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Self-calibration of two microphone arrays from volumetric acoustic
maps in non-reverberant rooms
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Abstract- In this paper we present a methodology for the
self-calibration of two microphone arrays based on the local­
ization of acoustic sources from volumetric acoustic maps, one
for each array. A set of correspondences are obtained moving
the acoustic source at different locations in space. The proposed
algorithm estimates the rigid motion that brings the coordinate
system of the second microphone array to the first one through
the solution of a least squares problem. The approach presented
here enables the self-calibration even when the acoustic sources
are in the near-field of the microphone arrays, thus extending
the methodology presented by the authors in another work.

I. INTRODUCTION

Microphone arrays enable the acquisition of the space­
time structure of an acoustic field. Thus, they have been
widely used to solve many tasks in computational auditory
scene analysis, ranging from blind source separation to de­
reverberation, localization and tracking. In some cases, e.g.
in acoustic source localization and tracking, the location and
pose of the arrays with respect to the environment needs to
be available or it needs to be somehow estimated.

In many scenarios, the analysis of the auditory scene can
potentially take advantage of multiple microphone arrays dis­
tributed across the environment. Ideally, all the microphones
of the various arrays might be thought of as composing
a single array, whereby all signals are synchronous with
respect to a centralized clock. Unfortunately, this scenario is
unrealistic with the current technology. Professional equip­
ment able to acquire simultaneously more than 8-16 channels
can be costly. Thus, in a resource constrained scenario, the
alternative of deploying distinct, asynchronous microphone
arrays, each governed by its own acquisition device, repre­
sents a more viable option. Nevertheless, there is the need
for devising a procedure for determining the location and
the pose of each array with respect to a selected coordinate
reference system.

Microphone array calibration has been studied in the
recent literature. In [1], [2], [3] the authors address the
problem of retrieving the location of microphones within the
same array. In [4] the authors address the problem using
Multi-Dimensional Scaling (MDS). The formulation used
accounts for non-ideal synchronization among the devices.
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On the other hand, the problem of inter-array calibration
is rather unexplored. In [5] we presented a solution, partially
inspired by [6], that addresses the problem of self-calibration
using probing signals produced by a loudspeaker moved
at different unknown locations. Acoustic images, which
represent the energy measured along different directions, are
measured for each array using a Delay and Sum Beamformer
[7]. Under the hypothesis that a single source is active at each
time instant, the three-dimensional Directions Of Arrival
obtained by the pair of acoustic images refer to the same
acoustic source. Inter-array calibration is finally performed
exploiting computer vision tools by analyzing the set of
correspondences extracted from the acoustic images.

In [8] the authors address a similar problem in a two
stages approach: first each array is internally calibrated using
the methodology originally presented in [9] and then an
algorithm that is related to [5] addresses the inter-array
calibration.

The algorithm in [5] proves to be efficient when sources
are in the far-field of the microphone arrays. However, when
far-field condition does not apply, a distortion on the acoustic
images appears, thus impairing a successful self-calibration.
In this paper we present an alternative solution based on
the acquisition of volumetric acoustic images using Steered
Response Power [10], which describes the distribution of
acoustic energy in space. Source localization is performed
by estimating the location of the global maxima of the
volumetric acoustic maps. Each map is referred to a local
coordinate system centered in the reference microphone of
the array. In order to infer the mutual positions of the array,
we have to estimate the rigid motion (Le. a rotation matrix
and a translation vector) that brings the local coordinate
system of the second array to the coordinate system of the
first one. We formulate the problem using least squares,
which allows us to find the mutual location and pose using
a non-iterative algorithm.

The rest of the paper is structured as follows: in Section II
we present the acquisition of volumetric acoustic maps using
Steered Response Power. Section III formulates the self­
calibration problem and addresses it using the rigid motion
estimation. Section IV describes some experimental results
that compare the far-field methodology in [5] with the present
algorithm. Finally, Section V draws some conclusions.

II. ACQUISITION OF VOLUMETRIC ACOUSTIC MAPS

In this Section we present the Steered Response Power
(SRP) [10], the algorithm used to localize acoustic sources
in space. The idea behind localization algorithms based on
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SRP(X') = L L Rmp(imp(X')), m 'I p, (5)
m=l p=m+l

B. Steered Response Power

We compute the cross-correlation Rmp(k) between xm(k)
and xp(k). In the absence of noise, Rmp(k) exhibits a peak
at the lag k = imp.

Notice that, if the receivers location are given, the time­
discrete TDOA imp depends only on the source position.

The Steered Response Power function for the hypothesis
source location X' is

where imp(X') is the Time Difference of Arrival between
microphones m and p for the position X'. If X' is actually
the source location, peaks sum coherently in SRP(X') and
a global maximum appears.

