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Virtual Analog Modeling in the Wave-Digital Domain
Giovanni De Sanctis and Augusto Sarti, Member, IEEE

Abstract—We refer to “Virtual Analog” (VA) as a wide class of
digital implementations that are modeled after nonlinear analog
circuits for generating or processing musical sounds. The refer-
ence analog system is therefore typically represented by a set of
blocks that are connected with each other through electrical ports,
and usually exhibits a nonlinear behavior. It therefore seems quite
natural to consider Nonlinear Wave Digital modeling as a solid ap-
proach for the rapid prototyping of such systems. In this paper, we
discuss how nonlinear wave digital modeling can be fruitfully used
for this purpose, with particular reference to special blocks and
connectors that allow us to overcome the implementational difficul-
ties and potential limitations of such solutions. In particular, we ad-
dress some issues that are typical of VA and physical modeling, con-
cerning how to accommodate special blocks into WD structures,
how to enable the interaction between different WD structures, and
how to accommodate structural and topological changes on the fly.

Index Terms—Binary connection tree, physical modeling, wave
digital filters.

I. INTRODUCTION

T HE term “Virtual Analog” (VA) is commonly used for
describing digital implementations of analog circuitry

employed for generation, enhancement or processing of mu-
sical sounds. The typical approach to the development of virtual
analog algorithms consists of starting with the reference analog
circuit and, from there, developing a digital implementation
that will mimic the behavior of the analog reference while
providing improved flexibility and, perhaps, incorporating
additional features; extending its range of applicability; or
enhancing its performance. This loose definition of VA extends
to a wide class of musical sound synthesis methods based on
physical modeling, where the physical reference system is
not necessarily an electrical circuit, but can always be repre-
sented by an electrical equivalent circuit. This way VA ends
up covering sensors and transducers that are often encountered
in vintage circuitry, whose nonlinear behavior is of signifi-
cant musical interest. Examples of VA systems are: valve or
solid-state amplifiers; vintage musical instruments with special
magneto-electric transduction (e.g., electromechanical pianos
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or “Hammond”-style electrical organs, etc.); electronic circuits
for sound generation (e.g., “Moog”-style voltage-controlled os-
cillators, filters, amplifiers, or envelope generators); or special
electromechanic or electronic circuits for vintage sound effects
(e.g., spring reverberators, analog chorus circuitry, etc.).

What makes analog circuits and systems interesting to model
in a digital fashion is usually their inherent nonlinear behavior,
whether introduced by a valve in a final amplification stage, or
by some special transducers. This nonlinear behavior, in fact,
is usually responsible for characteristic sounds, or deep timbral
dynamics, which are often received with great interest by mu-
sicians and listeners. It is therefore very important to plan for
a flexible digital implementation of such analog systems that
is aimed at preserving this nonlinear behavior as part of the
modeling process. It is also equally important to adopt a de-
sign process that will enable the VA system to extend the per-
formance and the range of applicability of the physical refer-
ence by including, for example, novel physically-plausible con-
trols or enabling time variance in parameters that are normally
static in real life. This would offer the musician a wider “timbral
space” to explore.

VA systems benefit from an extensive literature on sound
generation through physical modeling. The digital modeling of
analog (physical) systems has been pursued by musicians and
researchers for quite some time. Although this approach was
initially intended for simulation purposes, it recently became
palatable for applications of sound generation and processing, as
massive computational power became available at low cost. The
reasons of the interest in physical modeling are numerous, and
are mostly related to the intuitive link that exists between con-
trol and model reaction; to the ability to generate musically in-
teresting timbral spaces associated to the changing of just a few
physically plausible parameters; and to the possibility to exploit
a well-established modeling experience in musical acoustics. If,
instead of focusing on simulation accuracy, we look at the phys-
ical modeling problem from the user’s point of view; however,
we are immediately faced with new challenges. In order to be-
come an approach of practical interest, in fact, physical mod-
eling needs to become a systematic and automatic methodology
based on a simple modeling metaphor (instantiated by a mean-
ingful graphical user interface). Through this methodology, the
user should be spared all the algorithmic and physics-related
aspects of the modeling process and should be able to con-
struct a sound generation/processing algorithm through a lim-
ited number of decisions (structural and parametric) of imme-
diate and intuitive impact on the final result.

Our starting point is always a lumped circuit, intended as a
set of blocks that are connected to each other through ports,
each characterized by a pair of dual variables: a through vari-
able, such as velocity, flow, or current; and an across variable,
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such as force, pressure or voltage. Whether this circuit is na-
tively an electrical one or whether it is the electrical equiva-
lent representation of a mechanic or fluid-dynamic system is,
for the moment, irrelevant. We are, however, interested in a so-
lution that preserves the identity of the ports after discretization
and allows us to monitor the energy flow through such ports to
keep the algorithmic stability under control. A circuit described
by pairs of across-through variables is called a “Kirchhoff” (K)
representation, characterized by a set of “local” equations that
describe the building blocks and a set of “global” equations
(Kirchhoff laws, laws of dynamics) that describe how blocks
are interconnected (topology). A modeling approach based on
K variables consists of discretizing the whole set of (local and
global) implicit equations at once. As a consequence, changing
anything in the reference circuit would usually require the dis-
cretization process to restart. Furthermore, if a nonlinear ele-
ment is present in the circuit, a K-based solution would usually
require solving an implicit equation at every time step, with a
negative impact on computational efficiency. Standard ordinary
differential equation (ODE) solvers are excellent solutions for
simulation problems as they are aimed at maximizing simula-
tion accuracy over a range of problems that is as wide as pos-
sible. However, generality and accuracy are not at the top of our
priorities. We are interested, in fact, in solutions that will be han-
dled primarily by musicians, who will interact with the resulting
algorithms with the intent of exploring the associated timbral
space while pushing the boundaries of algorithmic controls and
stability. We are therefore more interested in the inherent plau-
sibility (self-consistency) of the result rather than in its strict
adherence to the behavior of the analog reference circuit (sim-
ulation accuracy). This means that we will be willing to trade
some accuracy and generality for the guarantee that whatever
instability the musician will experience can be solely attributed
to the reference analog circuit and not its algorithmic imple-
mentation. Another crucial aspect is interactivity, which implies
real time operation and reduced delay. With this in mind, we
cannot generally afford increasing the sampling frequency just
to guarantee that the algorithm will not behave in an unexpected
fashion when modeling nonlinear circuits. For example, a dis-
crete implementation based on standard ODE solvers of the non-
linear subharmonic oscillator described in [7] will exhibit the
expected chaotic behavior only when the sampling frequency
is much higher than the one suggested by the bandwidth of the
involved signals. These, and others that will be clarified later
on, are the reasons why we are interested in solutions based on
Digital Waves, which offer the degree of flexibility and stability
preservation that we are looking for.

