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Systematic Methods for the Implementation of
Nonlinear Wave-Digital Structures
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Abstract—Wave-digital (WD) structures containing adaptors
with memory (characterized by port reflection filters) and non-
linear elements are suitable for the modeling of a wide range
of nonlinear circuits and physical structures. In this paper, we
propose two methods for automating the construction of algo-
rithms that efficiently implement such structures, starting from
their symbolic description. The former is based on the solution of
state-space equations, while the latter is based on direct structural
inspection. The state-space approach starts from the blockwise
construction of a tableau matrix for the direct implementation of
a generic WD structure and, for this reason, is here referred to as
the wave tableau (WT) method. It has very general applicability
as it works for a generic WD structure. The second technique
(binary connection tree) implements a WD structure through a
direct inspection (scanning) of the treelike topological represen-
tation of the reference model. Although valid for a slightly less
general range of cases, this approach turns out to be much more
efficient and flexible than that of the WT method. Such methods
are particularly interesting for an interactive and immediate
prototyping of physical models for the synthesis of sounds as they
bring nonlinear WD structures with dynamic adaptors to a level
of practical usability for a wide range of users while enabling the
modeling of a wide variety of time-varying nonlinear physical
models in an automatic fashion. The proposed solutions have been
extensively tested on applications for the automatic modeling of
acoustic interactions of musical interest.

Index Terms—Physical modeling, sound synthesis, wave-digital
filters (WDFs).

I. INTRODUCTION

T HE DESIGN of wave-digital (WD) filters [1] (WDFs)
is an interesting example of optimal physical modeling

of digital structures. With this approach, in fact, we start with
an analog filter, and from there, we develop a digital system
that preserves most of the desirable properties of the refer-
ence analog circuit, such as passivity, losslessness, stability,
minimal parameter sensitivity, etc. In the past three decades,
this approach has reached an advanced level of maturity, and a
plethora of applications and extensions have appeared in liter-
ature. In particular, the aforementioned “physical optimality”
has recently attracted the attention of researchers in the field of

Manuscript received June 29, 2006; revised June 19, 2007, December 04,
2007, and April 04, 2008. First published July 22, 2008; current version pub-
lished February 11, 2009. This paper was recommended by Associate Editor A.
Kummert.

A. Sarti is with the Dipartimento di Elettronica e Informazione, Politecnico
di Milano, 20131 Milano, Italy (e-mail: sarti@elet.polimi.it).

G. De Sanctis is with the Sonic Arts Research Centre, Queen’s University
Belfast, BT7 1NN Belfast, U.K. (e-mail: gdesanctis01@qub.ac.uk).

Digital Object Identifier 10.1109/TCSI.2008.2001801

sound synthesis through physical modeling [2]–[4]. This has
triggered a great deal of activity in the direction of modeling
WD structures that include nonlinearities [5]–[8] and whose
scattering cells and adaptors are not instantaneous [9]–[11].
It is important to point out, in fact, that physical mechanisms
for the generation of sounds can be typically seen as based
on the nonlinear interaction between two otherwise linear
systems, at least one of which being a resonating structure [2].
For example, a piano hammer interacts with a string through a
contact condition (a Heavyside function) and is felt with limited
compressibility [5], [12]; the bow of a violin interacts with a
string with a stick-and-slide mechanism that can be described
through a nonlinear and discontinuous relationship between
force and velocity at the contact point (Helmholtz model)[12],
[13], etc.

Modeling nonlinear interactions between physically modeled
blocks can be seen as a nonlinear-circuit-modeling problem.
One major advantage in working with a circuit is that blocks
communicate through ports, each characterized by a pair of dual
variables (an across/through pair of variables such as voltage/
current). This fact, among many other advantages, allows us to
monitor the flow of energy that is exchanged between blocks
and to ensure the preservation of the stability conditions of the
analog-reference circuit. This is achieved by guaranteeing that
all block interconnections inherently satisfy the global laws of
continuity, i.e., the Kirchhoff laws, and that the analog-to-digital
mapping is performed through a bilinear transformation. WDF
theory [1] offers a strategy for modeling local equations (block
descriptions) as well as global continuity laws in an explicit
fashion. This approach uses scattering variables (incident and
reflected waves) instead of voltage/current pairs to implement
the Kirchhoff laws in explicit form. The user can then apply
such laws using an interconnection of properly defined adaptors
which results in a computable and energy-transparent structure
that implements the physical interconnection between prepack-
aged blocks.

The literature of sound synthesis through physical modeling
is rich with solutions that are closely related to WDFs. A
well-known example of this sort is given by the Digital Wave-
Guide networks (DWGs) [3], which are particularly suitable for
modeling acoustic resonating structures, and whose signals are
compatible with those that are used in WDFs. As a matter of
fact, DWGs can be seen as close relatives to multidimensional
WDF[23] (as explained in detail in [24]).

Hybrid WDF/DWG [4] structures represent a good solution
to the problem of sound synthesis by physical modeling as,
besides referring to an acoustic instrument, they are based on
a local (block-based) discretization of the physical elements
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that constitute the analog model. In other words, these solu-
tions open the way to the development of a flexible synthesis
technique based on the interconnection of predefined building
blocks. Traditional WDF/DWG structures, however, are inher-
ently linear; therefore, they cannot easily model nonlinear ex-
citational interactions other than nonlinear frictions (nonlinear
resistors [15]). Nonetheless, some clever ad hoc solutions exist
for including other types of nonlinearities in WD structures [9],
[10]. In the past few years, however, new solutions and method-
ologies have emerged, which generalize the WDF/DWG frame-
work in order to encompass a wide class of nonlinearities with
memory, without giving up flexibility and modularity in the syn-
thesis strategy [4], [14], [16]. An embryo of these ideas was
first presented in [16] and then more completely formalized in
[14]. In this approach, nonlinear WD structures are character-
ized by WD adaptors that are able to perform not just changes
of port resistances but also changes of port filters. The adaptors
are thus inherently “dynamic” as they are based on reflection
and transmission filters instead of simple coefficients. Dynamic
adaptors allow us to accommodate a wider range of NonLinear
Elements (NLEs) with memory (nonlinear reactances, algebraic
nonlinearities, etc.) in a WD structure and model them as in-
stantaneous NLEs. Adaptors with memory can count on many
of the properties of their instantaneous counterpart (traditional
WDF adaptors), specifically passivity, losslessness, and conser-
vation of energy. There are some properties, however, that do
not hold true, such as those concerning coefficient quantization
[1]. Nonetheless, in the rest of this paper, we will adopt the term
“adaptor” in both dynamic and instantaneous cases, for the sake
of simplicity and in accordance to [14].