In order to localize sources, the 3D space is sampled with
a regular grid. More specifically, a volume of points Xi,j,k =
[xli,X2j,X3k]T,i = I, ... ,l;} = I, ... ,J;k = I, ... ,K is
defined.

The source location is estimated as the global maximum
of SRP(Xi,j,k):

(6)Xs = arg Fax SRP(Xi,j,k) .
i,j,k

Xl

acoustic maps (see [7], [10], [11)) is to make an hypothesis
X on the source location and then verify the coherence of the
data with the hypothetical location using a suitable coherence
measure. In [5] we formulated the problem of self-calibration
using projective acoustic maps extracted using Delay And
Sum Bearnformer [7], which retrieves the position of the
source in terms of direction of arrival rather than source
position. In order to obtain a description of acoustic images
in terms of location in space rather than Direction Of Arrival,
in this paper we make use of Steered Response Power. In
the next few lines we present the data model, followed by a
description of the localization algorithm.

A. Data model

Let us consider the presence of an acoustic source located
at X p : [Xl p,X2p,X3pV and of a synchronized cluster
of microphones, located at X m = [Xl"" X2"" X3",V, m =
1, ... , M. Figure I shows the geometry of the setup.

X3

Xl

Fig. l. Geometric notation: receivers are at X m
[Xl"" X2"" X3",]T, m 1, ... , M and the source is at
Xs = ~IS,X2s,X3s]T.

Microphone signals are organized in the column vector

Xl (t)

X2(t)

Xm(t) = S (t - TOm(Xs)) + l/m(t) m = 1, ... , M (2)

is the signal acquired by the m-th sensor; set) is the source
signal at the reference microphone and l/m(t) is an additive
noise. The delay Tmp (Xs) accounts for the Time Difference
of Arrival between sensors m and p and is given by

1
Tmp(XS) = - (dxs,x", - dxs,xp ) • (3)

c
The term dxs,x", is the distance between the source and
the m-th microphone in the array and c is the sound speed.
Notice that in eq.(2) we are assuming that reverberations are
not present.

After time sampling, the signal acquired by sensors is

xm(k) = xm(kT), m = 1, ... , M , (4)

where T is the sampling period. As usual with microphone
arrays, we work with frames composed by W samples. The
time-discrete TDOA corresponding to Tmp is represented, by
the symbol imp.

III. SELF-CALIBRATION FROM VOLUMETRIC ACOUSTIC

MAPS

When reverberations are present, multiple peaks, related to
image sources, are superimposed in the acoustic map. In
order to address reverberations, therefore, the design of the
array should ensure sufficient resolution, so that peaks do
not overlap and it is possible to distinguish the actual source
from the image ones.

Notice also that the full-search on the volume may be
computationally demanding. As an example, if we are lo­
calizing a source on a volume of 1 m 3 with a resolution
of 0.001 m, the volume turns out to be composed of 109

points. In order to address the computational cost problem,
we adopt a multi-scale localization: we first sample SRP on
a coarse volume and then we refine the search in proximity
of the global maximum of the coarse SRP.

Let us consider the presence of two cross-shaped mi­
crophone arrays, as depicted in Figure 2. The arrays are
internally calibrated, i.e. the position of each microphone in
the array is known. For each array a reference microphone
is defined, and the local coordinate system is referred to
that position, as depicted in Figure 2, where the reference
microphone is the central one. The arrays are not mutually
calibrated, i.e the second array is not informed of the pose
of the first one and viceversa. Furthermore, we assume
that the two arrays are internally synchronized but mutually
asynchronous, i.e. the clock is not shared. The source is
moved at L different positions in space. Each array provides
localizes it at Xl and XI, I = 1, ... , L referred to the local
coordinate systems. In order to write a relationship between

(I)x(t, Xs) =

where
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Fig. 2. An acoustic source is located in space and it is localized by the
pair of arrays. The local coordinate systems are centered in the reference
microphones of each array. The estimations of the source location in the
local coordinate systems are Xl and Xl'

• the average is subtracted to the corresponding points to
give Xc! = Xl - X +-t X~l - X'

• the correlation matrix for the corresponding points
Xc! +-t X~l is

L

C = LX~IX~;
1=1

• the singular value decomposition of the matrix C is
given by C = UAVT .

With these definitions at hand, the estimations of the rotation
matrix and translation vector are [13]

Xl = R(B,</J)Xl + t +VI,

(12)

(11)

€t = arccos(Ft) .

Rigid motion estimation turns out to be very sensitive to
tlle presence of outliers in the measurement set. In order
to remove them, we have implemented the well-known
RANSAC algorithm [14], [12], which finds a robust set of
inliers among the correspondences Xl +-t Xl' l = 1, ... , L,
which fits tlle rigid motion model.

