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Abstract

In this article we propose a method for estimating the camera motion from a video-sequence acquired in the presence of general 3D
structures. Solutions to this problem are commonly based on the tracking of point-like features, as they usually back-project onto view-
point-invariant 3D features. In order to improve the robustness, the accuracy and the generality of the approach, we are interested in
tracking and using a wider class of structures. In addition to points, in fact, we also simultaneously consider lines and planes. In order
to be able to work on all such structures with a compact and unified formalism, we use here the Conformal Model of Geometric Algebra,
which proved very powerful and flexible.

As an example of application of our approach, we propose a causal algorithm based on an Extended Kalman Filter, for the estimation
of 3D structure and motion from 2D observations of points, lines and coplanar features, and we evaluate its performance on both syn-
thetic and real sequences.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recovering camera parameters and 3D scene structure
through the analysis of a set of acquired images is a classi-
cal Computer Vision problem that has attracted a great
deal of attention of researchers from various fields in the
past two decades. The literature is, in fact, rich with solu-
tions to this problem, which exploit all sources of geometric
and radiometric information.

If we focus just on the techniques based on the geometry
of image features, we can roughly classify the solutions
available in the literature in two broad categories: those
that exploit the multi-view geometric constraints that are
involved in the analysis of small subsets of images, and
those that are based on the estimation of a dynamical sys-
tem that captures the motion of the camera in the scene.

The former class of solutions is based on the analysis of
pairs or triplets of views of the sequence, and recovers
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camera motion through the estimation of the two- or
three-view Projective geometry (fundamental matrix or
trifocal tensor [1–7]). These algorithms are known as batch
techniques, and are characterised by a first step of motion
and structure estimation from small subsets of views
(typically 2–3) subsequently merged through bundle-
adjustment or other approaches [8–10]. The most impor-
tant results of this sort are nicely collected in [11,12] and,
more recently, in [13]. The latter category of solutions con-
cerns those causal and recursive algorithms that estimate
camera motion and 3D structure through Extended
Kalman Filtering (see [14–19]). Such solutions are particu-
larly useful for real-time camera tracking applications, as
they do not need to consider all views at the same time,
but they can use only information on the past. The state
vector is, in fact, upgraded every time a new measurement
is available.

Although the theory behind structure and motion esti-
mation methods is well-established, camera tracking is still
considered a rather challenging problem in many practical
situations. One major source of problems is the quality of
feature localization and tracking (accuracy, lifespan, track-
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ing stability, etc.), as features look different from different
viewpoints and occlusions often prevent them from being
visible at all. The problem of estimating structure and
motion in the presence of missing data (occlusions) has
been thoroughly analysed in the literature (see for example
[20]). Furthermore, due to the large number of unknowns
(structure of the scene, motion parameters as well as cam-
era focal length), in order to overcome the ill-conditioning
of the problem it is usually desirable to use as many fea-
tures and exploit as many constraints as possible in the
reconstruction algorithm. For this reason we are interested
in considering not just point-like features but also lines and
planes in 3D space.

Solutions based on multi-view Projective constraints are
available for a variety of image features and structures. An
example is [21], which proposes a batch approach that
deals with points, lines and planes for the affine camera
case. However, no contributions that we are aware of uses
mixed features in an EKF-based method.

3D scenes (particularly those of human-made environ-
ments) are usually rich with locally straight edges and
locally planar surfaces. Linear image features can be easily
extracted using (subpixel) edge detectors, while planar sur-
faces can be identified by structures of points and/or lines
or through the analysis of the surface texture over a num-
ber of frames [22].

One nice property of line features is that they are less
‘local’ than points. This means that a line is less likely to
be totally occluded and, when it happens, it usually hap-
pens quite progressively over a number of frames. As we
can expect, this is also true also for planar structures, as
long as the plane is directly estimated, and is not just a
coplanarity constraint that we force on a set of indepen-
dently estimated features. We will discuss this again with
more detail in Section 6 when describing the EKF-based
camera tracking application.

Although the use of line features in camera motion
estimation methods has been quite extensively addressed
using Projective constraints [11,12,23], lines are usually
seen as a source of difficulties. As pointed out in [24], linear
algorithms for camera calibration based on line features
tend to perform worse than point-based algorithms.
Furthermore, using tools from linear algebra it is usually
quite difficult to combine mixed features, therefore points
and lines are seldom combined. More recently an iterative
algorithm that is able to handle the hybrid case was
proposed [24], based on the so-called Multiple View
matrix. Another recent algorithm exploiting lines is [25],
where lines are handled through the so-called Line Motion
Matrix.

As far as causal recursive schemes are concerned, some
solutions based on line features were recently proposed
[26,27], but the representation of lines based on linear alge-
bra causes the algorithm to be quite cumbersome (a more
compact representation has been proposed in [25]). A
recent algorithm exploiting lines in a real-time visual track-
ing application is [28].
As far as feature coplanarity is concerned, the literature
is rich with solutions that exploit this constraint [29–32].
Such solutions are usually concerned with degeneracy
aspects of the multi-view geometry that arise from the con-
straint itself. Here we are less interested in degeneracy and
more focused in exploiting such constraints in a flexible
fashion (e.g. several coplanar configurations of features).
An effective algorithm for multi-view case exploiting the
coplanarity constraint of points is [32], which relies on bun-
dle adjustment techniques. In the case of causal motion
estimation, modified versions of [14,15] were recently pro-
posed, which are able to accommodate coplanar point
structures [33–35].

In this article we propose a causal camera motion esti-
mation method that is able to use points, lines and planes,
and allows us to exploit coplanarity conditions where
applicable. This level of flexibility, however, cannot be eas-
ily achieved using tools of Linear Algebra (LA), as they
would not allow us to handle all the above features and
constraints with the same formalism and with a unified
framework. For example, rotating sets of points, lines
and planes, would require different LA tools, and there
would be problems in handling coplanarity conditions for
mixed sets of features. One way to overcome these difficul-
ties is to make use of tools of Geometric Algebra (GA) [36–
39]. In Geometric Algebra, in fact, all sorts of linear
subspaces (lines and planes in Projective space, and also
circles and spheres in Conformal space) are easily handled
using the same formalism. In particular, GA allows us to
adopt a unique formalism for rotating such elements with
a minimal parameterization. This is well known to be a cru-
cial issue in minimization algorithms, where the manage-
ment of constraints between mutually dependent
parameters is always a problem. As we will see, GA also
allows us to handle intersections between geometric primi-
tives elegantly and compactly. This will allow us to embed
coplanarity constraints for points and lines in an EKF
structure through a direct estimation of the plane where
the features lie. This last issue is quite important as it con-
stitutes another step forward in improving the robustness
and the efficiency of motion estimation. Thanks to its capa-
bility to easily deal with Euclidean transformations of geo-
metric primitives such as lines or planes, GA has been
recently applied with success to a number of Computer
Vision tasks, for example the Pose Estimation problem
from line observations [40].
2. A brief GA introduction

Geometric Algebra provides us with a unified frame-
work that allows us to exploit all the algebraic properties
that are known and commonly exploited in Linear Algebra
and in Lie groups/algebras, while retaining a insightful
geometric interpretation of all the operations. This is made
possible by the fact that the elements in GA are not point
coordinates but combinations of subspaces, and by the fact



A. Dell’Acqua et al. / Image and Vision Computing 26 (2008) 529–549 531
that GA is equipped with an invertible geometric operation
called geometric product.

This section has primarily a tutorial purpose, and it is
aimed at keeping this article as self-contained as possible.
For this reason, it can be skipped by those readers who
are already familiar with the algebraic aspects of GA. More
complete tutorials can be found in [41,42]. For those read-
ers who are interested in more rigorous introduction to
GA, we refer to [36]. A collection of applications of GA
to Computer Vision can be found in [37].
2.1. The extended basis

While a basis of an n-dimensional vector space is made
of n linearly independent vectors, a basis of the n-dimen-
sional Geometric Algebra is a linear space of dimension
2n. This basis is also called an extended basis as any vector
or any higher-grade geometric object can always be
expressed as a linear combination of the extended basis
elements.

The GA built upon the 3D Euclidean space E3 is based
on scalars (grade-0 objects), vectors (grade-1 objects), ori-
ented area elements called 2-vectors or bivectors (grade-2
objects), and oriented volume elements called pseudoscalars

or trivectors (grade-3 objects), which are usually denoted
by Iv (v being the dimension of the space). While a vector
can be seen as a generator of a line in space and a bivector
can be seen as the generator of a plane in space, quite
clearly a pseudoscalar can only be seen as the generator
of the whole space.

It is important to notice that an arbitrary linear combi-
nation of elements of the extended basis is generally a
mixed-grade term, which is the reason why it is called
multivector.

In the Projective case P3 points of the GA are grade-1
elements (vectors), lines are grade-2 (bivectors), planes
are grade-3 (trivectors), while the pseudoscalar I4 is a
4-grade element that generates the whole space.

The subspaces of a Geometric Algebra are also called
blades.

In what follows blades of any grade will be denoted by
bold letters. In particular, for Euclidean vectors we will
use lowercase letters, while for Conformal vectors and
higher-grade blades of any space we will use capital letters.
We will also use overlined bold letters for normalized
Euclidean blades (i.e. vectors whose square is 1, or bivec-
tors whose square is �11), while regular vectors and matri-
ces will be denoted by underlined bold letters.
2.2. The outer product

A k-vector C can be built with a i-vector A and a j-vector
B (if k = i + j and A and B have no subspace in common)
1 Due to properties of the geometric product that will be introduced
later, the square of a bivector is a negative scalar.
using a product that implements the span of A and B.
This product is called outer or wedge product and is
denoted by �.

For example, given two vectors a and b, the 2-blade
C = a � b in the Euclidean space can be seen as the gener-
ator of the linear manifold Sa�b spanned by a and b, and its
magnitude corresponds to the signed area of the parallelo-
gram defined by such vectors. In the Projective space, C is
the line that passes through the points a and b.