Fettweis introduced the theory of Wave Digital Filters [1]
(WDF) a few decades ago, with the intent of working with
scattering parameters in the digital domain and exploiting their
properties in the hope that they would be preserved by the
digital implementation. In order to build a WDF, all K pairs of
variables that describe the various circuit ports are replaced by
a pair of digital waves (incident and reflected), obtained as a
linear transformation of the K pair. This linear transformation
is designed to turn the port representation into an input/output
relationship. This circuit-inspired approach to the physical

modeling of linear filters exploits the scattering nature of the
involved variables and appropriate adaptation conditions to
produce an explicit implementation of the K laws.

The literature of physical modeling is rich with solutions
developed in the Wave (W) domain which are closely related
to WDFs. A well-known example of this sort is given by the
Digital WaveGuides (DWG) [9]. DWG elements are particu-
larly suitable for modeling acoustic resonating structures that
are fully compatible with WDFs. Hybrid WDF/DWG [10]
structures represent a good solution to the problem of sound
synthesis by physical modeling as, besides referring to an
acoustic instrument, they are based on a local (block-based)
discretization of the physical elements that constitute the
analog model. In other words, these solutions open the way
to the development of a flexible synthesis technique based on
the interconnection of predefined building blocks. Traditional
WDF/DWG structures, however, are inherently linear; there-
fore, they cannot easily incorporate nonlinear elements. In the
past few years, however, new solutions and methodologies
have emerged, which allow us to generalize the WDF/DWG
framework in order to encompass a wide class of nonlinearities
with memory, without giving up flexibility and modularity in
the synthesis strategy [6], [7], [10]. An embryo of these ideas
was first presented [6] and then more completely formalized in
[7]. More recently, the authors proposed a method that enables
the automatic construction of physical models of analog cir-
cuits that are suitable for applications of musical acoustics [3],
which brings the design of nonlinear WD structures to a level
of practical usability while enabling the modeling of a wide
variety of nonlinear physical models in a completely automatic
fashion.

In this paper, we push this last approach forward by proposing
WD blocks and elements that allow us to overcome some of the
inherent difficulties that are encountered when dealing with VA
modeling problems. We will discuss categories of NLE that are
typical of VA; WD blocks that allow us to include, under cer-
tain conditions elements that normally cause problems of com-
putability; blocks that allow us to implement new elements that
are crucial for VA applications, but had not been considered be-
fore (e.g., comparators, cross controllers, etc.). Finally, we dis-
cuss the important issues of time-varying parameter control and
usability of the models.

II. WAVE DIGITAL STRUCTURES AND CONNECTION TREES

In this section, we provide a brief overview on nonlinear
WD structures and on the Binary Connection Tree (BCT) [3].
This overview has the purpose of making the manuscript as
self-contained as possible and, at the same time, tuning the
reader’s perspective towards VA applications. We first discuss
some basic blocks that are needed for the construction of WD
structures, just enough to brush up our knowledge of WD
structures. A more complete description of WDF structures
and related blocks can be found in [1]. More WD blocks can
be found in the literature of DWGs (see for example [9]). A
more comprehensive treatment of nonlinear WD structures
can be found in [4]–[7], while solutions for their automatic
implementation are thoroughly described in [3], [8].
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TABLE I
COMMON CIRCUIT ELEMENTS AND THEIR WAVE REPRESENTATION

A. Crash Overview of Basic WD Structures

A circuit port is defined by a K pair . A one-port ele-
ment is, in fact, characterized by a relationship between such
variables. This port representation can be turned into an explicit
representation (an I/O relationship) through a linear transforma-
tion [1] of the form

(1)

where and are the incident (input) and reflected (output)
waves, respectively, and is a nonzero free parameter called
reference resistance; therefore, this transformation is always in-
vertible. In general, the WD representation of a block can be ob-
tained from its (continuous time) K representation, by applying
this change of variables and discretizing the result through the
bilinear transformation. The WD representation of elementary
blocks such as resistors, capacitors, and inductors, can be readily
obtained by following this procedure, and the result is summa-
rized in Table I. As we can see, a careful choice of the free pa-
rameter leads to a WD representation of the block that is
free from instantaneous I/O dependencies. This adaptation con-
dition is crucial for constructing computable WD structures, as
it can be used in order to avoid delay-free loops.

Junctions are structural elements that enable the parallel/se-
ries interconnection of multiple one-port elements in compli-
ance with the Kirchhoff laws. It is through such blocks that the
interconnection topology of the circuit is implemented. In order
to obtain their WD representation, we need to start from the
Kirchhoff laws that describe them and apply the above change of
variables. The result will be a multi-port parallel or series junc-
tion, depending on which K laws have been used to begin with.

The WD representations of such junctions in the three-port case
are shown in Table I.

As the sum of all reflection coefficients is bound to be
equal to 2, the port resistances can always be chosen to bal-
ance out in such a way to have , for any port , which
makes port reflection-free [1]. The condition on port resis-
tances (admittances) in the case of series (parallel) junctions is

(for parallel junctions
we have ), which
means that port must match the series (parallel) of all other
port resistances (admittances). A junction that satisfies this con-
dition on port resistances is called an adaptor, which is a very
important building block as it enables the interconnection be-
tween elements in such a way that the resulting structure will be
computable. To be precise, in the seminal work of Fettweis [1],
what we call adaptors are also referred to as “constrained adap-
tors.” The term junction, widely used in the literature of DWGs,
is a generic term that covers both unconstrained and constrained
adaptors.

A generic -port series (parallel) adaptor can always be de-
composed into a chain of series (parallel) three-port
adaptors connected in such a way to avoid delay-free loops. In
fact, of the available adapted ports will be used
for adaptor-to-adaptor interconnections, and only one will be
left for connections with other blocks (the adapted port of the

-port adaptor).
A tree-like interconnection of parallel and series three-port

adaptors is referred to as a MacroAdaptor (MA) [3], whose
properties are similar to those of multi-port adaptors, as it is non-
energetic (the algebraic sum of all flows of energy directed to-
wards the adaptor is always zero) and has one adapted port avail-
able for MA-to-block connections [2]. Most WD computable
circuits of interest can be seen as a number of WD blocks that are
connected to each other through one such MA. A slightly wider
category of circuits can be covered if we consider MAs whose
outer ports connect to the elements either directly or through
WD transformers or some other non-energetic two-port blocks
such as gyrators [1]. In fact, even if such elements turn out to be
placed between two of the adaptors that constitute the MA, they
can always be “moved outward” using some simple equivalency
rule (e.g., an adaptor with a transformer at one of its ports can be
transparently replaced by an adaptor with the same transformer
on the other two ports).

There exists a special class of non-energetic two-port junc-
tions that further extends the range of applicability of WD struc-
tures. This is the class of Dynamical Scattering Junctions (DSJs)
[6], [7].

