until it remains mainly confined
within that gap. The VoF grid is located at integer coordinates.
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/ðx; tÞ ¼ þ1 x 2 B; 8t P 0: ð24Þ

Fig. 7 shows the evolution of the fluid front in a one-dimensional
case according to Eq. (23). The cloud of points is here represented
by just two points on the horizontal axis located in positions 16.3
and 86.4, respectively. The spatial grid is placed at integer positions.
The outer fluid starts flowing from the boundary and pushes the in-
ner fluid inside while filling all the space outside the two points.

At the end of the evolution the zero level-set of the implicit
function is located exactly in correspondence to the two points.
The analysis of the evolution of the zero level-set curves shows also
that the interface can be easily localized with sub-voxel accuracy.
Obviously we lay no claims to the physical correctness of our equa-
tions since further terms should be consider to faithfully handle a
real Newtonian fluid (i.e. viscous stresses). Furthermore conditions
may happen (in particular far from the clouds of points, where the
velocity is higher), where the total fluid amount for a grid cell over-
Fig. 8. Six different steps of the zero level-set during the evolution of the implicit
function steered by the three-dimensional version of Eq. (23).
flows the range between �1 and +1; since we are dealing with an
incompressible fluid this would have no meaning and to prevent it
we clip the range of / between �1 and +1 at each iteration. This
has no drawback on the accuracy of the final reconstruction since
it acts only on voxels far from the cloud of points and can be com-
pared to the narrow band approach described in [33,34] where, to
speed up the convergence of the level-set to the final solution its
evolution is considered only in a narrow band across the zero level
set.

In Fig. 8 we provide six snapshots of the zero level-set evolution
of the implicit function in a 3D environment. The reconstructed
surface, represented by the zero level-set, progressively wraps
the cloud of points starting from the initial bounding shape accord-
ing to Eqs. (23) and (24).

6. Automatic adaptation of the diffusive constant

As shown in the previous Sections the diffusive constant n is a
delicate parameter as it is strictly connected to fluid viscosity. High
values of n result in a smooth but often inaccurate surface while
low values result in a surface that strictly honors the data but is
sensitive to acquisition noise. Our choice was made to provide
good results with point clouds acquired with laser scanners. As a
matter of fact, the portions of the object with high sample density
are usually those acquired from multiple viewpoints because we
need high accuracy and/or the topology is complex, while smooth-
er or less critical areas usually exhibit a lower sample density. In
order to account for that, we established an inverse dependency
between the diffusive constant n and the local point density:

n ¼ a
1þ qp

; ð25Þ

abeing a parameter that indicates the estimated noise in the point
location (the higher the value the smoother the surface). The den-
sity qp at a given point is defined as the number of samples that fall
into a cube of volume V/N around that point, where V is the volume
of the point cloud (approximated by the volume of the smallest par-
allelepiped that contains the point cloud) and N is the total number
of samples. This means that if all the samples would be uniformly
distributed in the considered volume (like in a cubic crystal) in each
cubic cell of volume V/N there would be just one sample. In our
case, since we have to define the qp variable for each voxel, we de-
fine it as the sum of all the points falling inside a cube of volume V/N
centered at the voxel center. The point density is then 0 if there are
no samples in the neighborhood of the considered voxel and the ‘1’
at the denominator of Eq. 25 is added to prevent division by zero in
the diffusive constant. In surface regions with a low point density
the diffusive constant n corresponds to a smooth surface, while in
high-density zones n becomes very low, to guarantee that the sur-
face will closely honor the points. A 2D example is shown in
Fig. 9 where the surface wraps a square with different point density
on the corners. Changing the parameter a, on the other hand, has an
impact on the global fluid viscosity depending to the sample noise.
In Fig. 10 we show the behavior of the fluid in a 2D environment
where the sources of the external fluid are placed just on the top
of the domain. The points originate from an equally sampled sinu-
soid with varying frequency: different values of a turn out to inhibit
fluid penetration at different heights, which leads to different cur-
vatures on the final surface.

