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Abstract

The two main approaches for the description of sound
fields are methods derived from solutions of the wave
equation and geometric methods based on analogies to ray
optics. Their mathematical representations are reviewed
and it is shown that representations by projective geometry
and descriptions by Fourier acoustics lead to similar para-
metric representations of sound fields.

1 Introduction

Sound field synthesis comprises a number of methods
for the creation of sound sensations by electro-acoustic
means. The usual methods for home entertainment rely on
stereophony with typically two to five loudspeakers. Re-
cently also other sound reproduction methods with con-
siderably more loudspeaker channels have been installed
in public environments. The most popular of these recent
methods are Ambisonics, wavefield synthesis, and vector-
based amplitude panning. Typical applications are enter-
tainment and artistic events. Consequently, the ultimate
goal is the creation of audible spatial sensations for a large
number of listeners.

Another application area is the reproduction of spa-
tially distributed sound fields to create test environments
for speech communication equipment. Rather than cre-
ating virtual realities for human listeners, the intention is
here the physically correct reproduction of machine and
street noise or the spatial reproduction of room reverbera-
tion.

The faithful reproduction of sound fields requires phys-
ically correct and mathematically tractable representations.
There are two main approaches: one is based on the propa-
gation of sound waves (wave-based methods) and the other
on analogies to ray optics (geometric methods). Wave-
based methods comprise the acoustic wave equation, inte-
gral relations involving Green’s functions, and the expan-
sion into circular and spherical harmonics [9]. Geometric
methods include the mirror image source method, ray trac-
ing, beam tracing, and certain extensions thereof.

Virtually all practical applications for the computa-
tion or reproduction of sound fields use either wave-
based or geometric approaches. Since there is little cross-
fertilization between both worlds, this contribution shows
that connections can be established based on multidimen-
sional signal theory. The description of acoustic signals
in time and space and in the corresponding frequency do-
mains [1, 3] provides new possibilities for geometric inter-
pretations.

Sec. 2 gives a very concise account on the composi-
tion of sound fields from plane wave components. Sec. 3
presents a purely geometric interpretation of moving wave
fronts in terms of projective geometry. An alternative route
is given in Sec. 4 with a description of sound fields with
Fourier transforms in time and space. Finally a unified
view is developed in the concluding Sec. 5.

2 Representations of Sound Fields

This section presents a short account of a technique known
as plane wave decomposition of a sound field [9]. The no-
tion of a plane wave is the basis for the geometrical con-
siderations in Sec. 3, while the signals introduced here are
further analyzed by Fourier techniques in Sec. 4.

2.1 Overview

Three different representations of sound fields are pre-
sented here in increasing order of complexity. They are
valid for typical physical quantities which describe a sound
field, e.g. the sound pressure. The independent variables
are the vector of space variables xxx and time t. A two-
dimensional spatial extension with the scalar space vari-
ables x and y is used for simplicity, but the presented rela-
tions hold also for three spatial dimensions.

The following sound field representations are used
here:

• a monofrequent plane wave with the frequency ω0 and
from the direction θ0,

• a general plane wave from the direction θ0, composed
of monofrequent components,

• a general sound field, composed of plane waves from
various directions.

These representations are described in more detail in the
following sections.

2.2 Monofrequent Plane Wave

A complex-valued monofrequent plane wave is the exten-
sion of the idea of a phasor to a function of time and space

u(xxx, t;θ0,ω0) = U0(θ0,ω0)e j(kkkT
0 xxx+ω0t) . (1)

It is called a plane wave because the dependency on space xxx
and time t resembles a plane moving in space, as discussed
in Sec. 3. The superscript T denotes transposition.

The so-called wave vector kkk0 is related to the angular
frequency ω0 and to the direction θ0 from which the wave
emanates by

kkk0 =
ω0

c
nnn, nnn =

[

n1(θ0)
n2(θ0)

]

=

[

cosθ0
sinθ0

]

(2)

The vector nnn is a unit vector determined by the direction of
the wave θ0. The complex amplitude U0(θ0,ω0) may vary
with the angular frequency ω0 and the direction θ0.