1) Dynamical Scattering Junctions and Adaptors: Dynam-
ical scattering junctions refer to a generalization of the concept
of scattering waves, which were first introduced in [7] to accom-
modate a wider range of nonlinear elements into a WD structure.
We start from a K pair and introduce a linear transforma-
tion of the form

(2)

where and are the Z-transforms of the incident (input) and
reflected (output) waves, respectively, and is a reference
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transfer function (RTF), which is assumed to be causal and pas-
sive (positive real in the outer disk). A DSJ is a two-port element
designed to transform the wave pair , referred to the
RTF , into the wave pair , referred to . Let

and ,
, , be the incident and reflected waves, respectively,

that flow through the junction. Using the continuity constraints
and we can derive the output

waves as a function of the input waves

(3)

where

The direct implementation of (3) is known as Kelly–Lochbaum
scattering cell [9], whose reflection coefficient is replaced with
the reflection filter . In order to avoid instantaneous reflec-
tion of the incident waves, we just need the reflection filter to
exhibit no instantaneous input/output connection, i.e.,

, with causal and stable.
This definition of DSJ was generalized into that of dynamic

adaptors in [7], along with an extension of the concept of adap-
tation (instantaneous adaptation; partial or total adaptation), and
a proof of the fact that such adaptors are, in fact, non-energetic.
A similar generalization was proposed for Digital WaveGuides
in [13], along with a discussion of the non-energetic behavior of
its junctions. We then showed in [3] that a wide range of non-
linear circuits can be modeled as a number of WD blocks that
are connected to each other through one dynamic MA (intercon-
nections of dynamic 3-port adaptors). Finally, we showed in [8]
that a generic dynamic MA can be equivalently implemented as
a memoryless MA surrounded by dynamic scattering cells. This
is why DSJs are, in fact, very important for WD structures and
deserved to be described here.

2) Mutators: A special case of DSJ is the WD mutator [6],
[7], which allows us to accommodate reactive nonlinearities
such as nonlinear inductors and nonlinear capacitors into a WD
structure.

The mutator is a DSJ between a capacitive RTF and re-
sistive one. If the analog reference port impedances are

and , , the reflection filter is an
all-pass of the form

If , then both ports turn out to exhibit no local in-
stantaneous reflection, as . The mutator therefore
becomes a Kelly–Lochbaum scattering cell whose reflection co-
efficient is replaced by a delay element.

The mutator is a DSJ between an inductive RTF and a
resistive one, therefore the situation is symmetrical with respect
to that of the capacitive mutator. We start from and

, , which corresponds to a scattering digital
filter

(4)

Instantaneous reflections can be eliminated at both ports of the
scattering junction by letting , in which case we have

, as expected from the classical WDF theory [1].

B. Topological and Structural Issues

There are two important issues that arise from using WD
methods for VA modeling. One concerns the constraints in the
interconnection topology and one concerns the constraints in the
number of NLEs.

An interconnection between WD elements through parallel
and/or serial adaptors is known to result in a computable WDF
because the corresponding signal flow diagram does not contain
any delay-free directed loops [1]. This is based on the assump-
tion that the network of adaptors has a tree-like structure, which
is true for most reference physical systems of interest that are
encountered in VA and in musical acoustics [3]. To be more
precise, it is worth mentioning the work of Franken and Ochs
[12], according to which an arbitrary circuit structure can always
be turned into a tree-like structure made of parallel and series
nodes, as well as triconnected “R-type” nodes [12] (which are
inherently built, for example, as a star-shaped connection em-
bedded in a triangle-shaped connection). As such blocks are still
relatively unexplored in the literature of WD implementations
(particularly as far as initialization issues are concerned), in this
paper we will only focus on MAs that do not include them. It is
our intention, however, to explore more general types of MAs
that include triconnected R-type blocks in the near future.

As already discussed above, a tree-like network of (dynamic
or memoryless) adaptors is here referred to as a (dynamic)
Macro-Adaptor (MA), and a port that exhibits no (instanta-
neous) local reflections is called an adapted port. As reflected
waves at this port are either absent or delayed, this port can be
freely connected to another port without causing computability
problems. As a non-adapted port can only be connected to an
adapted one, the resulting MA ends up having one adapted port
only, which can be used for connecting a nonlinear element
(NLE). The fact that MAs can only directly accommodate one
NLE is a typical limitation of WD structures, including WDFs
[4]. If more than one NLE were present, we could go for an
ad-hoc implementation based on replacing the definitions of
the waves into the K representation of a subportion of the
circuit that includes such NLEs. Usually this results in a set
of equations that needs be solved at every time step (usually
with some iterative method). In conclusion, the presence of
multiple NLEs reduces the effectiveness of our approach but
it does not prevent us from using it. What we lose is some of
the computational efficiency and the possibility to automate the
implementation procedure.

One final issue concerns the fact that some WD structures
are based on dynamic MAs, as envisioned in [7]. We recently
showed [8], however, that a computable tree-like interconnec-
tion of dynamic adaptors is completely equivalent to a memo-
ryless MA whose outer ports might be connected to DSJs. The
proof of this equivalency is constructive and can be done in two
steps:

1) replace all three-port parallel/series adaptors with memory
with memoryless adaptors of the same type, whose adapted
port is connected to a properly defined DSJ;
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2) have all the inner DSJs (those that end up in between two
adaptors) slide outward until they reach the periphery, ac-
cording to specific sliding rules.

More details about this procedure can be found in [8].

C. Connection Tree

A nonlinear WD structure based on a dynamic MA that con-
nects a number of building blocks can always be implemented
using a Wave Tableau (WT), which is a reduced matrix repre-
sentation in the wave domain. A method for turning this rep-
resentation into an explicit form (state update equation) is de-
scribed in detail in [3]. This method, however, is outperformed
in computational complexity and flexibility by a method based
on connection tree inspection, an overview of which is included
in this subsection.

As already said above and discussed in detail in [3], a NL
circuit for VA can always be turned into a WD structure that is
made of a number of building blocks connected with each other
by a multi-port memoryless MA, possibly through DSJs [7]. A
computable -port MA is a tree-like interconnection of
three-port parallel and/or series adaptors [3]. This topology is
therefore that of a binary connection tree with:

• nodes, which are the three-port adaptors;
• branches, which represent the port-to-port connec-

tions of the circuit, namely:
— inner branches, which represent the node-to-node

(adaptor-to-adaptor) connections: for reasons of com-
putability, such connections require at least one of the
two facing ports to be adapted;

— outer branches, which represent the node-to-leaf con-
nections: as of the available adapted ports
have already been used for the inner branches, only one
of the outer branches can be adapted;

• leaves, which are the linear building blocks, to be
connected to the non-adapted outer branches;

• 1 root, which is the nonlinear building block, to be con-
nected to the only adapted outer branch.

