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ABSTRACT

This paper focuses on the generation of physically valid views

from two or more uncalibrated images acquired by standard

cameras. The problem is faced without trying to yield a three

dimensional reconstruction of the imaged scene, which would

be unfeasible without the exact knowledge of the positions

of the cameras in the Euclidean frame where the scene is to

be described. Instead, starting from the previous works of

Shashua and Navab on Relative Affine Structure [1] and the

article of Fusiello on views synthesis from uncalibrated views

[2] we propose a novel approach that does not require the

presence of a plane at infinity to define the homography be-

tween two views but merely the parallelism between couples

of planes. This allows our approach to be applied to numer-

ous scenes where two parallel planes can be defined (indoor

scenes, straight streets and avenues). Experiments with syn-

thetic images illustrate the approach.

Index Terms— Calibration, Rendering, Computational

Geometry, Geometric modeling

1. INTRODUCTION

In the last years, researches about the synthesis of realistic

virtual views have been developed both in the field of Com-

puter Vision and Computer Graphics, mainly due to the in-

creasing attention for virtual reality and its related applica-

tions Hence, a wide variety of approaches have been devel-

oped, as witnessed by the the huge amount of literature on

this topic. Roughly speaking, the techniques for the gener-

ation of synthetic views may be classified into three classes,

basing on how much the geometric information is exploited

Model based rendering techniques rely on an explicit geomet-

rical 3D model of the scene. A first step is required to extract

the 3D model from a set of acquisitions, typically obtained by

laser scanning or calibrated cameras [3],The novel views may

then be rendered from the point of view of the virtual camera.

These techniques usually require a well calibrated acquisition

system. When no a priori information abut the calibration

system is available the generation of novel views is yielded by

exploiting the geometrical constraints existing among differ-

ent images of the same scene [4, 5, 2].In this way, an implicit

geometric model of the scene is obtained, and the generation

of the novel view may proceed by interpolation or extrapola-

tion from the references images. The appealing aspect of this

approach is that no calibration of the acquisition system is

required, and only two reference images are needed to gener-

ate a novel view. However, a computationally extensive pre-

processing step is required to achieve a robust point matching

among the reference images, This is the framework in which

our technique is embedded. Finally, techniques based on the

plenoptic function do not require any geometric information

or correspondence. Though, a large set of reference images

is needed, in order to achieve a sufficiently dense sampling of

the plenoptic function [6].

The proposed process for generating a novel image start-

ing from a set of reference ones may be roughly split into

three parts. First a sufficiently dense set of point correspon-

dences among the images must be established.A possible ap-

proach is described in [7]. The second step investigates the

intrinsic geometry of the reference views and the synthesis of

a novel view while the last step accounts for final images ren-

dering mapping textures onto the novel views (we followed

the approach proposed in [8]).

2. RELATIVE AFFINE STRUCTURE

A very compact and useful approach to the problem of recon-

struction from uncalibrated cameras is the one developed in

[1]. The key idea of that paper is to represent the 3D geome-

try of the scene in a projective frame where an arbitrarily cho-

sen plane is mapped at the infinity. This results in an elegant

notation for modeling the point transfer between two refer-

ence views, constituted by a 2D projective transform plus an

affine term. This term, named relative affine structure by the

authors, is characterized by the noticeable property of being

invariant to the choice of the second view.

Consider the projections in a homogeneous projective

space P
3 of a scene onto two images (P3 → P

2) by the action

of two cameras i and j: making explicit the role of the scale

factors the 3D points projection can be written as:

pT
i Xxi = PiX (1)

pT
j Xxj = PjX
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where P represents each camera matrix, X is a 3D point

whose projections on the two cameras are xi and xj and pT
i ,

pT
j are the third rows of Pi and Pj , respectively. Considering

the projection of P on a generic plane π and remembering that

the camera centre C is the right null vector of the projection

matrix the previous equation for camera i can be rewritten as:

πT X = πT P†
ip

T
i Xxi + πT Ci

CT
i X

CT
i Ci

(2)

(where P†
i represents the pseudo-inverse of the P matrix).

Combining the equations for the two cameras we can ob-

tain a compact form:

xj � Aij (π)xi + μeji (3)

where: Aij (π) = PjP
†
i − πT P†

i

πT Ci
eji = 1

pT
i X

πT X
πT Ci

may be easily interpreted as follows: the point transfer from

view i to view j is obtained by a 2D homography, Aij (π),
plus an affine term directed as the epipole eji and proportional

to μ. This term may be given an explicit geometric meaning

by recalling that the inner product between the homogeneous

representations of a plane and a point is proportional to the

normal distance of the point to the plane. Therefore

μ � d (π,X)
zi

(4)

where zi is the distance of X from the principal plane of the

i − th camera and d (π,X) is the distance of X from π.

