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Abstract—Tangible Acoustic Interfaces (TAIs) are innovative
acoustic Human-Machine Interaction devices. Exploiting a num-
ber of contact sensors distributed on a surface, the vibrational
signal generated from the interaction between the surface and
an object moved by the user is acquired and analyzed to
recognize what the user is doing on the device. The usage of
vibrational sensors naturally opens the way also to classification
and recognition applications. In this paper, a system to perform
audio-based interaction object recognition is presented. The aim
of the system is to recognize what object the human is using
to interact with the TAI, by exploiting feature analysis and
classification techniques. In particular, a frame-by-frame SVM-
based classifier architecture is used to perform object recognition.
The result is then filtered to eliminate the possible classification
outliers. By training and testing our system using signals from
four interaction objects at different Signal to Noise Ratios we
have reached accuracies between 73% and 100% according to
the object used, the quality of the acquired signal and the optional
use of the classification filtering algorithm.

I. INTRODUCTION

In the last years a big effort in the industry has been

made on the development of intuitive and user-friendly Human

Computer Interaction devices. If we categorize them based

on the use of active or passive sensors, we can recognize

Tangible Acoustic Interfaces (TAIs) in the latter class, since

they use a set of accelerometers to acquire the vibrational

signal produced by objects moved by the user on the TAI

surface. Passive sensors present the intrinsic advantage of

making it possible to transform whatever surface in a sensible

one. In this context, solutions studied in TAI-CHI project

[1] showed that an accurate and real-time localization of

impulsive and continuous touches of different objects on

passive surfaces (such as plexiglass and medium-density fiber-

boards) is possible. In particular, the solution proposed in [2]

localizes the contact point analyzing of the Time Differences

of Arrival (TDOAs) of the signal acquired by different sensors

disposed on proper positions on the tangible surface. The only

requirement of this system is that the interaction between the

object and the board produces a noticeable sound.

In this paper we will enrich the framework used for the TAI-

CHI project by adding the capability to recognize the object

used for the interaction. This solution may be useful in several

applications: one of the most interesting is the realization of

interactive blackboards that behave in different ways according

to the object used. In [3] we presented a solution for the object

recognition which makes use of a fingerprinting approach. In

particular, the Short Time Fourier Transform of the signal is

processed to obtain a binary representation of the spectrum

(the fingerprint). This signal is then used to discriminate

different objects with a matching algorithm based on the

minimization of the Manhattan distance. The promising results

obtained in [3] encouraged us in developing a more refined

system to improve the classification accuracy.

In this paper we present a solution that makes use of Support

Vector Machines (SVMs) [4] to classify signals. SVMs cluster

the feature space R
M in a number of regions divided by

suitable separation surfaces that span a subspace of dimension

R
M−1. According to the region in which the feature vector

under analysis fall, it is assigned to a specific class. The

computation of the separation surfaces is done in a previous

training stage. Support Vector Machines have been originally

conceived as a binary classifier, but different extensions to

classify multiple signals have been presented; a good overview

may be found in [5]. In our work we make use of binary (two

classes) SVMs, in a one-against-one configuration: in order to

keep into account the case of NO interacting objects, we make

use of NO(NO−1)/2 binary SVM classifiers which compare

the likelihood on object i vs. the likelihood of object j, i 6= j
and i, j = 1, . . . , NO. The global verdict is emitted on the

base of the joint analysis of the verdicts of each classifier.

With a frame by frame analysis of the signal we compute a

small set of features, based on waveform, spectrum and linear

prediction coefficients of the signal, which are used for training

and classification. The set of features has been selected starting

from a larger set of 82 descriptors, through the exploitation of

the Sequential Floating Forward Selection algorithm [6].

Since the path attenuation of the vibrational signals in thin

solid surfaces is very high, in order to make the classification

process more robust we select the signal acquired by the sensor

closest to the contact point.