In this paper, we refer to the formulation of WD structures
proposed in [14], which enables the modeling of a wide variety
of nonlinear interactions between physically modeled systems.
We propose two systematic and automatic techniques for the
construction of sound-synthesis algorithms based on the phys-
ical interaction of blocks. Our modeling solutions start from a
symbolic description of the physical model and automatically
construct an efficient algorithm for the synthesis of sounds,
which preserves the stability properties of the analog-reference
model. The symbolic model description is provided in a similar
way as a classical nonlinear-circuit simulation software, i.e., a
list of blocks, their interconnection topology, their initial con-
ditions, their parameters, and their input/output signals/ports.
After parsing and validating this description, the system au-
tomatically builds a WD structure [14] that implements the
reference physical model. This approach enables the interaction
between WD blocks in compliance with the global laws of
dynamics (Kirchhoff laws). This means that even those models
that exhibit a critical oscillating behavior (e.g., a subharmonic
chaotic oscillator) do not need any oversampling to be correctly
modeled [14].

This paper is organized as follows. In Section II, we dis-
cuss the topological structure of a network of WD adaptors. We
show, in particular, that the memory that is embedded in such
adaptors can be extracted from the whole structure so that the
interconnection network can be seen as a memoryless macro-
junction that connects the WD blocks through special two-port
WD scatterers with memory (e.g., mutators). We then present, in

Sections III and IV, our two solutions for automating the imple-
mentation process of such WD structures. A comparative evalu-
ation of the two solutions is presented in Section V. Conclusions
and future works are discussed in Section VI.

II. STRUCTURAL ASSUMPTIONS

It is well known that the interconnection between one-port
WD elements through parallel and serial adaptors gives rise to
computable WDFs, because the corresponding signal-flow di-
agram does not contain any delay-free directed loops [1], [22].
This realizability condition implies that any connection between
two ports does not lead to any delay-free directed loop and that
no other delay-free directed loop can be created via some outer
path [1]. This is indeed guaranteed if the network of adaptors
has a treelike structure, which is true for most reference phys-
ical systems that are encountered in musical acoustics.

The hypothesis of treelike structure is not a general one. The
Jaumann structure [22], for example, results in a topology that is
not treelike due to a particular interconnection of transformers.
This WD structure, however, is a noncomputable one. So far, we
have not found any example of computable WD structures that
do not exhibit a treelike topology. We can therefore reasonably
assume that, even if one such structure existed, it would be a
rather unusual one. However, we can expect that these configu-
rations could be implemented with ad hoc solutions.

Such considerations hold true for interconnections of dy-
namic adaptors. These elements are general types of (parallel or
series) adaptors whose reference resistances are replaced by
reference filters [or reference transfer functions (RTFs)] ;
therefore, incident port waves are subject to noninstantaneous
(filtered) scattering [14]. RTFs can thus be thought of as
reference port impedances. A treelike network of (dynamic)
adaptors is here referred to as a (dynamic) macroadaptor (MA),
and a port that turns out to exhibit no instantaneous reflection is
called an adapted port. As reflected waves at this port are either
absent or delayed, this port can be freely connected to another
port without causing computability problems. Realizability
issues (a nonadapted port can only be connected to an adapted
one) imply that the MA can only have up to one adapted port,
just like the adaptors that it is made of. The WD structures
that we consider in this paper are made of a number of bipoles
connected together through such MA. As there is only one
adapted port per MA, we can only accommodate one NLE by
connecting it to that port.

The fact that a nonlinear WD circuit of this sort can only
have one NLE is a typical limitation of WD structures, including
WDFs [15], which can be overcome in an exact fashion by either
solving an implicit equation or by lumping together portions of
the circuit in order to incorporate multiple NLEs into a single
and more complex NLE. Fortunately, that of multiple NLEs is
not frequently encountered in applications of musical acous-
tics, where multiple nonlinearities (e.g., contact and compress-
ibility conditions) are usually connected in a “delayed” fashion
with each other (through distributed-parameter resonating struc-
tures). As a consequence, a complete physical model of a mu-
sical instrument usually consists of a “delayed” interconnection
of several MAs, each connected to a different NLE.
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Fig. 1. Any three-port series adaptor can always be implemented as a standard-
series WDF adaptor, whose adapted port is connected to a two-port scattering
cell. The double-box symbol [14] is used here to distinguish between an adaptor
with memory and a traditional (instantaneous) one, whereas the terms � � � �
�� �� � are the instantaneous part of the corresponding � ���.

In this paper, however, we will not consider the case of mul-
tiple MAs. In fact, if two MAs are connected together directly,
then they form a larger MA. If they are connected together
through a delaying multiport element, then the two WD struc-
tures can be independently analyzed and implemented.