To disambiguate the scaling dependence in (4) Shashua

and Navab proposed to normalize both Aij (π) and μ such

that μ = 1 for a fixed point X0. After this normalization, we

have:

μ =
pT

i X0

πT X0

πT X
pT

i X
=

z0
i

d (π,X0)
d (π,X)

zi
(5)

In this way, the amplitude of the correction given by the affine

term in (3) is related only to the first view and the geometry of

the scene, without being affected by the choice of the second

view nor by scale ambiguities. This property allows to build

a 3D representation of the scene geometry as follows:

XP =
[

xi

μ

]
With this definition, it is immediate to see that:

xi � [I|0]XP

xj � [Aij (π) |eji]XP

where I is the 3 × 3 identity matrix. Therefore, XP is to be

regarded as a 3D reconstruction of the scene in the coordinate

system where the camera matrices (assuming, for simplicity,

the same internal calibration matrix K) are given by:

Pi = K [Ri|ti] = [I|0]
Pj = K [Rj |tj ] = [Aij (π) |eji]

For a random choice of the reference plane, the transforma-

tion relating the geometry of the scene in the Euclidean frame,

X, and its reconstruction, Xp, is projective, as remembered

by the superscript P . A special case is given when the plane

at infinity is used as the reference plane. Under this condi-

tion, the relative affine structure (5) becomes proportional to

the inverse of the normal distance from the principal plane of

the i− th camera, and the transformation between X and Xp

becomes affine.

According to Fusiello [2], the generation of a synthetic

view from a smooth motion working in a projective frame,

cannot be directly obtained as in an Euclidean frame (keep in

mind that there’s no reason why a path that is smooth in the

projective frame should be smooth as well in the Euclidean

one). Following his work he introduced the G matrix, defined

as:

G =
[

P[
0 1

] ]
(6)

This square matrix belongs to the Special Euclidean Group

of R
3) and, being a Lie Group , it is equipped with smooth

differentiable operators. The infinitesimal variation of G can

then be defined as

G (dt) = I + dt
dG
dt

This displacement K times, yielding:

G (Kdt) =
(
I + dtdG

dt

)K
where dG

dt = logm (G)

Therefore, by posing t = Kdt results in:

G (t) = lim
K→∞

(
I +

t

K

dG
dt

)K

= expm (t · logm (G)) = Gt

(7)

where expm denotes matrix exponentiation. Further details

about the smoothness of interpolated (extrapolated) transfor-

mations can be found in [2].

3. VIEW SYNTHESIS

According to the projective reconstruction theorem, if the

scene has been reconstructed from the views, it is affected by

a projective ambiguity:

xi � [I|0]XP
i , xj � [I|0]DijXP

i

where Dij is the relative transformation between the cameras

and XP
i is the reconstructed scene for a generic plane π:

XP
i =

[
xT

i μi

]T =
[

xT
i

z0
i

πT X0
πT X

zi

]T

For the invariance of the inner product in homogeneous co-

ordinates, πT X = πT
i Xi for any choice of i (where πT

i =[
vT

i ci

]
). This results in the following writing:

XP
i � HiXi =

[
[I|0]
z0

i

πT
i X0

i
πT

i

]
Xi (8)
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where Hi is the projectivity between Xi and XP
i . By posing

the last row of H is given by:

z0
i

πT
i X0

i

πT
i =

z0
i

πT
i X0

i

[
vT

i ci

]
(9)

It is important to note that (9) does not depend on the scale

ambiguity related to the homogeneous representation of πT
i

and X0
i . The transformation between the views in the pro-

jective frame, defining Gij = GjG−1
i can then be written

as:

XP
j � HjXj = HjGijXi � HjGij (Hi)

−1 XP
i

⇒ Dij = HjGij (Hi)
−1 (10)

Substituting the previous results we obtain:

Dij =

⎡⎣ A∞
ij − eji

vT
i

ci
eji

1
ci

πT
i X0

i

z0
i

0
z0

j

z0
i

⎤⎦ (11)

where A∞
ij = RjRT

j is the homography of P
2 induced by

taking the plane at infinity as the reference plane. Combining

eqs. (7) and (3) we obtain:

xt � [I|0]Dij = HjGt
ij (Hi)

−1 XP
i (12)

Unfortunately we do not know a priori the π plane param-

eters (the vi vector). To overcome this limitation, Fusiello

proposed in [2] the exploitation of the plane at infinity as the

reference plane: πj =
[

0T c
]T

resulting in

D̂ij �
⎡⎣ A∞

ij eji
1
c

πT
i X0

i

z0
i

0
z0

j

z0
i

⎤⎦
3.1. View Synthesis through two parallel planes and a cal-
ibration point

If the plane at infinity is not available in the reference views,

new constraints must be sought in order to calibrate the scene.