Using the wedge product we can also test the incidence
of two subspaces: given 2 bivectors A and B, A � B = 0 if
they have a subspace in common.

The outer product is linear, associative and
anticommutative:

• a � (b + c) = a � b + a � c;
• a � (b � c) = (a � b) � c;
• a � b = �b � a, which implies b � b = 0.
2.3. The inner product

The inner product (denoted by Æ) is an operator whose
role is symmetrical to that of the outer product. While
the outer product is a grade-increasing operator (it com-
bines elements into a higher-grade one), the inner product
is a grade-decreasing operator. The inner product between
a blade of grade r and a blade of grade s is, in fact, a blade
of grade jr � sj, therefore the inner product of two vectors
is a scalar. When applied to vectors, the inner product coin-
cides with the scalar product in Linear Algebra.

As the inner product of two r-blades is always a scalar,
we can readily define a metric on the GA space

jAj ¼
ffiffiffiffiffiffiffiffiffiffiffi
A � A
p

:

The inner product can be used to define orthogonality
between blades

A ? B() A � B ¼ 0:
2.4. The geometric product

Although the outer and the inner products are not
invertible, the GA framework overtakes this issue by intro-
ducing an invertible product, the geometric product, which
allows us to solve geometric equations. The geometric
product of two GA elements always returns a mixed-grade
multivector. In the case of vector elements a and b, the
geometric product takes on the following simple
expression

ab ¼ a ^ bþ a � b; ð1Þ
which is the combination of a bivector a � b and a scalar
a Æ b. Quite clearly, the geometric product becomes an outer
product when the vectors are orthogonal, and becomes an
inner product when the vectors are parallel. The geometric
product is associative and distributive with respect to the
sum, but it is neither commutative nor anticommutative.
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One major property of the geometric product is that any
r-vector has an inverse. Given an r-vector
A = a1 � a2 � . . .� ar, its inverse is defined as

A�1 ¼
~A

A~A
; ð2Þ

where

~A ¼ ar ^ . . . ^ a2 ^ a1 ð3Þ
is the reverse of the blade A. The term A~A is a non-zero sca-
lar, therefore the inverse is always well defined.

The invertible product is a powerful tool not just
because it allows us to solve geometric equations and define
derivatives (geometric calculus), but also because it allows
us to introduce the concept of duality.

2.5. Geometric operations

2.5.1. Duality

Similarly to what happens in LA, the dual of a subspace
in GA is its complementary space. However, unlike in LA,
the fact that GA has an extended basis makes it closed with
respect to the duality operator. In other words, the dual is
not defined in a ‘dual’ space, but in the space itself.

In GA the dual of a subspace is computed by dividing
the subspace itself by the pseudoscalar. The dual of a blade
A is thus

A� ¼ AI�1
v ;

where the asterisk denotes the dual and v is the dimension
of the space.

Notice that the above definition of inverse implies that
the inverse of the pseudoscalar is the pseudoscalar itself
up to a sign change.2 As far as the Euclidean space is con-
cerned, we have I�1

3 ¼ �I3.

2.5.2. Meet

Given two blades A and B, their meet is the highest-
grade factor that A and B have in common, i.e. their inter-
section. The meet operator is denoted by a � and it can be
related to the wedge product through duality

ðA _ BÞ� ¼ ðA� ^ B�Þ; ð4Þ
where the dual is evaluated on the lowest-grade space that
contains both A and B. Notice that the above is the geo-
metric version of the De Morgan rule.

2.5.3. Rotation

In GA rotations are geometrically encoded using the
Euclidean rotation plane or, alternatively, by the rotation
axis (which is the dual of the rotation plane). Such geomet-
ric objects are assigned a magnitude that is proportional to
the rotation angle.
2 We are not considering spaces whose basis contain vectors that square
to 0. In this case, in fact, the inverse of the pseudoscalar is undefined.
Given a rotation of an angle u on the plane generated by
the normalized bivector �B, we define the rotor R as

R ¼ e�
u
2
�B:

As �B2 ¼ �1 we can write

R ¼ cos u� �B sin u;

therefore the rotor is a multivector made of a scalar and a
bivector. A rotor satisfies the orthonormality constraint
R~R ¼ 1, therefore the inverse (2) of a rotor coincides with
its reverse (3). A rotor acts on a blade X as follows:

X7!RX~R ¼ RXR�1 ¼ e�
u
2
�BXe

u
2
�B:

Notice that two successive rotations operated by the rotors
R1 and R2 are equivalent to a single rotation performed by
the rotor R = R2R1, which is the geometric product of R1

and R2. In fact, we have

R2R1xR�1
1 R�1

2 ¼ ðR2R1ÞxðR2R1Þ�1 ¼ RxR�1:

Notice that any linear combination of the extended basis
elements can be rotated by a rotor as shown above, there-
fore the formalism that we are adopting is of universal
validity. For example, given n points a,b, . . .z and a generic
rotor R, we have

Rða ^ b ^ . . . ^ zÞ~R ¼ ðRa~RÞ ^ ðRb~RÞ ^ . . . ^ ðRz~RÞ; ð5Þ
as ðRa~RÞ ^ ðRb~RÞ ¼ 1

2
ðRa~RRb~R� Rb~RRa~RÞ ¼ 1

2
Rðab�

baÞ~R ¼ Rða ^ bÞR.
The above is a very desirable property that applies to the

rigid rotations of feature sets. The extension of this prop-
erty to the more general case of rigid motions can be
achieved by working in the Conformal space, where the
translation is a linear operator that is, in fact, performed
by a rotor.

3. The conformal model in GA

Although the Conformal model was initially introduced
by Möbius in his study of the geometry of spheres, GA was
applied to such model only recently [36]. For a more com-
plete and rigorous account of Conformal GA, and its
applications, we refer the reader to [37,43–46]. In this Sec-
tion we will only provide a subset of results that are used in
this article.

The Conformal model Cv of a Euclidean space Ev is
obtained by enriching it with a two-dimensional manifold
called the Minkowski plane. This procedure is somewhat
similar to enriching a space of an additional vector to
obtain the corresponding Projective space.

The orthonormal basis {e+,e�} of the Minkowski plane
is characterized by the following properties

e2
þ ¼ þ1; e2

� ¼ �1; eþ � e� ¼ 0;

therefore the Conformal model of the 3D Euclidean space
is a 5D space whose basis contains four vectors (e1, e2, e3,
and e+) that square to 1, and one vector (e�) whose square
is �1.



Fig. 1. The 3D Conformal space C1 is generated by the 1D Euclidean
space E1 (e1) and the Minkowski plane (e+,e�). This space contains a null

structure, the so called null cone. The vectors n = e+ + e� and n0 = e+ � e�
(that represents the Euclidean origin) lie on the cone, while the cone axis is
the versor e�. The intersection of the cone with a plane orthogonal to n0 is
a conic called horosphere (here a parabola).
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The particular signature of the basis of the Minkowski
plane attributes the Conformal space a number of interest-
ing properties. The Conformal space, for example, contains
a null structure, which means that the vectors that belong to
this structure square to 0 (null vectors). In the Conformal
model of the 1D Euclidean space such structure becomes a
3D cone, therefore it takes the name of null cone (see Fig. 1)
even in spaces of higher dimension.

The Conformal model maps Euclidean points onto null
vectors through

F ðxÞ ¼ aðx2nþ 2x� n0Þ; ð6Þ

where n = e+ + e� and n0 = e+ � e�.
Notice that this mapping is ‘Projective’, which means

that any Euclidean point is represented by a one-dimen-
sional manifold (a generatrix of the cone). If we choose
a ¼ 1

2
, then the mapping (6) becomes one-to-one. In geo-

metric terms we are directing our map onto a slice of the
null cone by cutting it with an hyperplane that is orthogo-
nal to n0 (see Fig. 1). In algebraic terms we are forcing the
following normalization condition for null vectors

X � n ¼ �1: ð7Þ

The origin of the Euclidean space is thus mapped onto 1
2
n0,

and all the points ‘at infinity’ are mapped onto 1
2
n.

A geometric interpretation of the Conformal model is
provided by the stereographic projection, which is com-
monly used for flattening charts that are defined on a
sphere. Let us consider a line representing the 1D Euclid-
ean space E1 and the circle shown in Fig. 2. The stereo-
graphic projection of a point lying on the circle onto E1

is given by the intersection with E1 of the ray that originates
from the circle’s ‘north-pole’ and passes through the con-
sidered point. The inverse mapping, which is very similar
to Eq. (6), maps the points at infinity onto the north pole.3
3.1. Geometric primitives in the Conformal GA

The basic geometric element of the Conformal space is
the sphere. As the infinity of the Euclidean space is repre-
sented by a point, the Conformal model can be thought
of as a ‘curved’ space in which circles and spheres are linear
subspaces. Lines and planes are special instances of such
subspaces as they all pass through the point at infinity n.

The Conformal expression of a circle C passing through
three Euclidean points x1, x2 and x3 is the trivector

C ¼ F ðx1Þ ^ F ðx2Þ ^ F ðx3Þ ¼ X1 ^ X2 ^ X3
3 To be precise, there is a difference between the Hestenes map (6) with
a ¼ 1

2 and the inverse stereographic projection. The slice of the cone
defined by Eq. (7) is an hyper-paraboloid (a parabola in the C1 case, as
shown in Fig. 1) with axis n, called horosphere, while the inverse
stereographic projection maps Euclidean points onto a hyper-circular slice
(a circle in the C1 case) of the cone (which is perpendicular to the cone axis
e�). As any Euclidean point is represented in the Conformal model by a
generatrix of the cone, such difference is often neglected.
while the line L passing through two Euclidean points x1

and x2 is the trivector

L ¼ F ðx1Þ ^ F ðx2Þ ^ n ¼ X1 ^ X2 ^ n:

Similarly, spheres and planes are quadrivectors. The equa-
tion of a plane passing through the points x1, x2 and x3 is

P ¼ F ðx1Þ ^ F ðx2Þ ^ F ðx3Þ ^ n ¼ X1 ^ X2 ^ X3 ^ n:

In GA the dual of a geometric primitive encodes its geo-
metric properties [43]. The dual of a line L* is the bivector

L� ¼LI�1
5 ¼ �nLI3þ½ð�nL^oLÞI3�n¼ �nLI3þQLI3n¼XLþqLn

ð8Þ
which is made of a ‘Euclidean’ term and a ‘Conformal’
term. The Euclidean term represents the dual (with respect
to the Euclidean space I3) of the unitary direction �nL (up to
a sign change), i.e. the plane Xl that is perpendicular to the
line and passes through the origin (see Fig. 3). The Confor-
mal part contains the dual (again with respect to the
Euclidan space) of the moment of the line QL, i.e. the vector
qL. The moment of the line referred to the origin is the
plane defined by the direction of the line and any of the
points that lie on the line.