We recently proved [18], [19] that a computable treelike in-
terconnection of adaptors with memory is completely equivalent
to a memoryless MA whose outer ports are connected to scat-
tering cells with memory [or dynamic scattering cells (DSCs)]
[11]. The proof of this equivalency is constructive and can be
done in two steps: 1) Replace all three-port parallel/series adap-
tors with memory with memoryless adaptors of the same type,
whose adapted port is connected to a properly defined DSC and
2) have all the inner DSC (those that end up in between two
adaptors) slide outward until they reach the periphery, according
to specific sliding rules.

In the next section, we will briefly illustrate such procedure
(more details can be found in [18] and [19]).

A. Memory Extraction From Adaptors

Let us consider a three-port dynamic series adaptor with ra-
tional, causal, and stable RTFs being the port
index. This adaptor can always be implemented as a standard se-
ries WDF adaptor, whose adapted port is connected to a DSC,
as shown in Fig. 1, where is obtained from the reference
RTF of the adapted port by removing the instantaneous I/O con-
nection. More specifically, the reflection filters are

(1)

from which we can extract a constant , while the rest can be
written as

where is assumed as causal and stable. A similar result
can be derived for the parallel adaptor. A proof of this statement
is reported in [18] and [19]. It is worth noting that the scattering
cells obtained by the memory extraction are very peculiar. In
fact, they do not present any computability problem, as their
scattering filter does not have any constant term.

B. Memory Extraction From a MA

It is now possible to solve the more general problem of ex-
tracting the dynamics from a MA. The aim is to find an equiva-
lent structure that is made of an instantaneous MA and a number
of DSCs connected to some (or all) of the ports.

Fig. 2. Extracting the dynamics from a MA. Again, the double-box symbol
is used here to distinguish between an adaptor with memory and a traditional
(instantaneous) one.

1) Structural Equivalences: A MA can always be trans-
formed into a new structure made of a memoryless MA
surrounded by DSCs as shown in Fig. 2. This can be achieved
by having all the DSCs “slide through” the inner adaptors
according to specific rules, until they reach the periphery of
the MA. In order to characterize these “sliding rules,” we
need to find the equivalence that exists between a three-port
memoryless adaptor that has one port connected to a DSC and
another three-port memoryless adaptor of the same type that
has two DSCs connected to the other two ports. We approached
this problem in [18] and [19], where we proved that this can
be done in a rather straightforward fashion. In fact, we found
that a structure made of a memoryless adaptor and a DSC
connected to the junction’s adapted port is equivalent to the
same adaptor whose ports that are nonadapted are connected
to DSCs of the same type. The earlier equivalency rule holds
true also in the opposite direction. If, however, only one of the
two nonadapted ports is connected to a scattering cell, we can
connect the other nonadapted port to the cascade of the same
DSC with another having a port RTF of opposite sign. This
results from the fact that two DSCs with opposite port RTFs
(and same initial conditions) cancel each other out. The pair of
DSCs that are connected to the nonadapted ports of the junction
can now be moved to the adapted port. The outcome is similar
to before:a structure made of a memoryless adaptor and a DSC
connected to any of its ports is equivalent to the same adaptor
whose other two ports are connected to similar DSCs.

2) Initial Conditions: When we replace a structure that in-
cludes a DSC with an equivalent one having two DSCs, such
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elements with memory cannot be independent on one another
as this would correspond to increasing the number of state vari-
ables (and of initial conditions). Consequently, the initialization
of both DSCs will depend on that of the original one.

Intuitively, one would expect that the original initial condition
would be divided among the two new scattering cells. In fact, as
we showed in [18] and [19], the two new initial conditions are
a weighted version of the original one, the weights being the
reflection coefficient at each port. This is plausible, as the sum
of these two coefficients is .

III. WT AND STATE-UPDATE EQUATIONS

Solving a circuit in the Kirchhoff domain means determining
the values of the voltage/current pairs for each of its ports. The
classical tableau analysis [21] for analog linear circuits is based
on the construction of a linear system in the unknowns.
The equations needed to do so are divided into two groups: 1)

local equations (I/O relationships) that characterize the indi-
vidual bipoles and 2) global equations derived from the laws
of continuity (Kirchhoff laws), which describe the interconnec-
tion topology.

In this section, we show how this approach can be readily
modified in order to accommodate WD structures [11], bringing
it to a level of practical usability.

We will begin by constructing a wave tableau (WT) in quite
a straightforward fashion, i.e., using the definition of scattering
parameters and incorporating all the WD elements, including
the adaptors. Treating the adaptors as circuit elements means
transforming the global relationships (the topology) into local
relationships. In so doing, the second part of the system is re-
placed by simple port-connection rules to form the new global
relationships. This choice, albeit increasing the size of the
system, simplifies the writing process, and more importantly, it
represents the key step for the achievement of the results pre-
sented in this paper. In fact, in the reduced WT discussed later,
the state-update equations of the circuit elements are extracted
from the WT, which is then formed only by the MA equations.
This separation between local and global relationships allows
us to fully benefit from the advantages that are inherent in the
WD solutions. Although the reduced tableau has never been
used in practice, it is a fundamental intermediate step from
which the state-update equation of the MA and the binary
connection tree (BCT) has been devised.

In the following sections, we will assume, without loss of
generality, that all junctions are three-port adaptors. In fact, it is
quite easy to see that any -port adaptor can always be thought
of as the interconnection of three-port adaptors.

A. WT

Let us collect all the scattering equations of all the WD el-
ements, including the adaptors, organizing them in a system.
With this approach, the number of unknowns is exactly twice the
number of ports, being the number of bipoles.
We thus need equations, half of which are provided by local
equations (those of the structure elements), and the other half
come from global equations (those that describe how the ele-
ments are interconnected).

TABLE I
SCATTERING MATRICES OF COMMONLY USED COMPONENTS

The local relationships for WD descriptions can be written
in matrix form as a set of scattering equations ,
which can be rewritten as

where and are the vectors of the incident and reflected
waves, respectively, is the vector of inputs (generators), and

is the scattering matrix of all the elements of the structure.
The dimension of such vectors equals the number of ports.