The rest of the paper is organized as follows: Section II

presents the features used and the feature selection process.

Section III discusses the proposed classification scheme. Sec-

tion IV presents the experimental results obtained by testing
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the classification system in a real scenario. Finally Section V

draws some conclusions.

II. AUDIO FEATURES

The recognition system uses a set of audio features extracted

from the acquired audio signal to detect the object which

moves on the tangible surface. Due to the huge amount

of audio features described in literature, we used a feature

selection approach over a large set of descriptors. The feature

extraction and feature selection steps are described in the

following sections.

A. Initial feature set

In our work, the initial large set of descriptors is composed

of the 82 features listed in Table I.

Feature Type Features Ref.

Temporal ZCR [7]

Frequential 6 LPC coefficients. [8]

Spectral 32 Audio Spectrum Envelope coeffi-
cients;
Audio Spectrum Centroid;
Audio Spectrum Spread;
Bandwidth;
40 Quantized Spectral Coefficients.

[9][3]

TABLE I: Initial set of audio features.

In the following part of this section we will provide a

short description for each feature. We will use the symbols

s(t), S(h), P (h) and f(h) to denote, respectively, the time-

domain signal, the amplitude and power spectrum of the signal

and the frequency associated to the h-th bin of the signal

spectrum (given the total number Nft of spectral bins, we

have 1 ≤ h ≤ Nft). For further details on specific features

we invite the interested reader to consider the references in

Table I.

1) Zero Crossing Rate: the Zero Crossing Rate (ZCR)

counts the number of times the signal crosses the zero axes in

each frame. In particular, the ZCR is computed as

ZCR =
1

2

T−1
∑

t=1

|sign[s(t)]− sign[s(t− 1)]|
Fs

T
, (1)

where Fs is the sampling frequency and T is the number

of samples in each frame. If the signal is not zero-mean, a

previous DC-offset removal stage should be implemented in

order for ZCR to be informative.

2) Linear Prediction Coefficients: The linear prediction

coefficients (LPC) refer to the theory of the Linear Prediction

Coding that obtains an estimate ŝ(t) of s(t) as a linear

combination of the past P samples:

ŝ(t) =
P

∑

p=1

aps(t− p) . (2)

The coefficients ap are determined minimizing the Mean

Square Error between ŝ(t) and s(t).

3) Audio Spectrum Envelope: The Audio Spectrum Enve-

lope (ASE) is used in the literature to create a reduced version

of the spectrogram. More specifically, after a logarithmic band

subdivision, the value of ASE in a specific sub-band b is

obtained by summing up the the values of P (h) where h ∈ b.

4) Audio Spectrum Centroid and Audio Spectrum Spread:

The Audio Spectrum Centroid (ASC) and Audio Spectrum

Spread (ASS) make use of the logarithmic band subdivision

defined in the previous paragraph. ASC and ASS compute the

centroid and the spread of a modified version of the power

spectrum of the signal as it were a probability density function:

ASC =

∑Nft/2−Hlow

h′=0 log2
f(h′)
1000 P (h′)

∑Nft/2−Hlow

h′=0 P (h′)
, (3)

ASS =

√

√

√

√

∑Nft/2−Hlow

h′=0 (log2
f(h′)
1000 −ASC)2P (h′)

∑Nft/2−Hlow

h′=0 P (h′)
, (4)

where Hlow is an user-defined value that limit the summation

to the range of frequencies of interest and h′ is the frequency

bin index after the logarithmic band-subdivision.

5) Bandwidth: The bandwidth of the signal is obtained by

the knowledge of ASC and P (h′) as follows:

B =

∑Nft/2
h′=0 |ASC − f(h′)|P (h′)

∑Nft/2
h′=0 P (h′)

. (5)

6) Quantized spectral coefficients: The computation of the

quantized spectral coefficients is performed as follows: the

average of the amplitude spectrum S(h) is computed. Values

of the signal S(h) above the mean of S(h) value are set to 1

in the quantized spectrum feature S0/1(h), while values below

the mean value are set to 0.