We also define oL as the line’s offset, i.e. the 3D vector
that passes through the origin and is perpendicular to the
line. Notice that oL, �nL and qL form an orthogonal frame,
and that

kqLk ¼ koLk ¼ dL

i.e. dL is the scalar distance from the origin of the line.
The vectors �nL and qL are also called Plücker Coordi-

nates of the line. The so-called Plücker constraint can be
simply written as

nL ? qL () nL � qL ¼ 0 ð9Þ
and, together with the constraint on the norm of �nL,
reduces the number of degrees of freedom of the line
parameterization from 6 (the three components of nL and
qL) to 4.



Fig. 2. By cutting the null-cone with an (hyper-)plane orthogonal to its
axis e� we obtain in general a sphere. In the C1 case the sphere becomes a
circle in the (e+e1) plane.

Fig. 3. A 3D line L and the vectors and bivectors that characterize it.

534 A. Dell’Acqua et al. / Image and Vision Computing 26 (2008) 529–549
The fact that the dual encodes all the geometric proper-
ties of the primitive holds true also for the plane case.
Given a plane P, its dual with respect to the whole space
I5 is

P� ¼ �nP þ dPn; ð10Þ

where �nP is the unitary vector that is normal to the plane
and dP is the plane’s scalar distance from the origin.

We can also define the offset of the plane as the vector

oP ¼ dP�nP;

which can be seen as the translation that must be applied to
a plane with normal �nP passing through the origin, in order
to obtain the plane P.

Notice that the dual (with respect to I5) of a plane in the
Conformal space is a 5D 1-vector, unless the plane passes
through the origin. In this case dP = 0 and its dual P* gives
us the normal Euclidean vector �nP. Notice also that a plane
has three degrees of freedom: two for the normal unitary vec-
tor �nP and one for the scalar distance from the origin dP.
3.2. Rigid motions in the conformal GA

Rotors act on the Euclidean and the Conformal repre-
sentations of vectors in a consistent fashion. In fact, given
a vector x in E3 undergoing a rotation x 7!Rx~R, we have
x7!Rx~R) F ðxÞ7!RF ðxÞ~R ¼ F ðRx~RÞ; ð11Þ

which follows from the fact that rotations leave both the
origin and the point at the infinity unchanged, so that
Rn~R ¼ R~Rn ¼ n and Rn0

~R ¼ n0.
One interesting feature of the Conformal space is that

the translation is a linear operation performed by particu-
lar rotors called translators

Tt ¼ e
nt
2 ¼ 1þ nt

2
þ 1

2

nt

2

� �2

þ � � � ¼ 1þ nt

2
; ð12Þ

where t is the Euclidean translation vector. Notice that
the higher-order terms of the translator’s expansion are
zero as n2 = 0. The action of a translator on a Conformal
vector is

TX~T ¼TF ðxÞ~T ¼ 1þ nt

2

� �
1
2

x2nþ 2x� n0

� �
1þ tn

2

� �

¼1
2
ðxþ tÞ2nþ 2ðxþ tÞ � n0

� �
¼ F ðxþ tÞ

which explains why the component of X along n0 is un-
changed and, therefore, X remains on the hyperplane
n0 ¼ �1

2
. The Euclidean component is translated by t, while

the component along n increases according to 1
2
ððxþ tÞ2�

x2Þ ¼ xtþ t2

2
. As expected, a translation changes the compo-

nent of X along n, as it generally changes the magnitude of
the vector.

Notice that, exactly like any other rotors, translators
act on lines, circles, planes and spheres. Moreover, the
actions of rotors can be combined through geometric
multiplication, which returns another rotor. As a conse-
quence, a generic rigid motion can always be expressed
as a unique rotor, which is generally called motor M.
The motor M that performs a rotation R followed by
a translation t is

M ¼ TtR;

where Tt ¼ e
ntt
2 , and its action on a point X is

X! X0 ¼MXM�1 ¼MX ~M:

This expression holds true for more complex motions and
primitives. For example, the rotation of a line L about a
point P is performed by the motor

MP ¼ TP R~TP

via

L! L0 ¼MP L ~MP ¼ TP R~TP LTP
~R~TP ;

where TP ¼ e
ntp
2 and tp is the point’s offset from the origin.
4. Projections onto a moving camera

A projection relation is an equation that relates a 3D
primitive to its projection onto the image plane of a cam-
era. Given a pin-hole camera (i), its optical center C(i)
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and the directions of its three axes X
ðiÞ
j , j = 1,2,3, it is pos-

sible to recover the expressions of the camera axes
qðiÞj ¼ CðiÞ ^ X

ðiÞ
j ^ n and planes PðiÞj1

¼ CðiÞ ^ X
ðiÞ
j2
^ X

ðiÞ
j3
^ n

with {j1,j2,j3} 2 {1, 2, 3}, {2, 3, 1}, {3, 1, 2}.
Let us consider a point P and a line L in the 3D Euclid-

ean space E3 and their Conformal representations P and L.
Let pðiÞj and lðiÞj ; i ¼0, . . . ,N � 1, j = 1, 2, 3 be the image-
plane coordinates of the projections respectively of the
point P and the line L onto N cameras. In this paper we
consider a camera with focal length f = 1. When f „ 1, the
equations that we will obtain will hold true by consistently
rescaling pi and li.

The line (plane) passing through the camera center and
the image plane coordinates of a point (line) is called ‘back-
projection ray (plane)’. A ray back-projected from the ith
image plane can be expressed as a linear combination of
camera-i reference axes

WðiÞP ¼
X3

j¼1

pðiÞj qðiÞj :

Similarly, a plane back-projected from the ith image plane
can be expressed as a linear combination of camera-i refer-
ence planes

UðiÞL ¼
X3

j¼1

lðiÞj PðiÞj :

These expressions can be written in terms of camera-i rota-
tion RðiÞ ¼ e�

hðiÞ
2

�BðiÞ and translation TðiÞ ¼ e
ntðiÞ

2 as follows

WðiÞP ¼
X3

j¼1

pðiÞj TðiÞRðiÞqð0Þj
~RðiÞ~TðiÞ

� �
; ð13Þ

UðiÞL ¼
X3

j¼1

lðiÞj TðiÞRðiÞPð0Þj
~RðiÞ~TðiÞ

� �
ð14Þ

where qð0Þj and Pð0Þj are the reference camera axes and
planes, usually the first of the set. In what follows we will
assume this camera to be placed in the origin of the world
and oriented like the world reference system.

Back-projection rays and planes can also be expressed as
a function of the 3D structure:

�WðiÞP ¼ CðiÞ ^ P ^ n ¼ ðTðiÞCð0Þ~TðiÞÞ ^ P ^ n;

�UðiÞL ¼ CðiÞ ^ L ¼ ðTðiÞCð0Þ~TðiÞÞ ^ L; ð15Þ

i.e. as lines and planes joining the primitive and the center
of the ith camera.

Camera motion, structure and projections are related by
WðiÞP ’ �WðiÞP and UðiÞL ’ �UðiÞL , where . means ‘equal up to a
scale factor’. Such ‘Projective equality’ constraints can be
interpreted as parallelism constraints between Euclidean
vectors, by applying the camera motion that takes the ith
camera into the reference one to the back-projection rays
and planes.
In fact, we have

~RðiÞ~TðiÞWðiÞP TðiÞRðiÞ ¼
X3

j¼1

pðiÞj qð0Þj ;

~RðiÞ~TðiÞUðiÞL TðiÞRðiÞ ¼
X3

j¼1

lðiÞj Pð0Þj

and

~RðiÞ~TðiÞ �WðiÞP TðiÞRðiÞ ¼ ~RðiÞ Cð0Þ ^ ð~TðiÞPTðiÞÞ ^ n
� �

RðiÞ;

~RðiÞ~TðiÞ �UðiÞL TðiÞRðiÞ ¼ ~RðiÞ Cð0Þ ^ ð~TðiÞLTðiÞÞ
� �

RðiÞ ð16Þ

which are lines and planes that pass through the origin.
Lines and planes passing through the origin are com-

pletely specified by one Euclidean vector only: the direction
in the line case and the normal in the plane case. Two lines
are coincident if their directions coincide up to a scale fac-
tor, and the same is true for two planes and their normals.

The inner product of a line with E = e+e� can be used
for obtaining the line’s direction from its Conformal
expression. From the definition

pðiÞ ¼
X3

j¼1

pðiÞj ej ¼
X3

j¼1

pðiÞj qð0Þj

 !
� E

we can write

WðiÞP ’ �WðiÞP () pðiÞ ^ ~RðiÞðCð0Þ ^ ~TðiÞPTðiÞ ^ nÞRðiÞ
	 


� E ¼ 0:

ð17Þ
The Euclidean normal of two Conformal planes passing
through the origin is simply their dual, therefore, by defin-
ing the vector

lðiÞ ¼
X3

j¼1

lðiÞj ej ¼
X3

j¼1

lðiÞj Pð0Þj

 !�
ð18Þ

we obtain

UðiÞL ’ �UðiÞL () lðiÞ ^ ~RðiÞðCð0Þ ^ ~TðiÞLTðiÞÞRðiÞ
	 
� ¼ 0: ð19Þ

The projection Eqs. (17) and (19) are given in terms of the
Conformal representations P and L of the point and the line,
respectively. It is also possible to recover the corresponding
equations as a function of the Euclidean vectors that charac-
terize the primitive, i.e. the offset from the origin oP of the
point P and the vectors oL, �nL and qL (Eq. (8)) of the line L.