If the circuit contains dynamic elements, then depends also
on the past values of and

which, in matrix form, becomes

where the matrix expresses this dependence.
As we can see from Table I, elementary blocks have

that is seldom greater than one. More
complex blocks obtained connecting simpler ones exhibit
larger summations.

Global equations are specified by a pair of equations for each
port interconnection. For example, if port is connected to port
, then we have and . In a structure with ports,

we have a total of such equations (two equations per port
interconnection). Once we have scattering and interconnection
relationships of all the elements, we can assemble the whole
system of equations in unknowns

where is the memoryless portion of the tableau matrix,
which is made of four blocks
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Fig. 3. Example of (top) reference analog circuit and (bottom) corresponding
WD structure.

where is the block-diagonal matrix containing the instanta-
neous portions of the RTFs, which are the I/O relationships of
the circuit elements; is the interconnection matrix; and
is the order- identity matrix. The matrix represents the
component of the tableau matrix that acts on those input and
output samples that are delayed time steps. In practice, the
matrices describe the dynamics (i.e., the history) of the net-
work elements

Finally, is the -dimensional vector of known terms rep-
resenting, for example, the generator’s values at time .

In order to better clarify what are described earlier, let us con-
sider the simple circuit shown in Fig. 3, which is made of
linear bipoles (the generator and its resistance are treated as a
single bipole) and needs adaptors to be correctly assem-
bled. We thus have a total of
ports.

As the circuit exhibits order-one dynamic elements (capacitor
and inductor), we have to build not just but also . The first

rows of represent the instantaneous portion of the RTFs
of all circuit elements. With reference to the port numbering of
Fig. 3, the matrix turns out to be a 10 10 block-diagonal
matrix of the form

where [17]

are the scattering matrices corresponding to the series adaptor
(of reflection coefficient ) and of the parallel adaptor (of re-
flection coefficient ), respectively. Notice that is the reflec-
tion coefficient of the resistance , which becomes zero only
when the reference resistance of port six is equal to . We also
have

The matrix is zero everywhere except for those two diag-
onal elements of that correspond to the inductor and to the
capacitor, which are the only dynamic elements of the circuit

where and

Finally, the interconnection equations are

which can be written in matrix form as

where

Notice that the symmetry of is due to the fact that each
connection is described by equations that involve two pairs
of waves with swapped indixes. At this point, the system is
completely specified and can be solved to compute the circuit
wave pairs, provided that it is properly initialized, i.e., that the
vector at time zero is determined.

With minor changes in the earlier approach, it is possible to
solve circuits containing one nonlinearity, as long as the NLE
is explicitly described in the WD domain as and is
connected to the adapted port available in the MA (in the ear-
lier example, port six is the adapted one). This can be done by
replacing the product between the coefficient of in position

by the incident wave at the port with the term
. In order to preserve the linearity of the system, this

terms need to be moved onto the other side of the equation and
treated as a previously computed variable. Indeed, this is pos-
sible by exploiting the fact that the NLE is connected to the
MA’s adapted port. The modified system thus becomes

If in the previous example were nonlinear, we could express
the corresponding reflection coefficient as a function of , and



SARTI AND DE SANCTIS: SYSTEMATIC METHODS FOR THE IMPLEMENTATION OF NONLINEAR WD STRUCTURES 465

we could replace with or the nonlinear function mapped
to the wave domain. Moving this nonlinear function on the other
side of the tableau equation (removing the corresponding in-
trinsic description from the tableau matrix) and treating it as a
known variable means using the wave reflected by the NLE like
an input to the adapted port.

By exploiting the instantaneous adaptation property [14], we
can extend this idea to all the circuit bipoles. This leads to a
second formulation of the WT method in which the matrix of the
coefficients describes only the cluster of all the circuit adaptors.
In fact, all interconnections in WD systems are done in such a
way as to avoid instantaneous (noncomputable) loops; therefore,
the adaptation condition (no instantaneous reflection) is satisfied
either by the bipole or by the port that it connects to. It is not
difficult to realize that the set of all adaptors form an energy-
transparent multiport adaptor, which in the following will be
referred to as MA. The second formulation of WT method thus
consists of splitting the state-update process in two phases: in
the first one, we compute the waves reflected by the MA (using
the tableau system driven by the waves produced by the bipoles),
and in the second one, we compute the waves reflected by the
bipoles when driven by the waves coming from the MA.

The new tableau system becomes

where a hat has been put on every vector and matrix to stress the
fact that they still have the same meaning but different dimen-
sions with respect to their previously defined counterpart.

In particular, is now a block-diagonal matrix composed
of 3 3 blocks only (the system has only three-port adaptors);

describes just the interconnections between adaptors;
and is the vector of the inputs. The input vector has a
total of nonzero elements that are placed in the second half of
the vector of “known variables,” which allows us to distinguish
the incident waves that are coming from the bipoles. As the MA
can be assumed as nondynamic (we can extract any memory
from it as seen in Section II.B), all the are null, therefore

In conclusion, the tableau system of the MA is made of the
following components.

1) intrinsic I/O relationships (which can be expressed as
matrix equations of the form ).

2) interconnection equations between MA and bipoles
.

3) interconnection equations between adaptors
.

The terms on the right-hand side of the earlier equation,
which are known at time , may be grouped together into
a single vector

(2)

Let us consider, once again, the example proposed before.
Using this modified tableau description, and become 6

6 matrices, while the input vector ends up containing just one
nonzero element, corresponding to the voltage generator

B. State-Update Equations in the WD Domain

The tableau system that describes the MA, shown in (2), em-
phasizes the strict relationship between the input vector
and the vector of incident waves . In fact, eliminating from

the elements that do not correspond to the inputs, we are left
with . In other words, if we eliminate the equations that cor-
respond to internal interconnections in the MA, it is possible to
write as a function of . The elimination of the nonnecessary
equations leads to the scattering equation of the MA, whose di-
mension is , just like in the analog case.