B. Feature selection

The goal of the feature selection stage is to determine

the optimal dimensionality of the vector (i.e. the value of l)
and the related subset of features, with respect to some cost

functions or classification results. Starting from the previous

set of 82 features, it is possible to generate l-dimensional

feature vectors, with 1 ≤ l ≤ 82. It is desirable to keep the

dimension l small to reduce the computational complexity and

to avoid over-fitting problems in the training phase. In general,

three methods have been proposed in the literature to perform

feature selection [10][11]:

• Filter method - In the filter approach the feature selection

algorithm is independent of any classifier; it filters out

features that have a little chance to be useful in the

classification task. The selection of the features is based

on performance evaluation metrics computed directly

from the data and does not take into account a direct

feedback from classification results.

• Wrapper method - The wrapper method consists of eval-

uating a specific feature vector on the basis of classifica-

tion results. The vector related to the best classification

performance is chosen as the final result of the feature
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Fig. 1: Block diagram of the proposed interaction object recognition system

selection process. This approach tends to outperform filter

methods, but at a much higher computational load.

• Hybrid method - The hybrid approach splits the problem

of feature selection in two subproblems: the choice of the

feature subset content, performed with a filter technique,

and the selection of feature vector dimension, which is

carried out in a wrapper fashion. This approach allows

a considerable speedup in terms of resources needed for

computation with respect to a pure wrapper approach,

while giving good results for what concerns the overall

classification performance.

In our framework the feature selection is performed only

once. Computational complexity, as a consequence, does

not concern us. For this reason we have resorted to the

Sequential Floating Forward Selection method, a wrapper-

based approach. Starting from an empty set of descriptors,

the following two steps are iteratively performed in SFSS

algorithm:

1) First step: a new feature l in the set L is added to the

feature set currently used Z. The feature added is chosen

as the one that maximizes a predetermined cost function

based on the accuracy obtained by the classifier:

l+ = arg max
l∈L−Z

MCRR(Z ∪ l) , (6)

where MCCR(Z∪l) is the Mean-Correct Classification

Rate and it measures the average Correct Classification

Rate of the cross-fold validation conducted using the set

Z ∪ l;
2) Second step: among all the features in the set Z the

feature l− whose deletion best improves MCCR(Z −
l−) is discarded.

A user-defined number of iterations is performed (30 in our

case) before stopping the algorithm.

III. CLASSIFICATION SYSTEM

The general architecture of the recognition system is shown

in Figure 1. The signal is acquired using an array of four

microphones which are positioned on the corners of the

surface. The four audio signals are used by the localization

module to localize the contact point between the object and

the surface; the signal s(t) of the microphone closest to the

contact point, localized using the algorithm in [2], is sent to the

feature extraction module; in the feature extraction step, the

signal is subdivided in small audio frames and the reduced

set of features selected through the procedure described in

Section II-B is extracted for each frame. This way, a feature

vector vk is associated to the k-th analyzed audio frame. Each

feature vector vk is then sent to the frame-based classification

module which performs a frame-by-frame object recognition

task exploiting a set of SVMs in one-against-one configuration.

The result rk of the recognition for the frame k is used in the

filtering step that aggregates fixed-size windows of temporally

consecutive results to give an improved recognition estimation

Rw (where w is the current fixed-size window index). The

details of frame-based classification and classification filtering

steps are described in the following sections.

A. Frame-based classification

The classification system uses a set of one-against-one

SVMs to recognize the object used to interact with the surface.