The point ~TðiÞPTðiÞ is the Conformal representation of
oP � t(i), which is also the direction of the line Cð0Þ ^ ~TðiÞ

PTðiÞ ^ n, therefore Eq. (17) can be rewritten as follows

pðiÞ ^ ð~RðiÞðoP � tðiÞÞRðiÞÞ ¼ 0: ð20Þ

In the line case we have

ðCð0Þ ^ ð~TðiÞLTðiÞÞÞ� ¼ ðnL ^ �tðiÞÞI3 þ qL

¼ ðnL ^ ðoL � tðiÞÞÞI3 ð21Þ

which means that by applying the translation �t(i) to a line
L we obtain a line nL with the same direction and an offset
of oL � t(i).
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At this point Eq. (21) can be rewritten in terms of just
Euclidean vectors as follows

lðiÞ ^ ð~RðiÞððtðiÞ ^ nLÞI3 þ qLÞRðiÞÞ ¼ 0: ð22Þ
5. Defining a general cost function

Let us consider a structure of H points and K lines and
the image coordinates of their projections onto N views.
The problem of estimating camera motion and structure
can be generally expressed as the search of the minimum
of the following cost function

�̂
l
ðiÞ

k ¼ ½~RðiÞðC
ð0Þ ^ ~TðiÞLkTðiÞÞRðiÞ��;

�̂p
ðiÞ
h ¼ ½½~RðiÞðC

ð0Þ ^ ~TðiÞPhTðiÞ ^ nÞRðiÞ� � E�;
F ¼ wLF L þ wP F P

¼ �wL

XK

k¼1

�lðiÞk ^
�̂
l
ðiÞ

k

� �2

� wP

XH

h¼1

�pðiÞh ^ �̂p
ðiÞ
h

n o
; ð23Þ

where wL and wP are scale factors designed to weigh differ-
ently the contribution of points and lines to the global cost,
and the minus sign is required because the square of a
bivector is always negative. Since the factors of the outer
product have unit norm, this cost function encodes directly
the sine of the angles between the back-projection rays (in
the point case) and between the normals of the back-pro-
jection planes (in the line case). Notice also that the first
part of Eq. (23) is equivalent to the cost function of
Lin_2D_1 alignment method proposed in [25]. As pointed
out in [25] it is possible to devise cost functions with more
physical meaning also in the line case (i.e. involving pixel
coordinates and geometric distances between a line and
points lying on another line), at the price of complicating
the implementation.

This problem formulation is independent of the param-
eterizations chosen for points Ph and lines Lk. For example,
a point can be parameterized through its 3D coordinates
(using Eq. (22)) or through its 2D projections onto a cam-
era and the distance from the camera center. Moreover,
geometric scene constraints can be embedded in the prob-
lem in a rather straightforward fashion. In fact, a line L

can always be parameterized as the intersection of two
planes, while a point P can be seen as the intersection of
two lines, or a plane and a line, or three planes. This can
be used for reducing the number of d.o.f. on constrained
scenes. For example, if we are tracking the edges of an
imaged cube, then we can decide to parameterize the scene
with the cube’s faces instead. This results in a reduction of
the number of d.o.f. from 48 (12 lines) to 18 (6 planes).

More interesting is the possibility to represent generic
coplanar features as the intersection between the back-pro-
jection of their view (a ray or a plane) and their coplanarity
plane. Let us consider a point P and a line L lying on the
plane P. If the ray Wð0ÞP and the plane Uð0ÞL are the back-pro-
jections from the first view, then the 3D primitives can be
parameterized as follows

P ¼ Wð0ÞP _P; ð24Þ
L ¼ Uð0ÞL _P: ð25Þ

The estimation of the plane P within a minimization
scheme aimed at recovering the structure can be per-
formed directly. Each plane of the scene contributes 3
d.o.f., thus the total number of d.o.f is independent of
course from the number of observed features. As the esti-
mates of the 3D locations of the primitives are affected by
the localization error on the image-plane coordinates that
define Wð0ÞP and Uð0ÞL , such coordinates can be re-estimated,
which adds two additional d.o.f. for each observed
feature.
6. A causal scheme for structure and motion recovering

The cost function (23) can be minimized using a causal

scheme. An optimization algorithms is causal when it only
uses information from the ’past’. For example, for the esti-
mation at time i it uses the image location of the features
extracted from the views at times 0, . . . , i � 1. Such schemes
are desirable in a variety of applications. For example,
applications of motion control of mobile robots in clut-
tered environments require 3D scene and camera motion
to be estimated in real time. Computational efficiency,
however, is not desirable only in real-time applications,
but in all applications of commercial interest. An example
of this sort is the fast visualization of augmented reality,
the pre-visualization mixed (real-virtual) realities for
high-end visual applications (TV and cinema production),
etc.

As pointed out in the introduction, several recursive
schemes have been proposed in the literature in the past
two decades. In this article we start from the approach of
[14–18], which consists in modelling the projection process
as a dynamical system whose state collects all the problem
unknowns (camera motion and 3D feature coordinates).
The state estimator is an Extended Kalman Filter [47,48],
driven by the image features extracted from the acquired
video sequence. The structure of this algorithm is basically
quite simple: we start from the last prediction of the camera
motion and the last estimation of the scene structure, avail-
able at time i, and we compute the 2D image feature pro-
jections on the current view. These projections are then
compared with the observed ones. The difference between
the predicted and the observed image coordinates,
weighted by the Filter gain, are thus used for refining the
estimates, and so on.

In this article we do not address the 2D feature tracking
problem. We assume, in fact, that feature tracking is per-
formed by a pre-processing module that detects and tracks
both 2D points (corners) and lines (straight edges).

Our approach considers lines as global geometric enti-
ties as it does not use any information on the endpoints
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of the visible segment. Moreover, we do not assume points
and lines to be visible throughout the entire sequence as
recursive algorithms can deal with occlusions by removing
the no-longer-visible primitives and by including new ones
in the EKF state vector [16–18].

Many causal schemes have been proposed in the litera-
ture, which address all sorts of features and constraints.
The approach that we propose here, however, is character-
ized by several points of novelty. First of all we adopt a
unified approach for point and line features, with compact
formulations of intersection relations between geometric
primitives. The tools of GA enable us to handle coplanarity
constraints on points and lines in the same general frame-
work. Such constraints are naturally enforced into an
EKF structure by directly estimating the plane where the
points and lines lie.

From an algebraic standpoint, our results for point
coplanarity is similar to those proposed in [35]. Our
approach, however, is more general as it can be natu-
rally and quite straightforwardly extended to the case
of line coplanarity. Furthermore, parameterizing rota-
tions with rotors turns out to be a particularly effective
choice as it is minimal and naturally embedded into the
framework. This parameterization is crucial for the
motion estimation problem because of the well-known
difficulties in enforcing nonlinear constraints on state
variables.

6.1. Camera motion parameterization

Camera motion is here described by six parameters: the
components of the translation vector t, which appear in the
translator as T ¼ e

nt
2 ; and the rotation bivector B ¼ u

2
�B,

which represents the rotation plane scaled by the rotation
angle.

A rotation is usually represented in linear algebra by a
matrix R, which is bound to be orthogonal with unit deter-
minant (RTR = RRT = 1). This parameterization, however,
is redundant as the nine entries of R are not independent
(orthonormality constraint).

In order to overcome this difficulty [14,15] suggest to
use quaternions, which are isomorphic to rotors, to
parameterize camera rotations in the EKF. A quater-
nion (q0,q1,q2,q3), however, needs to satisfy the nonlin-
ear normalization constraint q2

0 þ q2
1 þ q2

2 þ q2
3 ¼ 1,

enforcing which is difficult in an algorithm such as the
EKF, which is based on a step-by-step linearization.
For this reason [14,15] adopt a mixed parameterization:
quaternions to describe the global rotation (rotation
between the first and the (i � l)th camera), whereas in
the state vector the incremental rotation between the
(i � l)th and the ith camera is described by a triplet of
euler angles.

Using GA we can adopt a unique parameterization for
rotations without enforcing any additional constraint in
the state estimation process, as the rotation is directly
encoded by the bivector B. Geometric Calculus in GA
allows us to compute the derivatives of an expression con-
taining rotors with respect to its exponent B.

In [16–18] rotations are parameterized using exponen-
tial coordinates, which is typical in Lie Groups and Lie
Algebras [49]. This parameterization is equivalent to
GA’s.

6.2. The prediction model

Motion parameters are to be considered as dynamical

while the scene rigidity assumption suggests that the struc-
ture parameters are static. The estimation of static param-
eters is thus expected to converge to a constant value after
a transient and their a-priori estimate at time i is equal to
the value estimated at time i � 1.

In general, in the absence of any a-priori information
on the camera motion (e.g. constant velocity, planar
motion, constrained trajectory, etc.), it is impossible to
predict the evolution of the dynamic parameters of the
EKF state. The prediction model for motion parameters
proposed in the literature [14–16,18] is thus the random

walk. According to this model, our best guess for the cur-
rent camera position and orientation are the previous
camera position and orientation. As a consequence, the
new measurements y(i) must take care of correctly updat-
ing the camera viewpoint. As a consequence, static and
dynamic parameters are treated exactly in the same way,
although there is a big difference between them: for the
static parameters the random walk model is adequate,
whereas for the dynamic parameters that model is quite
poor. Nonetheless, the performance of structure and
motion estimators based on this model are remarkable,
as shown in the literature.