At this point, we can decompose the system in the two groups
of local and global equations

which can be combined together to eliminate

If the matrix is nonsingular, then we have

(3)

This way, we obtain a state-update equation in explicit form,
where replaces the role of .

Notice that is a matrix, while what we need to
find is an scattering matrix for the MA. In fact, the
vector obtained from (3) contains also the waves reflected
by the internal ports of the MA. The scattering matrix can
be obtained by simply eliminating the equations relative to such
internal ports. We can do so by using an appropriate
matrix obtained by eliminating rows from the iden-
tity matrix

The premultiplication by eliminates the unnecessary rows
while the postmultiplication by eliminates the corre-
sponding columns, in order to obtain again a square matrix.
If we did not perform this column removal, the elements of
such columns would multiply those elements of that are
zero anyway. Such elements correspond to the incident waves
at the internal interconnection ports. Indeed, the input vector
will have to be resized accordingly, by eliminating all the zero
elements , which results in the state-update
equation of the form , where and are
now made of elements.
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In the example of the previous section, we have a 4 6 ma-
trix , which is derived by eliminating rows 3 and 4 from the
order-six identity matrix

(4)

C. Initialization Issues

As the circuit to be simulated will, in general, contain dy-
namic elements, it must be properly initialized. Following, once
again, the classical network-theory approach, the initialization
of a WT implementation of a WD structure can be addressed in
a matrix-oriented fashion. This is done [21] by replacing the re-
lationships of the dynamic elements with ideal generators that
force their given initial conditions. We will see that this can be
accomplished directly in the matrix representation in a fully au-
tomated fashion.

Let us consider again the WT system for the linear case

(5)

here, we notice that the solution is made of two contributions: 1)
the solution due just to the inputs or forced evolution and
2) the solution that we have when the input is zero, ,
or free evolution, which depends on the values of the solution
vector in the previous time steps.

At time , the vector is known and the solution can be com-
puted as long as we know the values of the vectors

, for . Thus, initializing the system
means determining such vectors at time zero, starting from
the variables that we want to set on the circuit. This can be
done by writing a system of linear equations obtained by re-
placing some of the equations in the WT system in such a way
as to account for both the initial conditions and the properties of
the circuit. In practice, not all WT equations will depend on the
history of the circuit but only those in which the corresponding
row of at least one of the matrices contains nonzero ele-
ments. We will thus discriminate between instantaneous rela-
tionships, whose elements in the matrices are all zero, and
delayed relationships (with delay ), which are those that
depend on the first matrices . All the delayed relationships
have no meaning as they depend on previous wave samples that
have not been computed. Therefore, they need to be replaced by
the instantaneous relationships which describe the ideal gener-
ators that force the initial conditions. For those circuits whose
dynamic elements are just capacitors and inductors ,
we only need to compute the vector with one
of the two possible instantaneous relationships given by the ini-
tial conditions

where and are the voltage and the current at the port ,
respectively, whose reference resistance is , while and

are the corresponding waves at that port. In order to obtain the
new system matrix , we just need to modify the WT matrix,
replacing the rows corresponding to the delayed equations, with
the new relationships

If is nonsingular, then the resulting system of equations
turns out to have a unique solution ; otherwise,
if , then the cause is due to a wrong choice
of initial conditions, for example, trying to set all voltage values
in a closed loop or trying to set all current values crossing a
closed surface.

In general, when , we will need to compute all vectors
up to the order by solving the systems

under the initial conditions vector , which will contain
the terms , or any other suitable initial
condition.

If the circuit contains an NLE, then this must be treated as an
input

We will thus need to precompute the value of in
order to be able to compute and include it among
the known variables of the system.

In conclusion, the setting of the initial conditions in the WT
method can be automated, and it is always based on the solution
of a linear set of equations and, if needed, the evaluation of a
nonlinear characteristics.

IV. BCT

The approach presented in the previous section is based on
the automatic derivation of the state-update equations that de-
scribe the MA. In this section, we propose an alternative solu-
tion that allows us to readily implement a WD structure through
the inspection (scanning) of the treelike topological representa-
tion of the reference model (connection tree). We will assume,
once again, that the structure is made just of three-port adaptors;
therefore, the connection tree turns out to be binary (hence, the
name BCT).

A. WD Structure Inspection

A very simple WD structure that we can use to illustrate the
method of topological inspection of this section is made of a
chain of adaptors, each connected to the adapted port of the
previous one, except for adaptors at the extremes of the chain,
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Fig. 4. Chain structure. Each adaptor is connected to at least one bipole, and
there is no branching.

which are connected to two bipoles. The adapted port, in partic-
ular, is connected to an NLE, as shown in Fig. 4. Understanding
how to implement this circuit through direct inspection will help
us show how to proceed in more general cases.

Our goal is to devise a method to compute the vector from
the known elements of . One should keep in mind, in fact, that
the only elements of that are known are those that correspond
to the ports connected to linear bipoles. In fact, we have the
following expressions.

1) , when the bipole is an adapted resistor.
2) , when the bipole is an adapted real generator.
3) , if the bipole is a reactance.
The steps for computing from the known elements of can

be as follows.
1) Once the circuit is initialized, the vector of the incident

waves will be

where denotes an unknown, while represents a known
variable.

2) We start from the first adaptor, which is the only one in
which both the inputs of the nonadapted ports ( and )
are known. The output of the adapted port can be readily
computed as , and

being appropriate transmission coefficients that depend
on the reference resistances of the other two ports of the
adaptor. Notice that does not depend on because port
three is adapted.