7. Convergence to the final solution

Convergence to the final solution is a long and debated term in
computational fluid dynamics, as reported in [47], and is common
practice to use Lax’s equivalence theorem which states that for lin-



Fig. 9. Example of automatic adaptation of the diffusive constant: the corners are
characterized by different sample densities therefore the final surface turns out to
be sharp or smooth, accordingly.
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ear problems a necessary and sufficient condition for convergence
is that the method is both consistent and stable. Where’consis-
tency’ means that the numerical schemes produce systems of alge-
braic equations which can be demonstrated to be equivalent to the
original governing equation while’stability’ is associated with
damping of errors as the numerical method proceeds. Anyway,
our equations as most of the Computational Fluid Dynamics, are
non-linear; in such problems consistency and stability are neces-
sary conditions for convergence but not sufficient. Our inability
to prove conclusively that a numerical solution scheme is conver-
gent is perhaps somewhat unsatisfying from a theoretical stand-
point, but this is a common issue on this topic and is a regular
practice to stop fluid evolution whenever the variations of each
voxel are beneath a threshold. We also followed this practice
choosing a threshold of 0.01 for the variation of the implicit func-
tion of a voxel. We experimented, on common clouds of points,
that convergence is usually reached in a number of iterations that
is between three to four times the number of voxel in the wider
dimension of the voxel-set.

8. Speeding up convergence and real-fluid emulation: the
vorticity term

In the previous Section we described in general terms how our
algorithm works. Due to the close similarity of our approach with
Fig. 10. Fluid behavior on a sampled sinusoid with varying frequency: different values
broken lines from top to bottom are the reconstructions that correspond to increasing v
fluid dynamics we also analyzed the system’s behavior as it imple-
ments additional fluids properties. In particular, we introduced the
phenomenon of vorticity to evaluate its impact on the surface
modeling process. We also worked on the fusion of multiple sur-
faces based on the fusion of the corresponding fluid configurations.
Vorticity is strictly correlated to the turbulent flow regime,
neglecting further fluid dynamics details [47], we just recall that
when the external forces (convective effect) exceed viscous forces
(internal fluid forces) the fluid overcomes the critical Reynolds
number and its flow from laminar become chaotic. This behavior
can be simulated varying randomly (obviously within a certain
range) and isotropically the forces acting on each fluid cell; This re-
sults on our model is an arbitrary variation of velocity field for each
voxel at each iteration. The fluid evolution can take advantage of
this behavior in particular conditions as shown below.

Due to the surface’s roughness and high curvature, the velocity
field rapidly changes direction. This usually results in a slower mo-
tion of the fluids towards a final configuration. The vorticity term
tends to overcome this drawback and improve convergence time.
Vorticity describes the presence of turbulence in fluid motion. Its
introduction allows us to describe local variations in the velocity
term and to localize whirls. From the physical point of view the
vorticity’s contribution is defined as the rotational component in
the velocity vector field

f ¼ r� vðxÞ; ð26Þ

whose intensity characterizes the turbulent status. The rotational
behavior can be illustrated by defining an imaginary loop C around
the whirl, and then integrating the flow velocity around that loop

K ¼
Z

C
v � dl: ð27Þ

Stokes’ theorem applied to Eq. (27) gives

K ¼
Z

C
v � dl ¼

Z
S
ðr � vÞ � dS ¼

Z
S

f � dS; ð28Þ

where the right hand-side integral is computed throughout the sur-
face S defined by the closed loop C. The vorticity thus represents the
local rotational characteristics of the flow.

The presence of whirls can locally develop high-pressure gradi-
ents, and may generate instabilities in the flow. At the same time,
however, it favors penetration in narrow openings and prevents
fluid from stagnating in ‘low speed’ regions. Although the localiza-
tion of vortices and the determination of their intensity is a diffi-
of a result in different penetration depths and final surface’s crispness. The three
alues of a.