A more sophisticated model, proposed in [16–18], uses a
larger state vector that also includes the 3D velocity vectors
v (translational velocity) and x (rotational velocity). In this
case the random walk prediction model is adopted for
velocities instead of camera position and orientation. This
means that, at time i, the camera is assumed to keep moving
with the same velocity that it had between the time steps
i � 2 and i � 1. This assumption guarantees a certain conti-
nuity in the prediction of the motion parameters, and seems
more reasonable in the presence of smooth trajectories.

6.3. State-measurement relations

The EKF structure allows us to deal with state-measure-
ments relations that are nonlinear and in implicit form,
such as (17) and (19). This is possible through linearization
of such relations with respect to the state variables and the
measurements. However, it is advisable to write Eqs. (17)
and (19) in explicit form, in order to avoid having to com-
pute the derivatives with respect to the measurements and
speed up the process. We follow this approach in the imple-
mentation of our algorithm.

In the point case this operation is quite straightforward
as we can divide both terms of the wedge product by their
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third component (which is zero only for the points at infin-
ity on the image plane). By setting

v ¼ ½~RðiÞðCð0Þ ^ ~TðiÞPTðiÞ ^ nÞRðiÞ� � E; ð26Þ

the predicted image-plane coordinates will be

p̂ðiÞ1 p̂ðiÞ2 p̂ðiÞ3

h i
¼ v1

v3

v2

v3
1

	 

: ð27Þ

This is what will be compared with the observed coordi-
nates pðiÞj ; j ¼ 1; 2; 3.

In the line case any of the three coordinates could
become zero, but we can still split the set of 3D lines of
the structure into two subgroups: one including the lines
whose image-plane coordinates satisfy jlðiÞ1 jP jl

ðiÞ
2 j, the

other including the remaining lines for which jlðiÞ1 j < jl
ðiÞ
2 j

(see Fig. 4). This grouping must be re-evaluated at each
frame.

By setting

w ¼ ½~RðiÞðCð0Þ ^ ~TðiÞLTðiÞÞRðiÞ��; ð28Þ
Fig. 4. The lines of the structure are divided in two regions. Region 1
includes lines whose image-plane coordinates satisfy jlð0Þ1 jP jl

ð0Þ
2 j, region 2

is made of the remaining lines, for which jlð0Þ1 j < jl
ð0Þ
2 j (this picture shows

only those lines that pass throught the origin ðlð0Þ3 ¼ 0Þ but this subdivision
applies to any line in the image plane).

Fig. 5. A line L and its projection lP onto the image plane P(0). The
vectors oL, olP (the offset of lP from the origin) and �nL lie on the back-
projection plane Uð0ÞL . The angle between �nL and olP (or its normalized
version �kLÞ is uL.
the predicted image-plane coordinates will be

l̂ðiÞ1 l̂ðiÞ2 l̂ðiÞ3

h i
¼ 1 w2

w1

w2

w1

h i
; if jlðiÞ1 jP jl

ðiÞ
2 j; ð29Þ

l̂ðiÞ1 l̂ðiÞ2 l̂ðiÞ3

h i
¼ w1

w2
1 w3

w2

h i
; if jlðiÞ1 j < jl

ðiÞ
2 j:

Quite obviously, the image-plane coordinates provided by
the tracking algorithms need to be consistently rescaled
in order to enable a comparison with Eqs. (27) and (29).

6.4. Structure parameterization

A point or a line can be parameterized through their 3D
coordinates or, in alternative, through the coordinates of
their projections onto the image plane P(0) of the reference
camera plus some 3D information.

In the point case the 3D location of a point P is a func-
tion of the image-plane coordinates p(0) that describes the
distance from the origin dP or the depth aP

oP ¼ dP �pð0Þ ¼ aP pð0Þ; ð30Þ

where p(0) lies on the image plane, i.e. pð0Þ3 ¼ 1 . In the line
case, a line L is specified by two vectors: the direction �nL

and the dual of the momentum qL ¼ QLI�1
3 . Since the refer-

ence camera lies in the origin, the back-projection plane
Uð0ÞL and the momentum of the line QL represent the same
plane. The normal to the back-projection plane Uð0ÞL is
n
ð0Þ
UL
¼ lð0Þ ¼

P3
j¼1lð0Þj ej (Eq. (18)), therefore we have

qL ¼ dL
�lð0Þ; ð31Þ

where �lð0Þ is the normalized version of l(0).
The strategy of parameterizing a 3D primitive through

its projection, suggested in [14–16] for the point case, is a
clever one as it enables the algorithm to take advantage
of the a-priori information that is available on the location
of the primitives. We know, in fact, that a 3D point (line)
lies on its back-projection ray (plane).4 The Kalman Filter
allows us to take the a-priori information on a parameter j

into account by fine-tuning the initial variance of its esti-
mate accordingly. Through this parameterization it is pos-
sible to concentrate most of the initial uncertainty along
the direction of depth, rather than uniformly spreading it
over all three components of the 3D point locations.

There is one more advantage to this parameterization:
the number of parameters that describe a 3D primitive
could be reduced by removing the image coordinates from
the state vector. This solution considerably reduces the
dimensionality of the problem, and significantly speeds
up the algorithm. This choice [14,15], however, is heavily
criticized in [16–18], since it considers the measurements
on the first image of the video sequence as noise-free, and
therefore it introduces a significant bias in the estimates.

As a matter of fact, ‘freezing’ the 2D coordinates of the
projected points to their measured value violates the zero-
mean assumption that is inherent in the Kalman Filter,
4 Due to measurement noise this is only approximately true.



Fig. 6. A 3D line in the scene can be expressed as the intersection of two
back-projection planes (from the cameras 0 and m).
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with the result that the Filter could easily diverge, as shown
in [16]. It is important to notice, however, that allowing all
the 2D coordinates on the reference image to vary makes
the model unobservable, i.e. there are infinite configura-
tions of structure and motion that explain the measure-
ments at any time i. The model becomes observable by
fixing the 2D coordinates of 3 points on the reference frame
(plus one depth to remove the scale factor uncertainty in
the reconstruction) [16–18].

6.4.1. A closer look to the line case

As pointed out in Section 3.1, lines are not generic tri-
vectors in C3 as the line parameterization has only 4
d.o.f. The compact Conformal expression (19) can not be
used for estimating the line structure, but it can only be
used for predicting the new image-plane coordinates. In
order to account for the non linear constraints on the
Euclidean vectors �nL and qL ðk�nLk ¼ 1; �nL � qL ¼ 0Þ we need
to switch to the Euclidean expression (22).

Nonetheless, in minimization algorithms such as the
EKF it is preferable to adopt a minimal parameterization
rather than forcing a constraint at each step. An effective
one consists of expressing the direction �nL as a rotated
version of a known vector �kL lying on the plane QL

(Fig. 5)

�nL ¼ e�
uL
2

�QL �kL e
uL
2

�QL ¼ e�uL
�QL �kL:

Notice that, when a vector lies on the rotation plane, the
action of a rotor turns out to be greatly simplified. �kL

can be chosen to be the (normalized) vector that is perpen-
dicular to the line projection �nL onto the image plane P(0)

kL ¼ �lð0Þ1 lð0Þ3 e1 � lð0Þ2 lð0Þ3 e2 þ ðlð0Þ1 Þ
2 þ ðlð0Þ2 Þ

2
� �

e3: ð32Þ

As �kL can be shown to be a function of just the image coor-
dinates l(0), �kL is a function of just the angle uL. A line L is
thus parameterized by the scalars uL and dL. This informa-
tion can be completed with the image-plane coordinates
l(0), if they are treated as problem unknowns.

This line parameterization is similar to the one proposed
in [27].

It is important to remember that lines behave quite dif-
ferently from points, as they do not allow us to define any
geometric constraint on the camera motion from just one
pair of views. In fact, given a pair of images and a set of
stereo-corresponding line projections, the corresponding
back-projections planes are always incident for any dis-
placement and orientation of the cameras. Line constraints
that are useful for EKF estimation and prediction require a
minimum of three simultaneous views.

A possible solution, proposed in [27], is based on a
three-step estimation scheme: given the current view and
two new views, the interframe rotation is computed from
the line observations; then the translation is recovered by
keeping the rotation fixed; finally the structure is computed
from the motion with the help of the a-priori estimate, if
available.
As this multi-step estimation approach does not easily
agree with an EKF structure, we propose in this article
another approach, directly derived from the trifocal con-
straint. Three back-projection planes corresponding to
the same line form a pencil (given the 3 planes, the line
of intersection between any two of them must lie on the
third one). One possibility is to model a line as the inter-
section of the back-projection planes from two cameras,
for example the reference one (0) and an arbitrary
one (m)

L ¼ Uð0ÞL _ UðmÞL :

The line obtained from this expression is projected onto the
current view (i), where i > m, in order to update the filter
estimation (see Fig. 6).

A back-projection plane can always be expressed as a
linear combination of the reference camera planes through
the image-plane coordinates of the line. As the camera
planes depend on the camera motion (see Eq. (14)), all
the back-projection planes from the mth camera can be
expressed only through the camera translation and rota-
tion. A structure of K lines is thus parameterized by only
6 parameters plus the image-plane coordinates �l

ð0Þ
k and

�l
ðmÞ
k , k = 1, . . . ,K, if they are seen as unknowns.

Like in the point case, in order to make the model obser-
vable, we need to fix a number of image-plane coordinates.
The problem of determining the minimum number of line
coordinates to be locked on the two reference images 0
and m will be the subject of further investigation.

As far as frame m is concerned, it should be chosen suf-
ficiently far from the reference frame, in order to make the
triangulation more robust.

The algorithm that we propose here uses the first few
seconds of a video sequence to recover a rough estimate
of the camera motion: a triplet with a sufficiently wide
baseline is extracted and a classical algorithm based on tri-
focal tensor estimation [11] is run. The third image of the
triplet is chosen as frame m, and the computed motion is
used for initialization purposes.