3) Port three is connected to port four; therefore, now, we have
both (from the bipole) and , computed in the
previous step.

4) We can now repeat steps 1) and 2) until we reach the last
adaptor. This way, we are able to compute some of the
elements of and

5) Using the characteristics of the NLE, we can compute
.

6) We can now compute, if necessary, and/or and
go through the whole circuit computing and
until we arrive at the first adaptor. Notice that not all the
reflected waves need to be computed. For
example, we do not need to compute the reflection at those
(nonadapted) ports that are connected to a resistor (no re-
flection).

7) Once is specified, it is possible to update using the I/O
descriptions of the bipoles. We can thus go back to the
beginning of the procedure to compute the next value of .

Fig. 5. Two examples of BCTs. (left) Generic one and (right) chainlike circuit.
The circular box represents an instantaneous adaptor, in which the adapted port
is clearly specified. This particular notational choice simplifies the drawing of
connection trees with a great amount of branching.

B. BCT

The chainlike circuit described earlier can be generalized by
allowing the other two nonadapted ports to be connected to
adapted ports of other three-port junctions. We can quite easily
see that the topology remains treelike and that using only three-
port adaptors allows us to use a binary tree.

In general, we describe the interconnection topology of a cir-
cuit using the so-called BCT, which is constructed by following
some simple rules.

1) The root of the binary tree corresponds to the adaptor that
the NLE connects to.

2) The nodes of the tree are three-port standard WDF
adaptors and the branching topology matches the actual
adaptor’s interconnection topology.

3) The leaves correspond to the linear bipoles.
The method that we described for the chainlike circuit can

be readily extended to this new situation by defining a “forward
scan” (from the leaves toward the NLE) and a “backward scan”
(from the NLE toward the leaves). In fact, the computation starts
from the leaves of the tree, which contain the “memory ele-
ments” with the initial conditions. The computation then pro-
ceeds by following a forward scan, and when the working point
of the NLE is found, the backward scanning propagates the com-
putation back toward the leaves, where all memory cells are
refreshed.

As shown in Fig. 5, the adapted port of a junction is either
connected to a nonadapted port of another adaptor or to an NLE.

One major advantage of implementing the algorithm as de-
scribed earlier lies in the fact that its computational cost and
its memory requirements increase linearly with the number of
adaptors. This is a big improvement with respect to the WT
method based on the implementation of the state-update equa-
tion, whose complexity grows quadratically with the number of
circuit elements.

Notice that, as shown in Fig. 5 and in the following ones,
we adopted a nonstandard representation of the WD adaptors.
In fact, we use a circular box in which the adapted port is
clearly specified. This particular notational choice simplifies
the drawing of connection trees with a great deal of branching.
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C. BCT Initialization

If the circuit includes dynamic elements, such as capacitors
(springs) or inductors (masses), then it is necessary to determine
the values to put into the memory cells that model such ele-
ments as a function of the initial conditions to match. In order
to determine the wave value that initializes a memory cell, we
need the whole voltage/current pair that pertain that element.
In other words, we need to solve the circuit in which all dy-
namic elements have been replaced by ideal generators to find
the corresponding Kirchhoff variable. As ideal generators do
not admit a WD-adapted representation, it is not possible to use
wave variables directly; otherwise, the structure would turn out
to be noncomputable. However, we can still use the tree struc-
ture that describes the circuit topology, regardless of whether
we are working in the WD domain or in the Kirchhoff domain.
In particular, it is quite simple to compute the voltage/current
characteristics of the subtree at a generic node, given those of
the two “children nodes.” In fact, as the circuit portion described
by a subtree is linear, such characteristics are straight lines that
can be modeled according to the Thevenin or Norton equiva-
lent circuit corresponding to the subtree. Knowing the lines that
model the two subtrees and the type of node that combines them
(series or parallel), we can easily compute the line that describes
the their combination.

What we know initially are the characteristics of all bipoles
(we replaced capacitors and inductors with ideal voltage or
current generators, respectively). As we go through the tree to
reach the root, we compute and store the characteristics at each
nodes. Once we know the characteristics at the root (which
is the one of the whole tree), we can think of the circuit as
decomposed into its linear part (represented by the equivalent
circuit we just computed) and its nonlinear bipole. The char-
acteristic line that describes the linear portion of the circuit
intersects the voltage–current characteristics of the nonlinear
bipole in its “workpoint” (see Fig. 6). The search for this point
of intersection can be done with a classical numerical algorithm
such as Newton–Raphson’s.

Now that we know the workpoint of the NLE (and, thus, also
that of the whole linear portion of the circuit, as seen from the
same port terminals), we can begin a second scan to visit all the
tree nodes out as far as the leaves.

With reference to Fig. 7, if the root adaptor is a parallel one,
then the value of the voltage at the workpoint will be the same
at all three ports. Going to the left node (port one of the adaptor),
we have , while the value of can be computed using
the equivalent of the left subtree scanned in the forward pass. On
the right branch, we also have , but can now be com-
puted by simply applying Kirchhoff’s current law .
If the root adaptor is a series one, then the procedure will be
the same as long as we swap the roles of currents and voltages.
This time, in fact, the variable that does not change is the cur-
rent, while the voltage is computed from the characteristics of
the subtree corresponding to the first branch using Kirchhoff’s
voltage .

There are cases in which it is not possible to determine volt-
ages and currents using the equivalents. This happens, for ex-
ample, when trying to compute the current from an ideal voltage

Fig. 6. Computing the workpoint �� � � � of the NLE as the intersection of its
characteristics with that of the equivalent circuit. If the NLE is not instantaneous
(see bottom figure), we must refer to its equivalent circuit at the initialization
time.