Fig. 11. A sharp blade-like mechanical element; the model is obtained from a cloud
of about 1.5 million points on a grid of 180 � 70 � 70 cells. Bottom: two
enlargements of the framed zone with different viscosity levels: the viscosity on
the left is lower than on the right. The acquired points are affected by noise and a
higher level of viscosity allows us to obtain a smoother and more faithful
reconstruction of the model.
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cult numerical problem to solve, we cannot neglect them if we
want to correctly model our system. In particular, vorticity’s intro-
duction does not preserve the irrotational property of the velocity
vector field and does not guarantee that the system will converge
to a static final solution, therefore we must be very cautious in
using it.

In our solution we artificially introduce the presence of vortices
by modulating the velocity field with small oscillations around the
initial configuration. In fact, we are not interested in the introduc-
tion of static whirls and we know that there is a close correlation
between the velocity vector and the vector that points towards
the nearest point (Section 7). A modulation in the velocity field
can thus be interpreted as a plastic deformation of the cloud of
points in different directions. Roughly speaking, this operation is
similar to forcing jello through a funnel by squeezing the funnel it-
self. The modulation of the velocity function is obtained by altering
the speed of expansion along each one of the three spatial axes in
turn. More specifically, for each axis that we consider, we multiply
the velocity component along that axis by a given coefficient, while
we divide the other two components by the same factor. At the
next iteration we change the axis along which apply the expansion.
This results in a cyclic modulation of the velocity function that in-
duces the presence of whirls. A expansion coefficient ranges from 1
to 1.5; larger values result in an excessive fluid, which requires a
longer time to settle down after turning off the vorticity. Using vor-
ticity can significantly boost the convergence and the penetration
of the external fluid in grooves and holes. In the final iterations,
however, this term must be turned off to allow the fluids to gently
converge to an accurate and stable solution. Vorticity, as a rule of
thumb, can be applied when the wrapping surface is close to the
final result (no significant variations take place between consecu-
tive iterations); its activation results in a better fluid penetration
in stagnant regions; anyway, we found that after its extinction,
its a good rule to play at least 10 iterations to let the system settle
down to the final configuration.

9. Octree surface subdivision for reconstruction improvement

An important topic in 3D surfaces from point clouds is the abil-
ity to provide high accuracy in complex and dense regions, and, at
the same time, keep the total number of triangles in uniform re-
gions modest to avoid wasting memory. A possible approach to im-
prove surface detail without increasing the total voxel-set
resolution is based on the octree approach [45]. In order to employ
this multi-resolution voxel structure we reused the point density
qp already defined in Section 6. If the density exceeds a given
threshold (we experimentally found that 4 is a reasonable choice
of that threshold) the voxel and its 26 nearest neighbors are subdi-
vided in 8 subvoxels (octree subdivision), each one inheriting the
value of the parent voxel. The velocity field is then recomputed
over the sub-voxels. The evolution process can then be restarted
just on the sub-voxel set. In particular, the role of the source will
now be played by the bordering sub-voxels.
10. Experimental results and implementational details

In this section we show the results of some surface reconstruc-
tion experiments from classical clouds of points. We will show, in
particular, that the system is able to achieve a remarkable recon-
struction speed and manage large clouds of points in high spatial
resolution without special implementation requirements.

There is another important aspect in our algorithm that has
not been emphasized enough. It concerns the possibility to easily
parallelize the algorithm through an individual processing of dif-
ferent parts of the given cloud of points. Each one of these pro-
cesses can be assigned different resolutions and different control
parameters. When all the individual reconstructions have
reached a stable solution, we can merge them into a larger vox-
el-set, and with a resolution that corresponds to the maximum
one among those used for the individual portions. In order to
smoothly merge different regions, we make sure that a small
overlapping region is defined across separate zones. At the end
of the process all regions are placed in their final position and
each voxel value is set as (see Figs. 11):

FðxÞ ¼ inf
i

FiðxÞ; ð29Þ

where the inf operator is used above all the implicit i functions
whose voxel-set contains the voxel in position x. The farther in-
side the voxel, the lower the implicit function, therefore we use
the lower value because it belongs to the cloud of points that
better contains the point. The rabbit surface, shown in Fig. 12
(right) was obtained by merging three different and partially
overlapping implicit functions (see Fig. 12 on the left). The single
portions are separately rendered and are then placed together
using the previously-described operator. Octree subdivision can
be applied in the joining regions and, as described above for this
approach, the level-set evolution can be restarted inside the oc-
tree subdivision to obtain a gentle fusion among the parts. fur-
thermore, a simpler merging solution can be based on
restarting the evolutive equation in a narrow region close to
the joining surfaces: obviously, since we do not have the velocity
field for the whole cloud of points we can just apply the diffusive
term that will result in a smooth seamless fusion of the surfaces.
Attention must be paid to limit the region of its application to
avoid over-smoothing of the whole surface.