The expression of a line L defined as the intersection of
two generic planes P1 and P2 is given in the appendix (see
Eq. (39)). Here the planes P1 ¼ Uð0ÞL and P2 ¼ Uð0ÞL are
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written as functions of the image-plane coordinates �lð0Þ and
�lðmÞ as follows:

�nP1
¼ �lð0Þ; �nP2

¼ RðmÞ�lðmÞ ~RðmÞ;

where �lðmÞ is the normal to the back-projection plane in the
reference system attached to the mth camera, therefore the
rotor R(m) is needed to give the correct orientation of P�2.
Since dP1

¼ 0 and dP2
¼ tðmÞ �P�2, the vectors qL, and �nL

defining the line L can be written as

qL¼
ðRðmÞ�I ðmÞ ~RðmÞÞ � tðmÞ

�kðRðmÞ�I ðmÞ ~RðmÞÞ^�I ð0Þk
�I ð0Þ;�nL¼

½ðRðmÞ�I ðmÞ ~RðmÞÞ^�I ð0Þ�I3

�kðRðmÞ�I ðmÞ ~RðmÞÞ^�I ð0Þk
:

ð33Þ
Fig. 7. A point P lying on a plane P can be expressed as the intersection of
such plane with the back-projection ray Wð0ÞL from the first camera. A 3D
line L lying on P is the intersection between P and the back-projection
plane Uð0ÞL .
6.5. The coplanarity constraint

Coplanar primitives are quite frequent in video
sequences. Typical examples are the inscriptions on a
box, or the details on the facade of a building or on a paint-
ing. In this Section we show how it is possible to take
advantage of this additional constraint on the scene in an
EKF algorithm.

When dealing with coplanar features we can follow two
possible approaches: the first consists of forcing the coplan-
arity constraint at each step in order to refine the structure
estimation; another solution consists of describing the
structure with a minimum number of parameters that auto-
matically satisfy the constraint. Quite clearly, the second
choice is more suitable and effective for an EKF structure.
The solution that we propose here belongs to this category
and is characterized by the fact that the algorithm param-
eterizes the coplanar primitives through the plane they
belong to. In other words, what we include in the filter state
are not the parameters of the coplanar primitives but the
parameters of the planes of coplanarity.

Eqs. (24) and (25) can be used in Eqs. (17) and (19) when
predicting the new image-plane coordinates, i.e. when the
structure estimate at step i is computed. However coplanar
points and lines are parameterized in the state vector
through the parameters of the plane where they lie and
the image-plane coordinates of their projections onto the
reference camera. Thus the knowledge of the complete
state-measures relationship is needed in order to compute
the Jacobian matrix used in the Filter.

The generic expression of the intersections between two
planes or a plane and a line are reported in the Appendix A
(Eqs. (39) and (42)). Let P be a plane in the scene, with
normal �nP and distance from the origin dP. A point P lying
on the plane P can be seen as the intersection of its optical
ray Wð0ÞP from the first camera with P(see Fig. 7). If we per-
form the substitutions �nL ¼ �pð0Þ and qL = 0 in Eq. (42),
which are derived from the fact that the optical ray passes
through the origin and its direction is the normalized vec-
tor pointing to the image-plane coordinates, then the offset
of the point P is
oP ¼
dP�pð0Þ

ð�nP � �pð0ÞÞ
¼ dP�pð0Þ

ð�nP � �pð0ÞÞ
� ð34Þ

A 3D line L lying on II is the intersection between II and
the back-projection plane Uð0ÞL (see Fig. 7). By setting
P1 = P and P2 ¼ Uð0ÞL , we have �nP2 ¼ �Ið0Þ and dP2 = 0.
From Eq. (39) the vectors that define the line are

qL ¼
dP

jj�nP ^ �Ið0Þjj
�Ið0Þ; �nL ¼

½�nP ^ �ðIÞð0Þ��I3

jj�n ^ �Ið0Þjj
: ð35Þ

By comparing Eqs. (30) and (34), we have dp ¼ dP
ð�nP��pð0ÞÞ

,

while by comparing Eqs. (31) with (35) we have

dL ¼ dP

jj�nP^�Ið0Þjj.

Notice that a plane is described by four parameters in
the Conformal space (see Eq. (10)), but number of d.o.f.
is indeed only three, as the scale factor is redundant. It is
possible to fix the scale factor by setting jj�nPjj = 1, but in
order to reduce the number of parameters and get rid of
this nonlinear constraint we propose to estimate directly
the following 3D vector

kP ¼
�nP

dP
; ð36Þ

this choice also simplifies the expressions of the primitives
lying on P as follows

oP ¼
pð0Þ

ðkP � pð0ÞÞ
; ð37Þ

qL ¼
�Ið0Þ

jjkP ^ �Ið0Þjj
; �nL ¼

½kP ^ �Ið0Þ��I3

jjkP ^ �Ið0Þjj
: ð38Þ

Notice that the proposed parameterization has an intrinsic
limit: when the plane P where the primitives lie tends to
pass through the origin, both the numerator and the
denominator in Eqs. (34) and (35) tend to zero. In fact,
while it is obvious that dP fi 0, the fact that �nP � �pð0Þ ! 0
derives from the fact that the back-projection ray tends
to lie on P. Furthermore �nP ^ �Ið0Þ ! 0 because the normals
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to the planes P and P2 ¼ Uð0ÞL tend to be aligned. As a con-
sequence, computing the 3D position of the primitives as
the intersection of such planes constitutes an ill-condi-
tioned approach. Anyway, this situation is not of interest
in real applications as lines or points lying on a plane that
pass through the center of the camera are not likely to be
detected by a feature extraction algorithm.
6.6. The scale factor issue

If structure and motion are completely unknown, it is
well known that structure parameters and translation vec-
tor are only recoverable up to a scale factor.5 This implies
that the solutions to the state estimation task are infinite,
therefore the model is unobservable. In order to make it
observable, the scale factor must be fixed in some way.

What is commonly done [14–16] is to fix to an arbitrary
value a structure parameter, for instance the depth of a
point or the distance of a line from the origin. In order
to do so, the Kalman Filter is saturated, i.e. the model
and initial variance of the parameter to be fixed are set
to zero in order to keep its estimate fixed to the initial
value. All the other parameters automatically scale them-
selves to accommodate this constraint.

A draw-back of this solution is its dependency from the
lifespan of the reference feature. When the feature is no
longer trackable, another primitive must be used as refer-
ence, and the choice is usually on the feature that exhibits
the lowest estimation variance. Feature swapping causes a
drift in the estimations [16–18], and particularly in the scale
factor. In order to limit this problem, we associate the scale
factor to a plane of the scene (if available) by locking one
of its three parameters. This means that, as long as enough
primitives belonging to this plane are visible throughout
the sequence (not necessarily the same ones) the scale fac-
tor will keep being associated to the plane, thus minimizing
the drift.
7. Simulations results

We tested our algorithm on both synthetic and real
sequences, but since the quality of the estimates can only
be assessed using ground-truth data, this Section will
mainly consider experiments on synthetic data. In order
to provide a more realistic view of the algorithm perfor-
mances, we will not just consider completely synthetic fea-
ture sets (artificially generated image coordinates corrupted
by localization noise (Section 7.2)) but also synthetically
generated sequences (Section 7.3). In this second case we
render a 3D scene viewed by a moving virtual camera
and we process the sequence with a feature tracking algo-
rithm. The tracked features are passed to the Kalman Filter
and the tracked camera motion is compared with the
5 Conversely, the camera rotation and the focal length (if unknown) can
be recovered with no ambiguities.
known trajectory of the virtual camera (ground-truth
data).

In Section 7.4 we also present some results relative to
tests conducted on a real sequence acquired with a hand-
held camera. In the case of rendered and of real video
sequences, we tested the performance of the estimator by
augmenting the scene with additional synthetic objects
and checking whether such objects are, in fact, solidly
attached to the scene in motion. The object location is, in
fact, based on the scene estimate, and the camera motion
allows us to create a new sequence containing the desired
object viewed by a moving camera. The original sequence
and the new one can now be merged, giving the illusion
that the virtual objects is in the scene. Of course this pro-
cess gives good results only if the camera motion is esti-
mated with accuracy.

Except for Section 7.2, where the performance of the
EKF algorithm are presented both in the point and line
cases, we will focus our attention on the EKF line algo-
rithm, which exhibits more novel aspects.

7.1. Error measurement

In order to measure the translation error we consider
two types of measurements: the angle (in degrees)

Etd ¼ arccos
t � t̂
ktk k̂tk

� �

and the distance (in meters)

Etm ¼ ðt� t̂Þ2

between the actual translation vector (t) and the estimated
one ð̂tÞ. We derive both values for all the images of the se-
quence (we only discard the first 50 frames in order to skip
the transient) and then we compute their average and stan-
dard deviation.

Error in meters are computed after aligning the recon-
struction with the ground truth by rescaling the depth of
a reconstructed point (or the distance of a line from the ori-
gin) to the correct value.

In order to have a scalar measurement of also the rota-
tion error, we plot

ER ¼ arccos
trðRR̂

TÞ � 1

2

 !

in degrees, where R̂ is the estimated rotation matrix (com-
puted from the estimated rotor R̂). We evaluate the rota-
tion error for all the images of the sequence (skipping
again the estimates related to the first 50 frames) and then
we compute its average and standard deviation.

The error on the line structure is given by the average
angle (in degrees) between the actual line orientation
ðnLk Þ and the estimated one ðn̂Lk Þ

EL ¼
1

K

XK

k¼1

arccosðnLk � n̂Lk Þ;
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while the error on the point structure is given by the aver-
age difference (in meters) between the actual position (Ph)
and the estimated position ðP̂ hÞ of the points

EP ¼
1

H

XH

h¼1

ðP h � P̂ hÞ2:

As for the motion, we computed the standard deviation of
the error also for the structure.