Fig. 7. Determination of the initial values during the backward scan.

generator. In order to avoid this problem, we can always ex-
plore the second branch and, then, derive the unknown value of
the first branch using Kirchhoff’s laws. Notice that it will not
be possible to have undetermined cases on both subtrees; oth-
erwise, the circuit would exhibit degeneracies such as loops of
voltage generators and capacitors or nodes (cut-sets) of current
generators and inductors.

At this point, we have all voltages and currents at the second-
level nodes of the tree. If these nodes correspond to dynamic
bipoles, then we can compute the value of the wave that initial-
izes the memory cell. If, on the other hand, we have an instanta-
neous bipole, then the algorithm stops at this branch; otherwise,
if there is another adaptor, then we can repeat the earlier-de-
scribed procedure using the newly computed currents and volt-
ages and scanning the tree until we reach a bipole.

In conclusion, also the initialization process can be split into
two phases: a forward scan (from leaves to root) and a back-
ward scan (from root to leaves). In the first phase, we derive the
characteristic lines that describe the relationship between cur-
rent and voltage at each node. In this way, during the backward
scan, knowing one of the two variables, we can compute the
other one using these characteristics.
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Fig. 8. Implementation of the RC circuit using a series adaptor.

Example: RC circuit—The initialization of an RC circuit
consists of determining the current, given the initial condition

. This allows us to determine the reflected wave
at the capacitor’s port , which will then be
assigned to the memory cell.

There are several ways to implement this circuit in the WD
domain. One of these, shown in Fig. 8, uses a series adaptor
whose adapted port is connected to a short-circuit, i.e., it is con-
nected to an ideal generator of voltage . The forward scan-
ning consists of deriving the equivalent bipole as seen from the
root of the tree, which is given by the series of an ideal voltage
generator (the equivalent of the capacitor) and the resistor

. Its characteristics, using the generator’s convention, is a line
crossing the voltage axis at the point , with slope . Once
we find the workpoint as the intersection
between the line and the the characteristics of the short-circuit,
we can initiate the backward scan.

We can choose, for example, to visit first the left branch
(the one that goes toward the capacitor) where we have

because the series adaptor “preserves” the
currents. This equation, together with the initial condition ,
allows us to compute the initial wave that we need. Notice
that, by following this path, it was not necessary to visit the
leaves corresponding to the resistor, because it does not contain
any memory cell to initialize. However, we took this resistor
into account during the forward scan, when we derived the
characteristics of the whole tree.

We could have arrived at the same result by visiting the re-
sistor’s branch first (see gray arrows in Fig. 8). In this case,
we would have had to compute the value of as a function
of by using the characteristics of the resistor , i.e.,

. Using the other Kirchhoff law, we would have
found .

The same circuit can be implemented using a parallel adaptor
(see Fig. 9), whose adapted port is connected to an open circuit,
i.e., to an ideal current generator of . The equivalent circuit
seen at the root of the tree is an ideal voltage generator (the ca-
pacitor), because the resistor that is in parallel with it does not
affect its characteristics. Intersecting this characteristics with
the line (characteristics of the open-circuit bipole) al-
lows us to find the workpoint . This time,
the resistor did not give us any information for the derivation
of the (sub)tree’s characteristics, therefore it is not possible to

Fig. 9. Implementation of the RC circuit using a parallel adaptor.

Fig. 10. Modeling of a simple hammer–tine interaction. (a) Mechanical refer-
ence model. (b) Equivalent electrical circuit. (c) BCT implementation. (d) NL
characteristics of the felt (capacitor). A table with some mechanical–electrical
equivalences has been added, for ease of reference.

initialize the circuit without visiting the corresponding tree leaf.
As the parallel adaptor preserves the voltages, all we can write is

(no information from this equation);
therefore, we cannot determine as a function of because

is satisfied irrespective of . On the other hand, by
visiting the resistor’s leaf first, we obtain

D. Example of Modeling Using the BCT

We introduce here a simple example of a BCT implementa-
tion, related to the model of the hammer–tine interaction, which
is typical of electromechanical pianos. Fig. 10(a) shows the me-
chanical equivalent of this system. The hammer is modeled as a
mass attached to a felt having a nonlinear compressibility func-
tion. The sound-generating element is the tine, a steel rod tied
at one end. When hit by the hammer, the tine vibrates and a
pickup positioned at its free-end transforms the oscillations into
an electrical signal to be amplified. The characteristic sound of
this type of musical instrument is mostly to be attributed to the
nonlinear response of the pickup. As this can be implemented as
a postprocessing filter, its implementation is not addressed here.
Even though the tine is, in fact, a distributed-parameter system,
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its modeling is here simplified into a simple RLC oscillator. This
simplification, however, is good enough to produce very plau-
sible results, particularly on higher notes. Using well-known
equivalences between mechanical and electrical systems, the
equivalent electrical circuit can be rather straightforwardly de-
rived. For the sake of simplicity, the two elements of the system
can be modeled by a single circuit, owing to the particular choice
of the nonlinear function. This, in fact, serves a twofold purpose:
to model the nonlinear compressibility (reactive force versus
compression) and to model the contact condition. The felt’s
compression can be thought of as the relative position between
hammer and tine. As a result, when they are far apart, the work-
point of the NL capacitor lies on the negative half-plane, where
the voltage is zero (infinite capacitance), resulting in a short-cir-
cuit of the hammer side. If we apply an initial velocity (cur-
rent) to the hammer’s mass , a constant current begins
flowing through the NL capacitor, which holds an initial neg-
ative charge. When this charge becomes positive, the contact
condition is reached, and some of the current will start flowing
through the RLC circuit. Successively, when the current through

changes its sign, the hammer bounces away. The RLC cir-
cuit, however, continues oscillating, until all of its energy is
completely dissipated by , as the hammer returns in its short-
circuit behavior.