IV. EXPERIMENTS

The accuracy of the rigid motion estimation is tested
by comparing the estimated rotation matrix and translation
vector with the actual ones, using the metrics defined in [15]:

(
tr(R(B, </JfR(B, </J)) - 1)

€R = arccos 2 '

and
A _I A _

t = X - R(B,</J)X.

In (12), translation vectors are supposed to be scaled in order
to have unitary norm.

The first simulation setup is shown in Figure 3: two
cross-shaped arrays (each consisting of 13 microphones).
The second array is displaced by rotating the first one by
-7r/8 around the vertical axis and translated by 3m. Circles
denote the positions of the sources for each repetition of the
experiment. In Figure 3(a) sources are located in the near­
field, while in Figure 3(b) they are located in the far-field.
In particular, a source is considered to be in tlle near-field
when its distance to the microphone array is smaller than the
Fraunhofer distance. For each simulation, a variable number
of sources (ranging from 8 to 50) have been considered. Each
simulation has been repeated ten times in order to average
over several realizations. The same setup has been repeated
for the second experiment, however this time the second
camera is rotated by -7r/2, as shown in Figure 4.

Figure 5(a) shows the calibration error as a function of the
number of correspondences for the nearfield configuration.
The results for the methodology presented in this paper and
in [5] are denoted with the subscripts "DSB" and "SRP",
respectively. We notice that the 3D rigid motion estimation
enables a more accurate self-calibration with respect to [5].
The same experiment has been repeated in the far-field

(8)

(9)

(10)

L

X' = .!. '"' x', LL...- I
1=1

H = [R(B
o
' </J) t]

1 '

where the matrix H accounts for the roto-translation between
the local coordinate systems and it has the following internal
structure

We proceed to the estimation of R(B, </J) and t using a least
squares approach. We define the cost function as

L
2,", I A 2

~ = L...-IIXI - RXI - til .
1=1

X s and X~ in a compact way, we convert Xl and Xl into
the homogeneous representations, given by

In order to find the rotation matrix and the translation vector
that minimize the cost function in eq.(lO), we define some
auxiliary variables

• the centroids of the sets of corresponding points Xl and
Xl are

With this notation at hand, under the assumption that Xl and
Xl are correctly localized, the homography that relates Xl
and Xl is:

where R(B, </J) is the three-dimensional rotation matrix and
t is the translation vector that bring the coordinate system
of the first array to the coordinate system of the second
one. Our goal is to estimate this rigid motion given a set
of corresponding points Xl +-t Xl ' l = 1, ... , L. This
problem is common in the literature of computer vision and
it is known as calibrated reconstruction [12]. We observe
that the matrix H in (9) has 5 d.o.f. as it is univocally
determined when the angles Band </J and the components
of the translation vector are given.

Replacing (9) into (8) and considering the presence of an
additive measurement error VI we get



50

60'~---_-_-===
.......£R(SRP)
-+-£,(SfIP)
.......(R(DSB)
-+-£,(D88)

40

30

20

10

0
0 10 20 30 40

Numberofsources
50

<a) <b)

Fig. 4. Geometry of the second simulation setup: the second camera
location is obtained by rotation of -7T/2 around the vertical axis and
translated by 3m.

Fig. 5. Calibration error for nearfield (a) and farfield (b) sources as a
function of the number of correspondences for the configuration in Figure
3. The results for the methodology presented in this paper and in [5] are
denoted with the subscripts "DSB" and "SRP", respectively.

V. CONCLUSIONS

In this paper we presented a novel algorithm for the self­
calibration of microphone arrays in dry enclosures using
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Fig. 6. Comparison between self-calibration based on projective and
volumetric acoustic images for the geometry depicted in Figure 4(a)

volumetric acoustic maps. Simulation results demonstrate
that the algorithm can efficiently estimate in the near-field the
mutual position of the arrays even using a limited number of
corresponding points, thus filling the gap of the methodology
in [5].
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Fig. 3. Geometry of the first simulation setup: the second camera location
is obtained by rotation of -7T/8 around the vertical axis and translated by
3m. Circles denote the positions of the sources for each repetition of the
experiment. In (a) sources are located in the near-field, while in (b) are
located in the far-field.

configuration depicted in Figure 3(b). Results are shown in
Figure 5(b). We notice that in this situation the accuracy of
self-calibration based on projective and volumetric images
is inverted: Delay and Sum Beamformer behaves better than
SRP.

Figure 6 shows the self-calibration results for the configu­
ration in Figure 4(a). The results confirm that self-calibration
based on volumetric acoustic images behaves better than the
methodology in [5]. Similar considerations to Figure 5(b)
apply when we move the sources in the far-field, as in Figure
4(b).