The proposed algorithm was run on an AMD AthlonTM XP pro-
cessor running at 2.1 GHz with 512 MB RAM under WindowsTM

2000. The Wolf, the Teapot and the Blade are interesting data-sets,
as they were acquired using different multi-camera systems and
methods. The data, anyway, is a bit noisy. The resulting mesh is ob-
tained using the marching cubes algorithm [46]: the voxel-set tri-
angulation approximates the zero level-set of the implicit function
placing the vertices of the triangles between voxels that have dif-
ferent signs in their implicit function. This means, as shown in Sec-
tion 5 (Fig. 7), that such two voxels belong to different sides
(inside–outside) of the considered object. The resolution of the fi-
nal surface is higher that the voxel-set one (and even of the oct-
tree subdivision, if applied) since linear interpolation is used be-



Table 1
Reconstruction performances on different clouds of points shown in Figs. 11–13, no
parallelization of the algorithm is used

Model Resolution Points Time(s) our Time(s) L-S

Bunny 180 � 178 � 140 35780 40 360
Bunny 100 � 99 � 78 35780 4 48
Buddha 144 � 350 � 144 3836 105 2215
Teapot 256 � 200 � 179 33061 110 4210
Blade 300 � 70 � 179 1550316 120 7560

The last two columns show a comparison between our approach and the classical
Level-set.

Fig. 13. Some examples of surface reconstruction from different clouds of points.

Fig. 14. (Up) Our reconstruction of the dragon head. (Down) The same reconstruc-
tion using Raindrop Geomagic 7; curves are also drawn on both models to estimate
surface roughness.

Fig. 12. Parallelization of the proposed algorithm: surfaces of different parts of the
rabbit’s cloud of points are separately computed and then merged into a single
surface as shown on the right-hand image.

3 Geomagic Studio 7 is a trademark of Raindrop Geomagic, Inc.
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tween different voxel values of the implicit function /(x, t). This al-
lows us to obtain a better estimate of the zero level-set and, there-
fore, the position of each triangle vertex. Comparisons were made,
for reconstruction time, with the level-set approach [25] that we
keep as the most significant approach to surface reconstruction
based on a PDE evolution of an implicit function. In Table 1 we pro-
vide some results obtained using the proposed approaches(see
Fig. 13).
A further comparison was conducted to evaluate the quality of
our reconstruction solution in comparison with a commercial soft-
ware package (Geomagic Studio 73) specialized for triangulating
clouds of points. The results are shown in Fig. 14. The model gener-
ated with Geomagic required further effort to delete some wrong
links among parts of the cloud of points. Even if the data fitting
(average distance of points from the reconstructed surface) in our
model is slightly worse than the Geomagic triangulation (less than
2%), our model exhibits a smoother surface. In order to measure sur-
face roughness we sliced both models with a set of planes (in Fig. 14
we show curves from five parallel planes intersections) and then we
examined their curvature. The average curvature in our reconstruc-
tion is almost two orders of magnitude lower than the Geomagic
one.

11. Conclusions

We proposed a novel volumetric approach to surface modeling
from unorganized sets of points which is able to overcome the typ-
ical problems of computational efficiency of level-set methods. In
addition, we gave the algorithm the ability to model complex
topologies using advanced fluid-dynamics properties of fluids; this
allows us to combine computational efficiency with an intuitive ef-
fect of different parameters such as viscosity and vorticity. The re-
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sults in terms of both computational efficiency and topological
flexibility are quite encouraging and make the approach extremely
usable.
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