The monofrequent plane wave (1) is a solution of the
linear acoustic wave equation. Therefore all superposi-
tions, including those presented in the following sections,
are also representations of sound fields.
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2.3 General Plane Wave

The superposition of monofrequent plane waves with dif-
ferent angular frequencies ω0 gives a general plane wave
propagating in a fixed direction

v(xxx, t;θ0) =
1

2π

∞
∫

−∞

u(xxx, t;θ0,ω0)dω0 = u0

(

θ0, t +
1

c
nnnTxxx

)

.

(3)

The wave form u0(θ0, t) is the inverse Fourier transform of
the complex amplitude U0(θ0,ω0) with respect to ω0

u0(θ0, t) = F
−1
t {U0(θ0,ω0)} (4)

with the Fourier transform Ft as defined in (18). The plane
wave property from (1) is preserved, but the wave form
u0(θ0, t) is arbitrary (as long as its Fourier transform ex-
ists).

2.4 General Sound Field

Finally a general sound field can be created by superposi-
tion of plane waves from all directions θ0 as

w(xxx, t) =
1

2π

2π
∫

0

v(xxx, t;θ0)dθ0 . (5)

The superposition of plane waves in (5) allows to cre-
ate general sound fields, just like the superposition of
monofrequent plane waves in (3) allows to generate plane
waves with general wave form. Since plane waves are so-
lutions of the acoustic wave equation, also their superpo-
sition (5) is a solution. This fact justifies to call w(xxx, t) a
sound field.

The plane wave property of u(xxx, t;θ0,ω0) and
v(xxx, t;θ0) is the starting point for geometrical considera-
tions in Sec. 3

3 Geometric Relations

The components u(xxx, t;θ0,ω0) and v(xxx, t;θ0) of the gen-
eral sound field are called plane waves because they de-
scribe functions with constant values on a plane in space,
or — in two spatial dimensions — on a line in a plane.
This well-known fact is shown here with some simple ar-
guments from projective geometry, a standard method in
computer graphics and computer vision [2], but less so in
acoustics. The geometrical description of the movement of
a wave front requires shift operations as shown in Fig. 1.
In Cartesian coordinates, such a shift cannot be calculated
by a matrix multiplication. However, augmenting the coor-
dinate vector by an additional element allows to compute
mappings like translations and others by methods from lin-
ear algebra (see (10)).

3.1 Normal Form of a Line

The geometrical considerations start with the description
of a line through the origin of the coordinate system (x,y),
as shown in Fig. 1. When the position of the line is deter-
mined by the direction of a unit vector nnn as defined in (2),
then the coodinates x and y of all points on the line satisfy
the so-called normal form

nnnTxxx = n1x+n2y = 0, where xxx =

[

x
y

]

. (6)

x

y

∆x

∆y

nnn

nnn
θ0

d

Figure 1: Two lines with normal vector nnn shifted by a dis-
tance d.

The point xxx can be mapped in the projective space intro-
ducing its homogeneous representation

x = [x y 1]T = [xxx 1]T . (7)

The Cartesian coordinates are denoted by the two-element
vector xxx, while x is the corresponding vector of homoge-
neous coordinates.

As a consequence, the normal form in Eq. (6) can be
rewritten by means of homogeneous coordinates

l
T
x = 0 , (8)

where l = [n1 n2 0]T is the line parameter vector. Notice
that all the vectors αl, with α 6= 0, represent the same line:
this means that the vector l is homogeneous as well.

The translated version of the line, is obtained by con-
sidering the translation vector ∆xxx = [∆x ∆y]T, as shown in
Fig. 1. In homogeneous coordinates the translated line is
given by [2]

l
′ = H

−T
l , (9)

with the translation matrix

H =

[

1 0 ∆x
0 1 ∆y
0 0 1

]

. (10)

Eq. (9) can therefore be rewritten as

l
′ =

[

1 0 0
0 1 0

−∆x −∆y 1

][

n1
n2
0

]

=

[

n1
n2
d

]

(11)

with −∆xn1−∆yn2 =−nnnT∆xxx = d nnnTnnn = d. The elements
nnn and d of the parameter vector are also called the repre-
sentation of the line in the dual space or ray space [2].