We showed in [3] that this structure can be automatically imple-
mented through an algorithm that iteratively inspects this tree
through a “forward scan” (from the leaves towards the NLE) fol-
lowed by a “backward scan” (from the NLE towards the leaves).
The computation always starts from the leaves of the tree, as
they contain the “memory elements” with the related initial con-
ditions. At the end of the forward scan the wave reflected from
the NLE is evaluated, then the backward scan computes all the
waves until it reaches the leaves again, where all memory cells
are finally refreshed.

One major advantage of this iterative implementation lies in
the fact that its computational cost and its memory requirements
increase linearly with the number of adaptors, while the com-
plexity of the WT method grows quadratically with the number
of circuit elements. What makes this approach interesting, how-
ever, is its remarkable flexibility, which allows us to change pa-
rameters and even its topology on the fly. We will see later that
the possible topological changes are:

• grafting: two separate models merge into a single one be-
cause depending on an appropriate proximity condition
(e.g., a piano hammer hits a string);

• pruning: two models split into independently evolving sub-
models depending on an appropriate proximity condition
(e.g., a piano hammer separates from a string after hitting
it);

• bridging: two trees with independent roots (NLEs) are
joined by outer branches (through appropriate elements).

The reference circuit normally includes dynamic elements such
as capacitors or inductors. The corresponding WD representa-
tion of such elements includes memory elements that need to be
initialized with values that reflect a specific initial condition of
the circuit. This initialization process becomes particularly im-
portant when dealing with circuits that are the electrical equiv-
alent of some mechanical or fluid-dynamic system. In this case,
in fact, choosing the wrong initial conditions could result in the
wrong placement of mechanical elements of the system. The
initialization process for BCTs is described in detail in [3].

D. Needs and Requirements for VA Applications

The binary connection tree was introduced with the purpose
of implementing WD structures in an automatic, efficient, and
flexible fashion. Such structures accommodate all the typical
blocks that were envisioned and defined in the theory of WDFs
[1], as well as those that are commonly used in DWGs [9].
They also accommodate a wide range of NLEs (algebraic NLEs)
through mutators [3], [8]. Some very specific elements, how-
ever, cannot be naturally accommodated in WD structures, and
need to be addressed with ad-hoc solutions. This issue will be
discussed in Section III. Here we will consider the problem of
non-adaptable elements and that of elements that are defined in
the K domain.

An important issue that we encounter in typical VA applica-
tions is that of accommodating time-variance. The adoption of
the BCT approach allows us to address parametric time vari-
ance as already discussed in [3]. More interesting is the issue
of topological time variance, i.e., the ability of WD structure
to accommodate changes in block interconnections on the fly.
Time-varying interconnections are, in fact, encountered when
dealing with multiple interacting objects, whose interconnection
is governed by some proximity condition [15]. This issue can be
addressed by exploiting the BCT approach. How to do so will be
discussed in Section IV. Another crucial aspect that is not nat-
urally addressed in WD structures is the dependence between
WD elements. This dependence, in fact, is quite common in a
variety of physical models, and needs to be addressed through
the definition of specific cross-control mechanisms. This issue
will be thoroughly addressed in Section IV.

III. WD BUILDING BLOCKS FOR VA

The WD blocks that we consider can be roughly classified
into physical blocks, which have an analog counterpart in the
reference circuit, and structural blocks, which are introduced
for purposes related to the WD structure. Structural blocks are
typically two-port element that are aimed at the following:

• Modifying the behavior of the blocks that they are con-
nected to—this is usually aimed at simplifying the im-
plementation of elements, by enabling parameter changes
even where this feature was not included in the element’s
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Fig. 1. Series IVS (top) and parallel ICS (bottom). From left to right: analog
circuits with emphasized connections; reference circuits; resulting W structure
when the ideal source is connected to the adapted port of the junction and the
other two ports have the same reference resistance.

design. This is particularly useful for NLEs, as it effec-
tively simplifies its implementation. Such modifications in-
clude rigid translations of characteristics, scaling, etc.

• Accommodating elements that otherwise would not be
possible to include—e.g., elements whose port cannot be
adapted, such as NLEs and ideal generators.

• Connecting a block that is defined in a different domain
other than the Wave Digital one—this refers, for example,
to the K-W conversion, which is aimed at incorporating
in the WD design some elements (or whole sections of
circuits as seen from one of their ports) that are already
implemented in the K domain, without having to start over
with the discretization process.

We will discuss such blocks through specific examples.

A. Ideal Sources

Ideal sources are among those WD elements that cannot be
adapted, therefore it is not possible to connect them to any non-
adapted port of the MA. The fact that they cannot be leaves of
a connection tree generally prevents us from using them in a
WD structure. However, we will show here that it is possible
to define a two-port element that contains a series ideal voltage
source (IVS) or a parallel ideal current source (ICS) inside its
structure, which can be used instead of a three-port adaptor for
accommodating the generator, as shown in Fig. 1. In the case of
an IVS (ICS), these two-port elements allow us to rigidly trans-
late along the axis ( axis), the characteristics of an element.
They can also be used when an IVS (ICS) is needed, provided
that the rest of the structure can be split into two blocks that are
connected in series (parallel).

The relationships for the series IVS, using the sign conven-
tions of Fig. 1, are and . Assuming
that reference resistance of the first port is equal to that of the
second port, , in the WD domain the above equa-
tions become

(5)

We can follow a similar procedure for the parallel ICS, obtaining
the pair of equations and .
The same result can also be achieved by working entirely in
the WD domain. Starting from an ideal source connected to the
adapted port of a three-port series adaptor and forcing the two

ports to have the same reference resistance. This choice of port
resistances, corresponds to the reflection coefficients

. If we then consider the ideal source as part of the adaptor,
we end up with a two-port element whose ports are both adapted,
as they only depend on the incident wave of the other port and
on the output of the ideal source.

The value ( for the parallel ICS) or the incident wave
coming from the source can be treated as a parameter, disre-
garding the corresponding reflected wave which, if needed, can
be readily computed to be . These results are con-
sistent with the classic WDF theory, as by terminating one of the
two-port of the IVS (ICS) with a short-circuit (open-circuit), we
re-obtain its one-port counterpart.

B. Generic Linear Transformation

In many applications there is the need to parametrically alter
or control the characteristics of an element. Aside from the two-
port elements that we find in the classical circuit theory (e.g.,
transformers and gyrators) we can define other transformations
in quite an arbitrary fashion. Examples are scalings with inde-
pendent scale factors for each axis, rotations, or reflections of
the characteristics. Let us consider the generic linear transfor-
mation on the plane

(6)

Using (1), we can readily derive the corresponding W
formulation

In order to guarantee that the resulting two-port structure will
not affect the computability of the WD circuit, the port resis-
tances must balance out in such a way to have . As an
example, for the transformer with turn ratio , whose equations
are and we have

The adaptation condition will therefore be ,
which results in much simpler WD relations of the form

and , which are valid for any nonzero value
of .