For example, the relative motion between two planes could

be exploited. To this aim, we measure the transformation Dij

induced by two different planes πi =
[

vT
i ci

]T
, ωi =[

wT
i di

]T
:

D̂ij (π) = Cπ

⎡⎣ A∞
ij − eji

vT
i

ci
eji

1
ci

πT
i X0

i

z0
i

0
z0

j

z0
i

⎤⎦
D̂ij (ω) = Cω

⎡⎣ A∞
ij − eji

wT
i

di
eji

1
di

ωT
i X0

i

z0
i

0
z0

j

z0
i

⎤⎦(13)

If the reference point is equidistant from the principal planes

of the two cameras, then
z0

j

z0
i

= 1. This allows to solve for the

scale factors Cπ, Cω in (13). Now, let M (π) ,M (ω) denote

the upper left blocks of D̂ij (π) and D̂ij (ω) after solving for

the scale factors:

M (π) = A∞
ij − ejivT

i M (ω) = A∞
ij − ejiwT

i

Therefore: M (π) − M (ω) = eji

(
wT

i − vT
i

)
from

which the difference
(
wT

i − vT
i

)
may be computed up to a

scale factor (the norm of the epipole). If we add the further

condition that the planes π and ω are parallel to each other,

then wi = γvi for some γ �= 1. Therefore, exploiting two

parallel planes and a point equidistant from the cameras, we

get to obtain vi up to a scale factor. From this knowledge, and

under the assumption that the calibration matrices are equal,

it is possible to obtain the expression of A∞
ij as follows.

Let v̂i and êji be two unitary norm vector directed as vi

and eji, respectively. It is no hard to see that the one parame-

ter function

J (α) = det
(
M (π) + αêjiv̂T

i

)
(14)

is linear in α. Therefore, it admits a unique α such that

J (α) = 1. From the condition on the calibration matri-

ces it follows that det
(
A∞

ij

)
= 1, and thus it must be

A∞
ij = M (π) + αêjiv̂T

i Since A∞
ij is the homography

induced by the plane at infinity, recovering A∞
ij is equiva-

lent to using the plane at infinity as the reference plane. At

this point, the algorithm for view synthesis may proceeds

following (12). It is worthwhile noticing that the equa-

tion J (α) = 1 may be solved in a closed form, yielding:

α =
(

1
|M(π)| − 1

)
1

tr(M(π)−1êjiv̂T
i )

3.2. View Synthesis through two pairs of parallel planes

If the ratio
z0

j

z0
i

is unknown, then (14) must be rewritten as:

M (π) =
z0
i

z0
j

(
A∞

ij − ejivT
i

)
M (ω) =

z0
i

z0
j

(
A∞

ij − ejiwT
i

)
Therefore, it is still possible to compute vT

i up to a scale

factor, but the optimal value for α should be found by impos-

ing:

J (α) = det
(
M (π) + αêjiv̂T

i

)
=

z0
i

z0
j

where
z0

i

z0
j

is unknown. A solution to this problem is found by

considering another pair of parallel plane, π′
i, ω′

i. Repeating

the same reasoning, we get that the optimal value for α is

found when:

J ′ (α) = det
(
M (π′) + αêjiv̂′T

i

)
=

z0
i

z0
j

Therefore, it is possible to solve for α by posing:

J (α) = J ′ (α)
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Fig. 1. The central image is a virtual view obtained from the two side cameras

4. EXAMPLES AND CONCLUSION

In this paper we present a novel approach of view synthesis

from uncalibrated cameras based of the Relative Affine Struc-

ture proposed by Shasua. We focused on defining a new set

of constrains that allows the use of planes parallelism instead

of plane at infinity. This allows to use our approach in indoor

scenes or in every place where parallel planes can be easily

identified (e.g. Fig. 1) without the requirement of a plane

at infinity. Lots of tests were performed on synthetic images

to evaluate correctness of the algorithm, in Fig.2 we present

the virtual camera position following the two proposed ap-

proaches (red points for the two parallel planes and black

points for the two couples of parallel planes) (Synthetic views

are in Fig. 3).

Fig. 2. Virtual Camera Motion estimated from the two differ-

ent proposed approaches

5. REFERENCES

[1] A. Shashua and N. Navab, “Relative affine structure:

Canonical model for 3d from 2d geometry and applica-

tions,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 18, pp. 873–883, Sept. 1996.

[2] A. Fusiello, “Specifying virtual cameras in uncalibrated

view synthesis,” IEEE Trans. on Circuit and Systems for
Video Technology, vol. 17, pp. 604–611, May 2007.

[3] D. Hogg (coordinator), “The resolv project (re-

construction using scanned laser and video),”

http://www.scs.leeds.ac.uk/resolv.

[4] S. Seitz and C. Dyer, “View morphing: Synthesizing 3d

metamorphoses using image transforms,” SIGGRAPH 96
Conference Proceedings.

[5] A. Shashua and A. Avidan, “Novel view synthesis in ten-

sor space,” Conference on computer vision and pattern
recognition, pp. 1034–1040, June 1997.

[6] L. McMillan and G. Bishop, “Plenoptic modeling: An

image-based rendering system,” SIGGRAPH 95 Confer-
ence Proceedings.

[7] B.D. Lucas and T. Kanade, “An iterative image registra-

tion technique with an application to stereo vision,” Proc.
IJCAI, Vancouver, Canada, pp. 674–679, 1981.

[8] J. Shade, S. Gortler, L. He, and R. Szeliski, “layered

depth images,” in SIGGRAPH 98 Conference Proceed-
ings, 1998.

Fig. 3. Virtual views from the virtual cameras in Fig. (2)
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