The Hessian normal form in the coordinate system
(x,y) follows by returning to Cartesian coordinates

[

n1
n2
d

]T[

x
y
1

]

= nnnTxxx+d = 0 . (12)

3.2 A Travelling Wave Front

The shifted line is now interpreted as a plane wave front
which moves with time at a constant speed c. Thus the
distance d from the origin in (12) becomes a linear function
of time d = d(t) = ct and the line travels with constant
speed in the direction of −nnn as shown in Fig. 2.
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x

y

nnn
θ0

ct1

ct2

Figure 2: A travelling wave front for two different points
in time t1 and t2.

The introduction of a time dependence is reflected by a
new form of the Hessian normal form (12) as

[

nnn
ct

]T [

xxx
1

]

= nnnTxxx+ ct = 0. (13)

The left side of (13) is the analytical description of a travel-
ling wave front in homogeneous coordinates, the right side
is the corresponding Hessian normal form.

3.3 Correspondence to the Plane Wave

The parameter representation in (13) is only unique up to a
constant factor. To show the correspondence with the plane
wave solutions introduced in Sec. 2, a special form of this
factor is chosen.

In accordance with (2), the normal form (13) is multi-
plied by

k0 =
ω0

c
, k0nnn = kkk0 (14)

to obtain

[

kkk0
ω0t

]T [

xxx
1

]

= kkkT
0 xxx+ω0t = 0 . (15)

As a parameter description of a travelling line, the con-
stants kkk0 and ω0 have no physical meaning. However, as
description of a plane wave, the right hand side of (15)
corresponds to the argument of the exponential term in (1)
where kkk0 and ω0 represent the wave vector and the angular
frequency, respectively.

The condition (14) can be expanded in homogeneous
coordinates into the parameter representation of a circle

[

k01
k02
ω0

]T




1 0 0
0 1 0

0 0 −1/c2





[

k01
k02
ω0

]

= 0. (16)

The parametric description of a circle becomes obvious
when converting to Cartesian coordinates through division
by ω0

[

k01
k02
ω0

]

→

[

k01/ω0
k02/ω0

]

= 1/c

[

n1
n2

]

= 1/c

[

cosθ0
sinθ0

]

. (17)

This geometric description will be reviewed in the follow-
ing section from the view point of Fourier acoustics.

4 Fourier Acoustics

This section discusses the sound field components from
Sec. 2 from the view point of Fourier methods [3, 4, 9].
Here, the wave nature of these components is emphasized
by application of Fourier transformations with respect to
time and space.

4.1 Fourier Transforms for Time and Space

For a scalar function u(xxx, t) of space xxx and time t, the
Fourier-Transform with respect to time is defined by

U(xxx,ω) =

∞
∫

−∞

u(xxx, t)e− jωt dt = Ft{u(xxx, t)} , (18)

and further the two-dimensional Fourier-Transform with
respect to space

Ū(kkk,ω) =

∞
∫∫

−∞

U(xxx,ω)e− jkkkTxxx dxxx = Fxxx{U(xxx,ω)} . (19)

The Fourier transforms of exponential functions are given
by Delta-functions in the corresponding frequency vari-
ables, the angular frequency ω and the wave vector kkk

Ft{e jω0t } = 2π δ (ω −ω0) (20)

Fxxx{e jkkkT
0 xxx } = (2π)2

δ (kkk− kkk0). (21)

4.2 Fourier Transforms of Plane Waves

The relations from Sec. 4.1 are now applied to the plane
waves introduced in Sec. 2.2 and 2.3. The Fourier trans-
form of the monofrequent plane wave from (1) is given by

U(xxx,ω ;ω0,θ0) = Ft{u(xxx, t;ω0,θ0)} (22)

= U0(ω0,θ0)e jkkkT
0 xxx ·2π δ (ω −ω0)

and subsequent spatial Fourier transform results in

Ū(kkk,ω ;ω0,θ0) = Fx{u(xxx,ω ;ω0,θ0)} (23)

= U0(ω0,θ0)(2π)3
δ (ω −ω0)δ (kkk− kkk0) .