A one-against-one SVM is a binary classifier: it tells what of

the two considered classes a specific feature vector is belong-

ing to. In our case, given a number NO of objects to recognize

NO(NO−1)/2 binary SVMs have to be implemented, one for

each couple of classes. A generic feature vector vk is classified

by each SVM; then, a max-wins algorithm finds the final class

of the current vector by selecting the most recurring class from

the results given by the binary classifiers. The general scheme

of the frame-based classification module is shown in Figure

2: the vector vk is fed into each of the NO(NO−1)/2 binary

classifiers, which work in parallel (in the block diagram, the

generic class ωi, with 1 ≤ i ≤ NO, is associated to the object

i); the result of each classification is then used to detect the

mode of the current classification task performed by SVMs;

the class corresponding to the mode of the classification results

is given as output rk of the module.

B. Classification filtering

The results of the previous step may show some outliers due

to noise or isolated classification errors: in order to drastically

reduce the errors we adopt a window-based filtering technique:

a window of SW consecutive frame-based classification results

is taken and the mode class of the window is detected. For

each window w the final result Rw is given from the mode

computed among classification results of the frames of the

current window.

IV. EXPERIMENTS

We have tested the proposed system by implementing it into

a real scenario. This Section presents the experimental setup
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Fig. 2: Block diagram of the frame-based classification module

we have used to perform our tests and the experimental results

obtained using four different interaction objects.

A. Experimental setup

We tested our system on a medium density fiber board. The

rectangular sensible area has dimensions 60 × 45 × 0.8 cm.

At the corners of the sensible area, four Knowles BU 21771

accelerometers are mounted. A bi-adhesive tape ensures the

contact between the sensors and the surface while preserving

the signal transparency. The signal is acquired with a profes-

sional audio soundcard at a sampling rate of 16 kHz. The

analysis frames for feature extraction are non-overlapped and

0.1 s long. Classification filtering analysis windows are non-

overlapped as well. Later we will analyze the performance of

the system as a function of the window size SW .

To test our system, four interacting objects have been used,

namely:

• Fingertip (F);

• Nail (N);

• Wooden stick (W);

• Screwdriver (S).

In some conditions, due to interferences in the power supply,

we noticed the presence of a strong component in the signal

at a frequency of 50 Hz and harmonics up to 500 Hz. A notch

filter may optionally remove, when needed, this undesired

component in the signal.

Figure 3 shows an example waveform for each object. At

the beginning of each waveform a noise excerpt is present: the

vertical bold line indicates the beginning of the useful signal.

It can be observed that the fingertip produces a weak vibration

that is likely dominated by noise. At the other extreme, the

screwdriver produces a loud and noticeable vibration.

In order to perform feature selection, training and classi-

fication in different SNR conditions, we have considered the

case of signal corrupted with 50 Hz noise and the case when

the notch filter is present to remove the undesired components.

Table II shows the SNR related to each object when the filter

is activated (SNRF ) and the filter is not activated (SNRNF ).
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x 10
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Time [s]

Fingertip

0 1 2
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0 1 2
−2

0

2
x 10
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Wooden stick

0 1 2
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Screwdriver

Fig. 3: Example of acquired signals for each interacting object. The
vertical bold line separates noise from signal.

The object has been moved in proximity of one of the four

sensors.

Fingertip Nail Wooden stick Screwdriver

SNRF 4.93 dB 16.59 dB 22.49 dB 26.29 dB

SNRNF 1.45 dB 10.50 dB 12.20 dB 16.20 dB

TABLE II: Average SNR values for each object.

B. Feature selection results

Using the configuration SNRF , the original feature set

has been reduced as depicted in Table III. Instead, using the

configuration SNRNF , the final set of features after feature

selection is shown in Table IV.

Feature Type Features

Temporal ZCR.

Frequential 3rd and 5th LPC coefficients.

Spectral Audio Spectrum Centroid;
1st and 8th Spectral coefficients;
2nd and 8th Audio Spectrum Envelope
coefficients.

TABLE III: Remaining features after feature selection step, using
filtered signals.

Feature Type Features

Temporal ZCR.

Frequential 2nd and 3rd LPC.