Similar is the situation of the gyrator with gyration resistance
, whose equations are and .

The corresponding WD representation, under the adaptation
condition , in this case, turns out to be given
by the following pair of WD relations and

. A special form of gyrator, known by
the name of dualizer, is obtained by applying the condition
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(which yields ). The dualizer has the
interesting property of transforming a generic element into its
dual. Its wave representation is simply given by the pair of WD
equations of the form and .

C. K-W Converter

Numerous models in literature of VA and physical modeling
are implemented in the Kirchhoff domain, as this is the “nat-
ural” domain for a number of distributed parameters modeling
techniques. In order to use such models in a WD structure, these
models need to be modified so that they can accept and return
digital waves. The most obvious solution consists in reworking
the whole model in the W domain, although this is not always
a viable or convenient solution. For example, if we want to ex-
ploit a specific discretization technique that is particularly effi-
cient for a certain purpose or, if the model is controlled by phys-
ically meaningful or intuitive parameters that would be lost in
the conversion to the W domain, then this may not be the best
way to proceed. In addition, we may not be willing to change
an already existing implementation in the K domain. Hence, a
second option is the interposition, between the K model and the
WD structure, of a two-port element that will act as an “inter-
preter” between the two worlds by applying (1) at run time (see
also [14]).

In the rest of this section, we will assume that the K model has
the dimensions of an impedance, i.e., it returns a voltage when
the input is a current. A similar result can be obtained by using
an admittance model. Apparently, a direct implementation of the
K-W transformation, as in Fig. 2, would introduce two delay-
free loops, one on the K port and one on the W port. It can be
shown (see also [16]) that if the K-model has a direct (i.e., delay-
free) input-output connection, a proper choice of the W port’s
reference resistance will eliminate all the delay-free loops
and the element, as seen from the W port of the K-W converter,
will be adapted. Assuming that the impedance filter of K-model
can be decomposed into the sum of an instantaneous term and
a term delayed by at least one sample,

, where is positive real and is a causal
filter, the adaptation condition is achieved by imposing .
Referring to Fig. 2(a), this can be verified by noticing that the
instantaneous term of the transfer function between and the
point labeled as

is equal to one and cancels out with the other term confluent
to the same summation node. This implies a null instantaneous
part of the transfer function between and , or the adaptation
condition. As a simple check, when , i.e., when is a
pure, constant resistance, we can verify that the reflected wave
is null as expected from the classic WDF theory, and the K-W
converter will not introduce any delay-free loops.

If , it follows that there are no delay-free loops on the
K side, but it is not possible to adapt the W port. This is in fact
equivalent to an ideal voltage source [Fig. 2(c)], and it should be
connected to the only adapted port of the MA, thus preventing
the connection of a NLE. However, we found that under partic-
ular circumstances it is possible to remove the delay-free loop

Fig. 2. K-W converter. (a) The connection of a generic impedance K model
to a K-W-converter generates two delay-free loops. (b) Loops are eliminated if
we choose the W port’s reference resistance equal to the instantaneous term of
���� � � �� � ���. (c) When� � � the loop on the K port disappears,
while the delay-free loop due to the ideal voltage source at the W port can be
broken by connecting a suitable series junction as explained in Section III-A.
(d) Resulting structure when � � �. (e) Schematic illustration of the fact that
the junction of fig. (d) does not introduce any delay-free loops (solid lines denote
instantaneous dependencies, dotted lines represent delayed dependencies), but
an outer delay free loop can still be generated when both W elements connected
are not adapted.

from the W port even when this is connected to a generic port of
the MA. By recalling the results of Section III-A, if we connect
the K-W converter to the adapted port of a three-port series junc-
tion, then the remaining two ports of this will also be adapted,
provided that we choose the same reference resistance for them.
The new K-W converter obtained has now two W ports charac-
terized by the same reference resistance, which is a free param-
eter. Although these two ports are adapted [their reflected wave
only depends instantaneously on the other port’s incident wave,
see Fig. 2(d)], if we connect a non-adapted element to each of
them we would generate an outer delay-free loop [Fig. 2(e)].
It follows that one of the two W ports must be connected to an
adapted one. However, the presence of the series junction means
that in order to be able to use this particular K-W-converter, the
overall structure (K element and W structure) must be decom-
posable into the series connection of two W blocks and the K
model. We can reach a similar result also for an admittance type
of K model, but in this case the W port of the K-W converter
would be an ideal current source and, consequently, the junc-
tion would be a parallel one.

In conclusion, the union of the impedance (admittance) K-W
converter and the series (parallel) junction, can be seen as a
special series (parallel) junction between a K model and two
W models, where one of the two W ports can connect a non-
adapted element. In Section V-E we will provide an example of
this sort.

IV. STRUCTURES

As already anticipated in the introduction and in Section II-D,
one critical issue that needs to be addressed when dealing with
VA and, more generally, with physical models for musical
acoustics, is the need of accommodating the interaction be-
tween different WD structures. In fact, the analog reference
system is often inherently modeled as the interaction of several
subsystems. Another reason why we need to model the interac-
tion between connection trees is related to the fact that a WD
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Fig. 3. Types of multi-port NLE. (a) Generic multi-port NLE. (b) Linear circuit
implemented using a scattering cell that connects two trees. (d) A two-port NLE
(labeled NLE2) with one of the two ports adapted, so that it can be connected
as a leaf.

structure can only accommodate up to one nonlinear element.
This limitation is inherited by WDFs and cannot be overcome
directly without radically changing the philosophy of imple-
mentation of connection trees, or giving up their computability.
In many situations of practical interest, what we can do instead
is to overcome this limitation by bridging two or more trees
together.

The inherent iterative nature of connection trees allows us
to address the interaction between different WD structures in a
quite straightforward fashion. In this section, we show that there
are different ways for WD structures to interact with each other.
Some are more suitable for model interaction purposes, others
are more oriented to solving computability problems. Assuming
that each WD structure is represented by a connection tree, one
type of interaction between them is through a shared nonlin-
earity (root in common), which can be implemented as a multi-
port element. Another possibility is through a form of “struc-
tural” time variance that can be managed on the fly through
properly defined operations of pruning, grafting, and bridging.
Finally, interactions between WD structures can take place in
the form of cross-dependencies between WD elements of dif-
ferent connection trees.

A. Multi-Port Nonlinearity

Sometimes the model to be implemented presents two or
more NLEs and it is not possible to separate their update
process (i.e., by interposing a delay cell) to guarantee its
computability due to, for example, their physical proximity
or contiguity. A quite straightforward solution in this cases is
to implement all NLEs and their interconnections as a single
multi-port element, each port of which must be connected to
the root of a tree [see Fig. 3(a)]. The same solution can be
applied when the reference model, or its WDF implementation,
contains a nonlinear (or a non-adaptable) element which is
already by definition a multi-port one. A notable example is the
Kelly–Lochbaum scattering cell defined by (3), implemented as
a BCT root that connects two sub-trees. Another example will
be introduced in Section V-A. In the presence of a multi-port
NLE, the update process of the whole BCT structure must be
modified slightly, to ensure its correct update. In fact all the
NLE’s incident waves need to be computed first, in order to
compute its reflected waves. Consequently, the update process
must scan all the trees from the leaves to the NLE first, compute
all the NLE’s reflected waves and then scan the trees from the
root to the leaves.