All the plotted error values have been averaged over 100
trials for different localization noise values.
7.2. Simulations on synthetic data

7.2.1. Setup of the experiments
The scene viewed by the camera in the synthetic experi-

ments is shown in Fig. 8. This structure is made of 21
points and 19 lines that join pairs of points, all lying on
three planes. The depth of the points is from 200 to 400
times the focal length.

We used this structure to test point-based, line-based
and joint point-line based algorithms, running the EKF
both with and without information on feature coplanarity.
We thus had five different cases:

1. Structure of independent points;
2. Point structure plus coplanarity information – the situa-

tion is similar to the independent point case, but the
algorithm knows which points belong to which plane,
therefore it directly estimates the parameters of the
structure planes;

3. Structure of independent lines;
4. Line structure plus coplanarity information – similar to

the independent line case, but the algorithm knows
which lines belong to which plane, therefore it directly
estimates the parameters of the structure planes;

5. Point and line structure plus coplanarity information.
Fig. 8. A view of the synthetic structure used in the experiments, as seen
from the camera (frame 60 of a 200 frame sequence). The scene has 21
points and 19 lines, lying on three planes. The depth of the points is from
200 to 400 focal lengths.
In all the experiments the camera follows an orbital
motion around an axis that is parallel to the camera’s Y

axis and passes approximative through the center of the
scene (walk-around motion). The center of the scene stays
approximatively at a distance of 3 m from the camera with
a focal distance of 1 cm. The sequence is 200 frames long
and the camera covers an angle of about 120� around the
object. The image is 500 · 500 pixel, and the side of the
image plane is set to 1 unit of focal length (the field of view
is 53�).

The noise added to the image-plane coordinates of the
points is gaussian with zero mean and standard deviation
varying from 1 to 3 pixels, while the line measurements
are perturbed by an additive noise on their angle. A gauss-
ian noise with zero mean and standard deviation varying
between 0.5� and 1.5� is added by rotating the 2D lines
around the midpoint of the viewed segment.

As far as the experiments on mixed features are con-
cerned, we chose sets of coplanar points and lines that cor-
respond to comparable localization/orientation errors. For
example, points that are affected by a localization error of 2
pixel and lines that are affected by an orientation error of
half a degree are used together because half a degree of ori-
entation error on the average viewed segment shifts its end-
points of about 2 pixels. Similarly, we paired points
affected by 3 pixels of localization errors with lines affected
with 1� of orientation error. We will refer to these two lev-
els of noise as level 1 and level 2.

7.2.2. Evaluation of the algorithm
In Figs. 9–16 we report the estimation errors of the EKF

algorithm in the four cases discussed above (independent/
coplanar points and lines). While in the independent point
case the algorithm does not need any a-priori information
on the structure (usually the initial estimates of the points
are set on a plane parallel to the image plane and placed
at an arbitrary distance in front of the camera), a rough ini-
tialization is required both in the line case and in the copla-
nar features case. More specifically, in order to converge to
a correct estimate, the algorithm needs to know the
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Fig. 9. Translational estimation error in degrees (point structure exper-
iment) with a varying noise level. Solid lines, mean value; Dotted lines,
mean value + 2 * std. dev.; Black lines, the filter uses coplanarity
information; Gray lines, the lines are considered as independent.
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Fig. 10. Translational estimation error in meters (point structure exper-
iment) with a varying noise level. Solid lines, mean value; Dotted lines,
mean value + 2 * std. dev.; Black lines, the filter uses coplanarity
information; Gray lines, the lines are considered as independent.
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Fig. 11. Rotational estimation error in degrees (point structure experi-
ment) with a varying noise level. Solid lines, mean value; Dotted lines,
mean value + 2*std. dev.; Black lines, the filter uses coplanarity informa-
tion; Gray lines, the lines are considered as independent.

Fig. 13. Translational estimation error in degrees (line structure experi-
ment) with a varying noise level. Solid lines, mean value; Dotted lines,
mean value + 2 * std. dev.; Black lines, the filter uses coplanarity
information; Gray lines, the lines are considered as independent.
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Fig. 12. Structure’s estimation error in meters (point structure experi-
ment) with a varying noise level. Solid lines, mean value; Dotted lines,
mean value + 2 * std. dev.; Black lines, the filter uses coplanarity
information; Gray lines, the lines are considered as independent.

Fig. 14. Translational estimation error in meters (line structure experi-
ment) with a varying noise level. Solid lines, mean value; Dotted lines,
mean value + 2 * std. dev.; Black lines, the filter uses coplanarity
information; Gray lines, the lines are considered as independent.

Fig. 15. Rotational estimation error in degrees (line structure experiment)
with a varying noise level. Solid lines, mean value; Dotted lines, mean
value + 2 * std. dev.; Black lines, the filter uses coplanarity information;
Gray lines, the lines are considered as independent.
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approximate orientation of lines and planes in the 3D
space. This initialization is provided by a 2-view or 3-view
estimation in the point or line case, respectively.

As far as concerns the coplanarity constraint, it should
be exploited by the algorithm whenever this situation is
encountered. Coplanarity information could be known in
advance, but it is also possible to devise a run-time check
on feature coplanarity which clusterizes coplanar features.
This would allow us to switch the parameterization of fea-
tures from ‘independent’ to ‘coplanar’ and add the com-
mon plane to the state vector. We ought to be careful,
however, that this approach is expected to be fruitful only



Fig. 16. Structure’s estimation error (orientation of the lines) in degrees,
with a varying noise level. Solid lines, mean value; Dotted lines, mean
value + 2 * std. dev.; Black line, the filter uses coplanarity information;
Gray lines, the lines are considered as independent.
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Fig. 17. Translational estimation error in meters for a structure of 19 lines
and 21 points, with a varying noise level on feature position (level 1: std.
dev. of 2 pixel (points) and 0.5� (lines); level 2: std. dev. of 3 pixel (points)
and 1� (lines)).
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Fig. 18. Translational estimation error in meters, with five different
structures, at two different localization error level. Structures are made of
21 points (a), 15 points and 5 lines (b), 10 points and 10 lines (c), 5 points
and 15 lines (d) and 19 lines (e).
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Fig. 19. Translational estimation error in degrees for a structure of 19
lines and 21 points, with a varying noise level on feature position (level 1:
std. dev. of 2 pixel (points) and 0.5� (lines); level 2: std. dev. of 3 pixel
(points) and 1� (lines)).
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if we can trust co-planarity judgement. If the coplanarity
decision is incorrectly taken, this could impact negatively
on the final result. In our experiments, the coplanarity con-
straint was imposed starting from a-priori information, but
the problem of automatically clustering coplanar features is
indeed worth investigating further in the future.

We would like to stress the fact that, in order to cor-
rectly steer the evolution of the Kalman Filter in the
parameter space, the algorithm only requires a rough ini-
tialization: the structure estimate is refined during the glo-
bal estimation process. This means that only a small
motion around the object is required in order to recover
a rough estimate of the structure: only one or two seconds
of video sequence before starting the EKF algorithm is
usually sufficient.

As expected, feature coplanarity is confirmed to improve
the performance of the algorithm, as already mentioned in
previous works [32]. This is particularly true in the line
case.

We also performed some tests with mixed data (points
and lines together). In these experiments, the three planes
of the structures shown in Fig. 8 are estimated using obser-
vations of point and lines. The algorithm is provided with
coplanarity information. We run two experiments. In the
first one all the points (21) and lines (19) are available at
the same time to the algorithm in the presence of two levels
(1 and 2) of localization error. In Figs. 17, 19 and 21 results
are shown in comparison with results obtained from only
points (std. dev. of 2 and 3 pixels) or lines (std. dev. of
0.5� and 1�.). By using points and lines together, the quality
of the estimates turns out to be greatly improved. This,
however, could be easily attributed to the fact that the
number of observed features is greater than before. For this
reason, in the second experiment we wanted to compare the
algorithm’s performance in the presence of mixed struc-
tures while keeping the total number of observed features
fixed. We run simulations with 21 points (case a), 15 points
and 5 lines (case b), 10 points and 10 lines (case c), 5 points
and 15 lines (case d) and 19 lines (case e), all picked from
the structure of Fig. 8. Such simulations were run for both
levels of localization error. The relative results are shown in
Figs. 18, 20 and 22. As we can see, the algorithm exhibits a
nearly constant performance for the various mixes of
points and lines. Performance tends to slightly worsen for
lines with increasing localization error. In conclusion, the
information provided by point-like observations turns
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Fig. 20. Translational estimation error in degrees, with five different
structures, at two different localization error level. Structures are made of
21 points (a), 15 points and 5 lines (b), 10 points and 10 lines (c), 5 points
and 15 lines (d) and 19 lines (e).
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Fig. 21. Translational estimation error in degrees for a structure of 19
lines and 21 points, with a varying noise level on feature position (level 1:
std. dev. of 2 pixel (points) and 0.5� (lines); level 2: std. dev. of 3 pixel
(points) and 1� (lines)).
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Fig. 22. Rotational estimation error in meters, with five different
structures, at two different localization error level. Structures are made
of 21 points (a), 15 points and 5 lines (b), 10 points and 10 lines (c), 5
points and 15 lines (d) and 19 lines (e).

Fig. 23. An image from the sequence generated with 3DSMax�. The lines
on the cube sides are tracked by a line tracker and the EKF algorithm uses
their coordinates as measurements.

Fig. 24. In this picture both the real and the estimated trajectories of the
camera are visualized. The black curve is the real trajectory, while the gray
curve is the trajectory estimated by the EKF algorithm using the
coplanarity information for the lines on the cube sides.
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out to be approximatively equivalent to that of line features
for camera motion estimation purposes.

7.3. An experiment on a rendered sequence

In this experiment the EKF line algorithm was fed with
trajectories extracted by a tracking algorithm. The
sequence is synthetic and was generated with 3DSMax�.
The virtual scene contains a textured cube, shown in
Fig. 23.