Spectral Audio Spectrum Spread;
1st, 2nd, 11th and 21th Spectral coeffi-
cients;
2nd, 3rd, 8th and 18th Audio Spectrum
Envelope coefficients.

TABLE IV: Remaining features after feature selection step, using
non filtered signals.
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C. Classification results

Using the experimental setup described in previous section,

we have conducted a set of experiments to evaluate the be-

havior of the classification system with filtered and unfiltered

data, using an approach based on the method described in [3].

We have computed classification accuracy measure before and

after the classification filtering to evaluate the performance of

the frame-based classifier and the filtering block.

Given the total number Nf of analyzed signal frames, the

accuracy before the classification filtering block is computed

as follows:

Ar,% =
correctly classified frames

Nf
· 100 (7)

Given the size SW , in number of frames, of the analysis

window of the classification filtering block, the corresponding

final accuracy is computed as follows:

AR,% = SW
correctly classified windows

Nf
· 100 (8)

Using these metrics, we have evaluated the average classifi-

cation performance of our system. Results are shown in Figure

4. The classification filtering block increases the accuracy

with respect to the results obtained from the frame-based

classification module: in particular, it can be seen that for

SW = 7 a peak is detected for the accuracy of filtered

data. Values of SW higher than 9 (about one second of

analysis) are not interesting for our real-time application due

to the consequent increasing delay to obtain the classification

result. Moreover, the performance of the classification filtering

decreases in general for values of SW > 7. It can be seen

also that the accuracy for filtered and unfiltered data are very

similar.

Following, the confusion matrices of the accuracy results

before and after the classification filtering block (SW = 7)

are reported. In particular, Tables Va and Vb report the results

obtained at the output of the frame-based classification block;

Tables Vc and Vd, instead refer to the results obtained after

applying the classification filtering. Null result stands for no

decision: this happens when the mode of the classification

results is not unique.

SNRNF F N W S Null

F 99.00 0.33 0.33 0 0.34
N 16.33 80.00 0 3.33 0.34
W 0.33 8.33 76.00 13.67 1.67
S 0 5.33 2.33 92.00 0.33

(a) Confusion matrix for Ar accuracy, with Nf = 315 and
using the unfiltered signal and the related feature set.

SNRF F N W S Null

F 96.19 1.27 0.32 2.22 0
N 0 73.33 14.60 3.17 8.90
W 4.76 5.08 80.00 9.21 0.95
S 0 1.59 3.49 94.29 0.63

(b) Confusion matrix for Ar,% accuracy, with Nf = 315

and using the filtered signals and the related feature set.

SNRNF F N W S Null

F 100.00 0 0 0 0
N 15.56 84.44 0 0 0
W 0 2.22 84.44 13.34 0
S 0 2.22 0 97.78 0

(c) Confusion matrix for AR,% accuracy, with Nf = 315,
SW = 7 and using the unfiltered signals and the related
feature set.

SNRF F N W S Null

F 100.00 0 0 0 0
N 0 84.44 8.89 0 6.67
W 2.22 2.22 91.12 2.22 2.22
S 0 0 2.22 97.78 0

(d) Confusion matrix for AR,% accuracy, with Nf = 315,
SW = 7 and using the filtered signals and the related
feature set.

V. CONCLUSIONS

In this paper a system to perform audio-based object

recognition system for acoustic tangible interfaces has been

proposed. The core of the system is composed of a set of

SVMs in one-against-one configuration. The global verdict is

based with a Max-Wins policy among all the NO(NO − 1)/2
verdicts. Finally, a classification filtering is used to attenuate

the effect of isolated errors in the classification process. The

features used have been selected with the Sequential Floating

Forward Selection. Experimental results conducted with real

data show that the system may reach an accuracy between

73% and 100%. The computational cost of the proposed

algorithm is kept low by the use of Support Vector Machines.

We are quite confident that the proposed algorithm may be

implemented on a commercial DSP.
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