Thus the monofrequent plane wave (1) is represented by
a single point (ω0,kkk0) in the 3D parameter space of the

angular frequency ω and the wave number kkk = [k1 k2]
T as

shown on the left of Fig. 3.

ω

ω0

k1

k2

kkk0

ω

ω0

k1

k2

kkk0

Figure 3: Space-time Fourier transforms of a monofre-
quent plane wave (left) and of a general plane wave (right).

Similar to Sec. 2.3, the frequency domain representa-
tion of a general plane wave follows from Ū(kkk,ω ;ω0,θ0)
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by integration with respect to all angular frequencies ω0 as

V̄ (kkk,ω ;ω0) =
1

2π

∞
∫

−∞

Ū(kkk,ω ;ω0,θ0)dω0 (24)

= U0(ω ,θ0)(2π)2 ·δ (kkk− kkk0)

Thus a general plane wave is represented in the 3D param-
eter space (kkk,ω0) by a line though the origin, see Fig. 3,
right.

Finally, the frequency domain description of a general
sound field results from integration with respect to the an-
gle θ0, compare Sec. 2.4,

W̄ (kkk,ω) =
1

2π

∞
∫

−∞

V̄ (kkk,ω ;ω0)dθ0 (25)

= 2π

2π
∫

0

U0(ω ,θ0) ·δ
(

kkk−
ω

c
nnn(θ0)

)

dθ0.

Now the line from Fig. 3, right, rotates with varying angle
θ0, forming a cone as shown in Fig. 4. For each fixed value
of ω , a horizontal cross section through the cone describes
a circle. Its radius increases with increasing angular fre-
quency, thus linking angular frequency and wave number.
For acoustic waves, this strong coupling of temporal and
spatial variations is given by (2), also called the dispersion
relation.

ω

k1

k2
kkk0

Figure 4: Space-time Fourier-Transform of a general
sound field.

5 Conclusions

The representations (15) and (23) show that such diverse
approaches as projective geometry and Fourier acoustics
lead to rather similar parameter representations. The trav-
elling line from Fig. 2 can to be interpreted according to (1)
as a line of constant phase

kkkT
0 xxx+ω0t = const . (26)

The three-dimensional parameter space of projective ge-
ometry consists of the parameter vectors (nnn0,d) or
(k0,ω0t) in (15). The third dimension is generated as a
homogeneous coordinate without any physical origin. In
the geometrical context, c, ω0 and t are parameters which
discribe translations of the line from Fig. 2.

In Fourier acoustics, the wave front defined by (26) has
a more general meaning. It is a line (or plane in 3D) of con-
stant phase of a wave from (1) or (3) with the wave vector
kkk0 and an angular frequency ω0. Thus the axes in the corre-
sponding three-dimensional frequency domain (see Fig. 3)
are endowed with a clear physical identity.

It has been shown that projective geometry represents
an effective tool for representing travelling waves. How-
ever, projective geometry itself may not be sufficient for
describing more complex and realistic acoustic scenarios.
For example, a desirable feature would be the ability to
describe wall reflections, distinguishing between the two
sides of a reflecting surface. This can be addressed em-
ploying the oriented projective geometry [7].

It introduces the concept of signed homogeneous coor-
dinates, that allows to distinguish between a positive and a
negative side of the projective space. This implies a num-
ber of advantages, for example the possibility to define ori-
ented lines, oriented points, segments and directions.

In the literature, the oriented projective geometry has
been mostly applied in Computer Vision (see for example
[5, 8]). Its application in acoustics is quite novel: in [6] the
authors show the derivation of a set of oriented geometric
primitives suitable for the computation of the mutual visi-
bility among acoustic reflectors. This paves the way for an
efficient beam tracing algorithm. The key point is that ori-
ented projective geometry allows to describe the two sides
of an acoustic reflector in terms of the directions of rays
passing through it.
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