The circuit shown in Fig. 10(b), where the adaptors have been
emphasized, can easily be redrawn with the tree representation
as shown in Fig. 10(c). This is the starting point for our software
implementation, where the model to be simulated is described
in terms of circuit elements connected by adaptors. In the same
description, we must specify which physical quantity is associ-
ated to the output sound. In our example, this can be identified in
the tine displacement from its initial position, equivalent to the
integral of the current flowing in the RLC circuit or the voltage
across . The model description is completed by an optional
set of rules that link one or more parameter (e.g., a capacitance
or the voltage of a source) to an external controller, using a com-
munication protocol such as MIDI.

Despite its simplicity (five bipoles in total), the WT imple-
mentation would require dealing with matrices of large size (1
of 28 28 elements or 4 blocks of 14 14), which shows that
the computational cost would, in this case, be much higher than
in the BCT implementation. A more systematic comparison be-
tween computational complexities of WT and BCT implemen-
tations will be given in the next section.

V. COMPARISON

As we are particularly interested in applications of WD mod-
eling to musical acoustics, a reduced computational cost is a
factor of utmost importance. We will show here that the iter-
ative nature of the BCT method allows us to cut down on the
computational cost quite dramatically. In fact, the number of
operations per output sample in the BCT case increases lin-
early with the number of circuit ports, while the implementa-
tion cost of the state-update equations in the WT method tends
to increase quadratically with the number of ports. In order to
confirm the linear growth of the computational cost with the

Fig. 11. Computational cost versus number of bipoles in the case of BCT im-
plementation. The experiment consists of the construction of two circuits with
a growing number of bipoles. The dashed curve refers to a WD structure that
grows in a chainlike fashion (no branching), while the solid curve corresponds
to a WD structure that grows in a balanced fashion (full branching).

number of circuit ports, we performed a simple test based on
the construction of two circuits with a progressively increasing
number of bipoles. We allowed the first structure to grow in a
chainlike fashion (no branching), as opposed to a second struc-
ture, which was grown in a balanced fashion (full branching). In
both cases, the computational complexity turned out to be linear
(see Fig. 11). The difference in the computational time between
a balanced structure and an unbalanced (chainlike) one are to be
attributed to the fact that the unbalanced tree branches out about
two orders of magnitude farther than a balanced one, which re-
sults in a far larger memory stack size. This explains a 3:4 ratio
in the overall computational time for large structures.

In order to make the WT method more efficient, we could
avoid implementing the state-update equation and refer to
the tableau equation in its implicit form, as explained in
Section III.A. In this case, in fact, we can take advantage of the
sparsity of the WT matrix. As the degree of sparsity tends to
increase with the size of the tableau matrix, a careful implemen-
tation of the WT method in implicit form turns out to produce
a less than quadratic trend. The price to pay for this choice
is a significant loss of flexibility in the implementation, as it
would turn out to be quite difficult to have the structure interact
with other physical models, which is a common requirement in
musical acoustics. Notice that the explicit formulation based on
the state-update equation cannot benefit from similar properties,
as the state-update matrix is no longer sparse.

As far as the other properties are concerned, each one of
the two described methods exhibits its own peculiarities. For
example, the WT matrix can be constructed in a blockwise
fashion by “pasting” WT matrices of standard three-port adap-
tors into a larger WT matrix, which makes it easy to automate
the process. The aforementioned reasons of flexibility would
require that the implicit equations be turned into a state-update
equation. On the other hand, having to perform a conversion
from implicit to explicit form prevents us from performing
any on-the-fly changes to the interconnection topology, with
consequent flexibility limits. All such limitations are overcome
with the BCT method. Moreover, the fact that a connection
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tree is scanned “on the fly” makes it particularly suitable for
modeling dynamic topologies.

One more comment concerns the generality of the methods.
We should notice that the range of applicability of the WT
method in the case of state-update equations is the same as that
of the BCT. The first version of the implicit WT method, on
the other hand, is more general, as it does not exploit the WDF
properties. For this reason, it can implement structures that
would turn out to be noncomputable otherwise. For example, it
allows us to incorporate ideal generators, which do not admit
an adapted WD counterpart.

Finally, both methods provide us with an immediate feedback
on the computability of the interconnections, and their topolog-
ical correctness. Such properties can be checked through a vi-
sual inspection of the WT matrix (once turned into a state-up-
date equation, this visual inspection is not so immediate any-
more), or of the BCT structure.

VI. CONCLUSION

In this paper, we approached the problem of automatically
modeling nonlinear interactions between circuit elements, with
reference to physical modeling of acoustic interactions in the
musical-application scenario. The method that we developed
allows us to model such interaction without altering the mod-
eling structure of the interacting blocks, without ever violating
global continuity laws such as Kirchhoff’s laws and energy
conservation.

One other crucial aspect that has been assessed in this paper
is the automation of the modeling process. This was achieved
here through the definition of a novel strategy that exploits the
inherent treelike structure of a minimal circuit. The reference
connection tree is used here as a modeling paradigm that allows
us to achieve a number of goals, including scalability, structural
scalability, and implementability of time-varying topologies.

The proposed approach has proven effective for the automatic
and modular synthesis of a wide class of physical structures
encountered in musical acoustics. In fact, the BCT approach that
we implemented makes the construction and the implementa-
tion of the interaction topology systematic and its implemen-
tation efficient. In its current state, the implementation of the
described synthesis system is able to assemble the synthesis
structure from a syntactic description of its objects and their in-
teraction topology, opening the way to a first computer-aided
design approach to the construction of interactive sound envi-
ronments.

One aspect that has not been addressed in this paper is the
impact of the nonlinearity on energy conservation and stability
preservation of the implemented structure. This problem has
been widely addressed in [5], where the use of power-normal-
ized waves has been proposed to overcome possible problems.
This is an issue that we are currently investigating.
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