A special case of multi-port NLE is when one of its ports
can be adapted. This port can in fact be connected as a leaf,

Fig. 4. Example of Root–Leaf connection, where two sub-trees can be alterna-
tively connected to a special leaf of the main tree.

leading to another connection topology between trees [Fig. 3(c)]
although very similar in many aspects to the cross-control, intro-
duced next. A very useful example of this type of element is the
controlled source. In particular, the voltage follower which can
be seen as a particular case of Voltage Controlled Voltage Source
(VCVS), will be used often in Section V. This can be readily
implemented through a very high resistance on the adapted port
(although slightly more complex methods exist for accommo-
dating an ideal generator instead), and an ideal source, con-
trolled by the voltage across the resistor, on the other port.

B. Intra-Structure Connections

An important class of interactions require that parts of a
circuit, representing a physical object or part of it, should be
able to be connected to or disconnected from the main structure
(Fig. 4). This is often the case in exciter-resonator type of
interactions, where the exciter can interact with a number of
different resonators. If the part of circuit to be (dis)connected
is linear, then this operation corresponds to (dis)connecting
a sub-tree, by breaking/making a parent-child connection.
Such an abrupt change in the topology requires a re-initializa-
tion of the whole structure, in order to ensure consistency of
voltages and currents along the new circuit(s) obtained. Unfor-
tunately, although ensuring the physicality of the model, this
process would unavoidably create discontinuities or “clicks”
in the output audio. A way to prevent this situation and to
avoid the re-initialization of the structure, is to carry out the
(dis)connection only under a predefined proximity condition,
corresponding to an instant before the actual contact between
the two objects takes place [15]. The proximity condition
ensures that the connection needs to be made (i.e., there is an
high probability that the two objects will get in contact in the
next few time samples), but there is no exchange of energy yet.
A typical situation is when the sub-circuit is connected to the
main one in parallel to a short-circuited port. The connection
of the sub-circuit (proximity condition) will not change the be-
havior of the main one, until the short circuit will be gradually
removed, e.g., by slowly changing the work point of a NLE
(contact condition).

Finally, it may be worth noting that, depending on the specific
implementation of the BCT, the disconnected sub-trees may not
be able to be updated when not connected to a root element. This
issue can easily be solved by providing a “dummy” root element
that connects to floating sub-trees, ensuring their update.

C. Leaf–Leaf Connections

There are situations where two or more trees need to be
connected without giving up the possibility to connect a NLE
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Fig. 5. Leaf–Leaf connection and a resonator with multiple excitation.

to each of them. By the BCT’s connection rules recalled
in Section II-C, nodes cannot be connected with each other
through two non-adapted ports. In other words, direct connec-
tions of two (sub)trees nodes are not allowed, as this would lead
to a non-computable structure. To avoid computability issues,
each tree should behave in the same way as it was isolated, in
particular by ensuring that all its leaves are adapted. A way to
satisfy these conditions but still having connections between
two or more trees, is by allowing leaves to be connected to
each other, provided that the ports connected to a tree’s node
remain adapted. This is possible if these leaf–leaf connections
contain at least one delay cell. Common cases where this type
of connection is required are those that involve DWGs or, in
fact, any distributed element, so that the delayed connection
between leaves is not very restrictive for musical applications.
Typical examples include a membrane connected to two or
more mallets (Fig. 5).

D. Indirect Inter-Element or Inter-Structure Connections

Trees can also be connected at signal level, through a link
that we refer to as cross-control. The idea is to use a generic
physical quantity (usually a voltage) measured at a port of any
element, to modify one or more parameters of another element.
The controlled element does not necessarily need to belong to
another tree, it can as well be connected to the same tree. In fact,
it can even be the same element from which the control variable
is being measured. Optionally, the control signal can be modi-
fied by a suitable nonlinear function (exponential, step, etc.) or
simply a scaling factor, to ensure that the controlled element’s
parameters will not assume nonphysical values (e.g., a negative
resistance), or to obtain more complex behaviors. An important
difference with respect to the other connection topologies that
we have seen so far is that the cross-control is a feed-forward
type of link, since the controlling element is not affected by the
controlled one.

Due to the nature of this type of interaction and to preserve
computability, the effect of an element’s modification will in
general take place at the next sample, although it may take place
during the same sample if the controlled element’s (sub)tree is
still to be computed (Fig. 6). This is clearly a limitation when
two (sub)trees have mutually dependent elements. In partic-
ular this happens in feedback structures, where the input signal
should be compensated by the output, which in turn depends
on the input. This issue will be examined in more detail in
Section V.

It should also be noted that in general the change of a param-
eter requires energy. This is the case, for example, when we want
to change the capacitance of a charged capacitor (to fix ideas,

Fig. 6. Trees linked by Cross-Controls. The update order is also shown.

ideally by changing the distance between its plates). The energy
to be spent corresponds to the work needed to move the plates
against the electric field, which is null only if the voltage across
the capacitor’s terminals is null . On the
other hand, since there is only one variable (signal) read, the link
between two elements does not carry any information about the
energy involved in the process. Incidentally, changing the value
of a capacitor in the W domain, corresponds to changing its port
resistance. This is equivalent to varying the capacitance under a
constant applied voltage ( , is not affected), while
the current changes with , resulting in
a variation of the total energy of the system. For instance, in a
simple L-C oscillator we would notice a change in the ampli-
tude of the output sine wave. Unless this is the effect we want to
achieve, care should be taken, e.g., by forcing the correct values
for voltage and current and then running a structure initializa-
tion to fix all the other elements’ variables correspondingly. An-
other more practical solution is to use a nonlinear resistor to
control the output amplitude (see Section V-C), dissipating (or
providing) the energy in excess. From what has been said above,
cross controls can affect the stability of the whole structure and
should be used with care.

V. CIRCUIT SYNTHESIS FOR VIRTUAL ANALOG APPLICATIONS

In this section, we introduce some examples of VA structures
developed using the blocks and the interconnection principles
set forth in the previous two sections. The examples are simple
enough to illustrate the concepts seen so far, yet their implemen-
tation is, in fact, of quite a significant musical interest.

A. Simple Class-A Amplifier

Fig. 7(a) represents a classic single-transistor class-A ampli-
fier. The circuit shown in this example is based on a Bipolar
Junction Transistor (BJT), though the same topology is valid
almost unchanged for other types of transistors and also for
vacuum tubes (although in the latter case supply voltages and
resistors’ values would be sensibly different). In fact, here we
are not interested in a specific model of a transistor or a vacuum
tube, but only in the topology of the circuit and its BCT imple-
mentation. For details on how to implement a specific model see
for example [18].