The image-plane coordinates of the lines are tracked by
a simple algorithm based on an edge extraction followed by
a Hough transform. A global Hough transform is com-
puted on the edge map of the first frame of the sequence
and whenever new lines need to be extracted. Then local
maxima of the Hough transform are extracted, and the vis-
ible segments of the corresponding lines are localized on
the image. In the following frames a local Hough transform
is computed for each segment in a bounding box centered
on its position in the previous frame.
7.3.1. Setup of the experiment

The side of the cube is 1 meter long. The animated cam-
era moves around the cube keeping approximatively at a



Table 1
Estimation errors in the synthetic cube experiment

TRANSL (deg) Etd TRANSL (m) Etm ROT (deg) ER

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Copl. lines 1.51 0.74 0.026 0.011 0.55 0.18
Indep. lines 2.63 0.81 0.065 0.015 1.07 0.64

Fig. 26. One frame from the miniature crossrail intersection scene.
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distance of 3–3.5 m from the cube center and following the
trajectory shown in Fig. 24. The sequence is 200 frames
long, and the camera covers an angle of approximatively
28� around the cube. The field of view of the camera is
set to 45�, and the size of the image plane is 320 · 240 pixel.

The rough quantization introduced both by the Hough
transform (angle sampling step is 1�) and the low resolution
of the image cause the trajectories of the tracked line to be
very noisy, therefore we expect that the performance of the
algorithm will improve significantly when coplanarity
information on the lines is provided.

Table 1 shows the motion estimation errors for lines fea-
tures with and without coplanarity information.

As we can see, the estimation errors are given for both
direction (degrees) and magnitude (meters) of the transla-
tion vector. In Fig. 24 we can also see both the estimated
and the real trajectories of the camera in the case of copla-
nar lines. A comparison between the two trajectories imme-
diately gives us an idea of the quality of the estimates.

In order to visually assess the quality of our camera
tracker we rendered a synthetic turtle on the cube sequence.
As we can see from the frames shown in Fig. 25, the object
moves solidly and consistently with the scene.
Fig. 27. Structure and camera trajectory of the crossrail intersection
scene, estimated by the EKF-based algorithm.
7.4. An experiment on a real sequence

With no ground-truth data available on the camera
motion, the only way we have to quantify the estimation
error is to compare the estimated 3D structure (if known)
with the estimated one. The scene that we considered is a
miniature (40 · 40 · 20 cm) portion of a crossing between
a railroad and a road (see Fig. 26). The two ramps at the
sides of the railroad are coplanar, therefore the structure
Fig. 25. Three frames of the augmented sequence where the original video of
The turtle is rendered from a viewpoint that coincides with the motion estima
can be considered as made of three planes. We measured
the angles between any pair of them, in order to compare
the true angles with the estimated ones.
the synthetic cube is merged with the new sequence of the synthetic turtle.
ted by the EKF algorithm.



Fig. 28. Six frames from the augmented crossrail intersection sequence, where synthetic moving and static vehicles (train engine and carriage as well as
cars) have been rendered and added to the scene. From a visual inspection of the resulting video sequence, it is clear how all vehicles are always correctly
positioned within the scene.
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In the estimation task we only use lines and coplanarity
information. Feature extraction and tracking are per-
formed by the simple algorithm described in the previous
Section. The sequence is 400 frames long, and the number
of tracked lines is 30.

The estimated trajectory and structure are shown in
Fig. 27.

The structure is estimated with good precision: the error
on the angles between any couple of planes is always below
0.5�.

In order to give a visual idea of the quality of the esti-
mates, we rendered additional virtual objects (some static,
some others moving along the road or on the railroad) and
overlaid them on the original sequence (see Fig. 28).
8. Conclusions

In this article we discussed the problem of estimating 3D
structure and camera motion from 2D observations of
points, lines and coplanar features. By casting the problem
into the framework of Geometric Algebra we could benefit
from a unified formalism for dealing with structures of
point, lines, planes and coplanarity information.

By adopting the Conformal Model of GA we could use
a very compact notation and we could easily manipulate
equations describing rigid motions. The EKF-based algo-
rithm presented here is an example of application of this
approach. This algorithm is a causal scheme that performs
a 3D estimation from the observations (sequential or
simultaneous) of point and line features, and its perfor-
mance is thoroughly assessed and discussed in this article.
The quality of the estimates is, in general, very good in
the presence of a reasonable amount of noise, and the
impact of coplanarity information is usually quite substan-
tial, especially when the noise localization level is
significant.

The independent (non-coplanar) lines case is the most
critical one, as the estimation error is larger than in the
other cases. Expanding the state vector with the 2D line
coordinates will probably increase the quality of the esti-
mation, since a localization error on the two reference
images used for triangulation can deeply affect the recov-
ered 3D structure and therefore the estimates of the camera
motion at the frame m. For this reason, further investiga-
tions are needed on the minimum number of line coordi-
nates to be locked on the reference images 0 and m in
order to make the model observable.

Appendix A

In this Appendix we provide the expression of the inter-
sections between two planes and a line and a plane as a
function of their Euclidean parameters. Such expressions
can be also computed using Maple� or Mathematica�

packages of GA symbolic computation, available for free
downloading in [50]. Two planes P1 and P2 always inter-
sect in a line, unless they are parallel:

L ¼ P1 _P2 ¼ �ðP�1 ^P�2Þ
�
:

Let P�i ¼ �nPi ;þdPi n (Eq. (10)); we have

L� ¼ �ð�nP1
þ dP1

nÞ ^ ð�nP2
þ dP2

nÞ
¼ �ð�nP1

^ �nP2
Þ � ½ðdP1

n ^ �nP2
Þ þ ð�nP2

^ dP2
nÞ�

¼ �ð�nP1
^ �nP2

Þ þ ½dP2
�nP1
� dP1

�nP2
�n: ð39Þ
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By comparing Eqs. (8) and (39), we see that the intersection
of two planes P1 and P2 is a line that is perpendicular to the
plane spanned by the normals to the two planes P1 and P2

ðnL ¼ �ð�nP1
^ �nP2

Þ�Þ. The vector qL should lie on the plane
that is perpendicular to the line and, in fact, it is a linear com-
bination of �nP1

and �nP2
ðqL ¼ ½dP2

�nP1
� dP2

�nP2
�Þ.

A line L always intersects a plane II in one point, unless
they are parallel. If the plane and the line intersect in the
point X, the resulting bivector can be proven to be always
of the form

B ¼ P _ L ¼ X ^ n: ð40Þ
This fact is quite intuitive as the points at infinity in the
Euclidean space are mapped onto the point n in the Con-
formal space. As a consequence, all the geometric objects
passing through the infinity (lines and planes) intersect at
least in n.

Eq. (40) can be easily proven:

B� ¼ ðP _ LÞ� ¼ �ðP� ^ L�Þ ¼ �ð�nP þ dPnÞ ^ ð�nLI3 þ qLnÞ
¼ �ð�nP ^ nLI3Þ � ðdPn ^ �nLI3Þ � ð�nP ^ qLnÞ;

since qLn = qL � n, and therefore dPn � (qL � n) = 0. We
can rearrange the expression above as follows

B� ¼ ðP _ LÞ� ¼ �ð�nP � �nLÞI3 � ½dP�nLI3 þ ð�nP ^ qLÞ�n;
therefore

B ¼ ðP _ LÞ ¼ �ð�nP � �nLÞEþ ½dP�nL � ð�nP ^ qLÞI3�n: ð41Þ
Given a 3D point x, it is simple to verify that

X ^ n ¼ xn� E;

which is the same expression as Eq. (41) up to the scale fac-
tor ð�nP � �nLÞ.

The Euclidean expression of the intersection point is
therefore

x ¼ ½dP�nL � ð�nP ^ qLÞI3�
ð�nP � �nLÞ

: ð42Þ
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[13] Y. Ma, S. Soatto, J. Košecká, S.S. Sastry, An invitation to 3-D
vision—from images to geometric models, Springer Verlag, Berlin,
2004.

[14] A. Azarbayejani, A.P. Pentland, Recursive estimation of motion,
structure, and focal length, IEEE Transactions on Pattern Analysis
and Machine Intelligence 17 (6) (1995) 562–575.

[15] T. Jebara, A. Azarbayejani, A. Pentland, 3D structure from 2D
motion, IEEE Signal Processing Magazine 16 (3) (1998) 66–84.

[16] A. Chiuso, P. Favaro, H. Jin, S. Soatto, 3-D motion and structure
causally integrated over time: theory (stability) and practice (occlu-
sions), ESSRL Technical Report 99-003, October 1999.

[17] A. Chiuso, P. Favaro, H. Jin, S. Soatto, 3-D motion and structure
from 2-D motion causally integrated over time: implementation,
Proceedings of the European Conference on Computer Vision,
Lecture Notes in Computer Science 1842 (2000) 735–750.

[18] A. Chiuso, P. Favaro, H. Jin, S. Soatto, Structure from motion
causally integrated over time, IEEE Transactions on Pattern Analysis
and Machince Intelligence 24 (4) (2002) 509–522.

[19] A.J. Davison, Real-time simultaneous localisation and mapping with
a single camera, in: Proceedings of the Ninth International Confer-
ence on Computer Vision ICCV’03, October 2003, Nice, France,
2003.

[20] A. Gruber, Y. Weiss, Multibody factorization with uncertainty and
missing data using the EM algorithm, International Conference on
Computer Vision and Patern Recognition (2004) 707–714.

[21] D.D. Morris, T. Kanade, A unified factorization algorithm for points,
line segments and planes with uncertainty models, ICCV (1998) 696–
702.

[22] F. Dellaert, S. Thrun, C. Thorpe, Jacobian images of super-
resolved texture maps for model-based motion estimation and
tracking, in: IEEE Workshop on Applications of Computer Vision
(WACV’98), October 1998, IEEE Computer Society, Princeton, NJ,
1998, pp. 2–7.

[23] C.J. Taylor, D. Kriegman, Structure and motion from line segments
in multiple images, IEEE Transaction on Pattern Analysis and
Machine Intelligence 17 (11) (1995) 1021–1033.
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