Starting from the schematics of Fig. 7(a), if we try to imple-
ment it as a WDF using only one-ports, three-port adaptors and a
two-port small signal model for the transistor, we would end up
with a non-computable loop [Fig. 7(b)]. The loop, identifiable in
the same figure, is due to the fact that we need ,
to calculate , but depends on . A possible solution is
to implement the transistor and all the adaptors that form the
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Fig. 7. Class A amplifier. (a) Electrical schematic. (b) Hybrid analog-WDF
representation of the same circuit, using only one-port elements, three-port junc-
tions, and a (over-simplified) small signal model for the transistor. (c) BCT im-
plementation using a three-port NLE. (d) Alternative BCT implementation using
a two-port NLE and a cross-control.

non-computable loop as a single three-port NLE, as highlighted
in Fig. 7(b). By so doing, the non-computability would be dealt
with inside the NLE, for example by using a fixed point search
method. Also notice that a three-terminal element in the analog
domain ended up being modeled as a three-port element in the
W domain.

Another possible BCT implementation is the topology pro-
posed in [18], which basically uses a cross-control. The voltage
across is fed as a parameter into the NLE, where is
computed and used to obtain (respectively marked as ,

and in [18]).
We have seen in Section IV-D that feedback circuits cannot

be easily implemented as a BCT structure. There are a few spe-
cial cases though, where a good approximation of the reference
circuit can be obtained. In this example, the feedback is a very
“mild” one, as in practice it only exists for very slow varying
signals (below the band of interest for the signal), that is, when

can be considered an open circuit.

B. Square/Sawtooth Generator Using an Op-Amp Astable
Multivibrator

Multivibrators are another example of feedback circuits that
can be well approximated using a BCT structure. In this case the
feedback is nonlinear, i.e., it is used to change the state of the
system, which can assume only a finite set of values. A typical
application of this class of circuits in musical acoustics is the
astable multivibrator, used as a square or sawtooth waveform
generator. Being able to correctly model the behavior of this im-
plementation in a faithful fashion is quite important in VA appli-
cations, as its non-ideal behavior is perceived as musically inter-
esting. Fig. 8(a) shows a classic analog implementation using an
op-amp configured as a voltage comparator. Its output can only
assume the two saturation values corresponding to the positive
and negative power supply voltages , depending on the
sign of the difference between its inputs . In
the astable multivibrator, the output is used to charge a capac-
itance , through the resistance (or ), and the voltage
across is fed back to the inverting input . The output is
also used to set the “toggle threshold” voltage on the non-in-
verting input to , , through the voltage divider
composed by and . Supposing for simplicity that initially

Fig. 8. Possible implementation of a square/sawtooth generator, using a com-
parator in configuration astable multivibrator.

Fig. 9. Detail of a simulation for the astable multivibrator shown in Fig. 8. The
values used were � � �� V; � � �� �; � � � k�; � � �� k�;
� � � �F; � � ���. The plot represents � (square wave) and � (sawtooth
wave), the latter amplified by a factor of 10 for clarity.

the voltage across the capacitor is , this will increase (in
magnitude) and tend asymptotically to either or ,
until its modulus will be greater than set on , which
will cause a change in the sign of and, as a consequence,
on and . This will reverse the current flowing into and
the trend of , until the newly set threshold voltage will be sur-
passed in absolute value, and so on. It follows that changes its
sign periodically, resulting in a square waveform. On the other
hand, is a composition of branches of negative exponential
curves which, depending on the choice of , , , and ,
well approximate a straight line, so that results in a trian-
gular waveform (Fig. 9). The resistors and are selected
by the current polarity of the output using the diodes and

, in order to obtain different rise and fall timings for , i.e.,
to obtain asymmetric waveforms.

Fig. 8(b) shows a simplified model of the circuit, more suit-
able for a W implementation. The input stage is composed by
the series of two VCVSs, corresponding to the voltages at the
two inputs referred to the 0 V reference (the “ground”). The
output stage is also composed by a VCVS (in the schematic la-
beled as ), connected to the capacitor through or .
The model is completed by the links between the VCVSs and
their controlling elements: ,
and .

The W implementation can be easily obtained from the sim-
plified model, by noticing the similarity between a VCVS and a
“cross-controlled” voltage source. It follows that the input stage
of the op-amp can be implemented by the series connection of
two voltage sources while the output stage, implemented as a
separate structure, is composed by another voltage source in se-
ries with a resistor and a capacitor. Notice that for the input
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Fig. 10. Simple VCO with voltage regulation. (a) Electrical schematic. (b) Ex-
ample of NLR characteristic. (c) BCT implementation, using a low frequency
oscillator �� �� � to vary the main oscillator’s capacitance.

Fig. 11. Simulation of the BCT structure in Fig. 10(c). Top: without the NLR;
bottom: with a NLR having slope �1 between [�10 V, 10 V], and slope 1 else-
where, while the other values used were � � ��� � �� F; � � ��� � �� H;
� � ��� � �� F; � � ��� � �� H; � ��� � � V; � ��� � � V. The
Cross-control was mapped so that the entire excursion of the controlling signal
��� V � � � � V� modifies � from 0.1 C to 1.3 C.

stage we can use real voltage sources, as the presence of the
internal resistor would not cause any voltage drop since their
output is left open and is only used to control the output voltage
source. This choice greatly simplifies the implementation of the
input stage without introducing any approximation. On the other
hand, the output stage should be implemented as an ideal voltage
source, as the internal resistance of a real source would affect
the time constants and . For the sake of simplicity,
in this example we used a real source whose internal resistance
is much smaller than and . It is indeed possible to imple-
ment as an ideal voltage source as explained in Section III-A
or simply by connecting it as the root of a tree. Finally, four
cross-controls must be set: from to (one to one); from

to (through a coefficient ); from to
(through a step function that chooses two suitable values for ,
depending on the sign of ); and from to (through a
sign function).

It is important to point out that, despite its lengthy description,
the proposed implementation of the astable multivibrator is very
simple and efficient as it only requires three adaptors and five
one-port elements.

C. Voltage-Controlled Oscillator With Automatic Gain Control

A sine wave oscillator can be easily implemented by an LC
circuit, taking for example the voltage as the output. To trans-
form it into a voltage controlled oscillator (VCO) we can vary
its capacitance through a cross-control, which uses a voltage
(or, in fact, any electrical quantity) taken from a controlling cir-
cuit [Fig. 10(c)]. Since the oscillating frequency of an LC circuit
doubles when the capacitance becomes a quarter of its original
value, the control signal must be filtered by a suitable function
if a linear voltage–frequency dependence is needed.

As mentioned in Section IV-D, a modification of the value of
a reactive element will in general change the total energy of the

Fig. 12. Second-order filter composed by two decoupled first-order cells, con-
trolled by an envelope follower. (a) Principle schematic. (b) The same circuit
with highlighted series/parallel connections. (c) BCT implementation, where
the two-port NLE that models the voltage follower has been represented with a
triangular shape.

system. This reflects on the output amplitude which will vary in
an unpredictable fashion. A simple way to regulate the voltage
in this type of applications is to use a nonlinear resistor (NLR)
[Fig. 10(a)] having a I-V curve characterized by a negative slope
around the origin and positive slope elsewhere, as the piecewise
linear function shown in Fig. 10(b). The addition of the NLR to
an L-C circuit forms the classical nonlinear oscillator [20] also
used in practical applications, where the negative part of the
NLR’s characteristics provides the energy dissipated by non-
ideal capacitors and inductors. Fig. 11 shows how the output
changes when such NLR is connected to the circuit.

D. Voltage-Controlled Filter With Decoupling Stage

Many VA applications, from synthesis algorithms, to
“graphic equalizers,” to guitar effects, require a time-varying
filter. In this example, we want to design a simple time-varying
bandpass filter composed by the cascade of high-pass and
low-pass RC stages. This configuration lets us set the high-pass
and low-pass cut frequencies independently, as long as we
provide adequate decoupling between the two stages so that the
corresponding time constants due to and will be inde-
pendent from each other. Other features of this configuration
are also the absence of resonances and a glitchless response to
sudden variations of the cut frequencies, provided that these
are carried out by varying only the resistors’ values, as shown
in Fig. 12(a).

We know that in analog circuits an impedance decoupling
can be obtained by interposing a voltage follower configuration
between the two stages to be isolated. We have seen that a BCT
counterpart of these decouplers can be easily obtained using a
cross-control applied to an (ideal) voltage source, or very well
approximated by designing a special two-port NLE composed
by an adapted resistor with a very high value on the first port
and an ideal voltage source on the second port, the latter directly
controlled by the voltage across the first port. For this example
we will choose the second solution.

To control the filter we could link both and to the
output of a low-frequency oscillator, easily implemented with
an LC circuit. Another interesting control source can be ob-
tained from the output of an envelope follower fed by the same
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Fig. 13. Detail of input and output waveforms of the envelope follower shown
in Fig. 12(a), for a musical input signal. An ideal diode was used, while � �
�� �; � � �� �F; � � �� k�.

Fig. 14. W hammer connected to a K resonator through a K-W converter. (a)
The two elements to be connected. (b) Resulting structure when the resonator
contains a direct feed-forward block �� �. (c) case when the resonator does
not contain any direct in/out connection. (d) K-W-converter for an admittance
model (only the case � � � is shown).

input as the filter’s, to implement the classic “auto-wah” effect.
Fig. 12(a) also shows a simple example of envelope follower,
based on a diode detector, of which a simulation is reported
in Fig. 13. To prevent any distortion of the input signal caused
by the presence of the diode, we interposed another decoupling
stage before the envelope follower, this time implemented using
a cross-control.

E. Hammer–Resonator Interaction Using a K Resonator

A hammer having nonlinear compliance and its contact con-
dition to a generic resonator block can be quite easily imple-
mented in the W domain [19]. This is composed by a NL capac-
itor [7] that models the felt and the contact condition, in parallel
with an inductor to model the hammer mass. On the other hand,
it would be useful to be able to connect a resonator (e.g., a string)
modeled in the K domain, possibly through a K-W converter.
In this example we suppose that the K model is an impedance
one. We have seen in Section III-C that the K-W conversion can
be done when the K-model contains a direct input–output term

, as long as we set as the reference resistance of
the K-W-converter’s W port. In order to do so, we need to have
access to , which will also need to be removed from the K
model [Fig. 14(b)].

When the direct input-output connection is not available, the
W port of the K-W converter cannot be adapted (it is an ideal

source). It should thus be connected to the MA’s adapted port,
but in our example this is already taken by the NLE. From what
said in Section III-C we can still obtain a computable structure
if the K-W converter is connected to a series adaptor or, in other
words, if the WD structure as seen from the K-W converter’s W
port can be split into the series connection of two blocks. Unfor-
tunately this is not the case for the W-hammer of this example,
because its only two elements are connected in parallel. How-
ever, by invoking the duality principle (see for example [20])
we can still transform the parallel of the inductor and the NL
capacitor into the series of their dual counterparts, respectively
a capacitor and a NL inductor. This can be done quite easily by
using a dualizer, as shown in Fig. 14(c). Incidentally, this is the
electrical equivalent that we would obtain using Firestone’s (or
force-current) electrical-mechanical equivalence [21] instead of
the force-voltage one that we have used so far. Finally it is useful
to note that if we had an admittance type of K model, since its
corresponding K-W-converter requires a parallel junction we
would be able to connect it to the hammer model right away
[Fig. 14(d)], provided that we chose the NL capacitor’s refer-
ence resistance equal to that of the inductor (see Section III-C).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we discussed and revisited existing methodolo-
gies for the modeling of nonlinear WD structures in view of their
application to VA modeling. We emphasized the strengths but
also the weaknesses of such solutions within this special cat-
egory of physical modeling, and proposed novel solutions for
making the WD approach more suitable for VA. In particular, we
proposed novel transformation blocks and various interconnec-
tion solutions that are commonly encountered in the area of VA.
We finally proposed several circuit modeling solutions for VA
applications that serve as proof of concept as well as a testbed
for the effectiveness of the developed solutions.

The method proposed in this manuscript extends the range
of application of WD modeling for VA, and preserves the ad-
vantages that WD modeling (particularly BCT modeling) of-
fers over K-based solutions, which are in terms of flexibility,
support for time-varying parameters and topologies, computa-
tional efficiency, and responsivity. One more point of strength
of WD modeling is in the availability of a solid implementation
methodology based on connection trees, which allows the user
to develop models without having to worry about algorithmic
issues and code generation.

These techniques are meant not just to serve as a fast-proto-
typing circuit simulation solution, but also to address issues of
flexibility and playability for VA applications in musical sound
generation and processing. In fact, what makes VA interesting
is the possibility to overcome the physical limits of the analog
reference circuit, and open the way to a less constrained explo-
ration of the resulting timbral space. We can achieve this through
time-varying topologies, special cross-controls, and a more gen-
eral definition of NLEs that enables additional parametrization.
In order to exploit all such added features, it would be desirable
to develop a framework that accommodates multiple connec-
tion trees with all the topological operations at hand (pruning,
grafting, etc.), equipped with an intuitive and effective graph-
ical user interface. A prototype of this interface was developed
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in [15] and successfully used for applications of musical acous-
tics [17]. Its generalization to multiple BCTs will be the next
step.
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