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Localization of Acoustic Sources Through
the Fitting of Propagation Cones Using
Multiple Independent Arrays
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Abstract—In this paper, we propose a novel acoustic source local-
ization method that accommodates the general scenario of multiple
independent microphone arrays. The method is based on a 3-D pa-
rameter space defined by the 2-D spatial location of a source and
the range difference extracted from the time difference of arrival
(TDOA). In this space, the set of points that correspond to a given
range lie on a circle that expand as the range increases, forming a
cone whose apex is the actual location of the source. In this param-
eter space, the lack of synchronization between arrays results in
the fact that clusters of data associated to individual arrays are free
to shift along the range axis. The cone constraint, in fact, enables
the realignment of such clusters while positioning the cone vertex
(source location), thus resulting in a joint data re-synchronization
and source localization. We also propose a novel and general anal-
ysis methodology for swiftly assessing the localization error as a
function of the TDOA uncertainties, which is remarkably accurate
for small localization bias. With the aid of this method, simulations
and experiments on real data, we show that the cone-fitting process
offers excellent localization accuracy in the scenario of multiple un-
synchronized arrays, as well as in simpler single-array scenarios,
also in comparison with state-of-the-art techniques. We also show
that the proposed method offers the desired flexibility for adapting
to arbitrary geometries of microphone clusters.

Index Terms—Microphone arrays, source localization, time dif-
ference of arrival.

I. INTRODUCTION

COUSTIC source localization based on passive sta-

tionary sensor arrays is a problem of great interest in a
variety of applications ranging from telecommunications to
entertainment. Localizing acoustic sources is also a crucial
aspect of acoustic source separation and echo cancellation
methods. Numerous algorithms have been proposed over the
past few decades, which use different types of acoustic mea-
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surements. Among them, those based on time differences of
arrival (TDOAs) have proven particularly effective.

The maximum-likelihood estimator (MLE) (see [1]-[5]) is
among the most popular approaches to TDOA-based localiza-
tion thanks to its well-established advantage of asymptotic effi-
ciency for a wide sample space. However, in order to apply the
maximum-likelihood principle, a statistical characterization of
the measurements is required. An alternate approach that does
not require a prior statistical characterization of the measure-
ments is the least squares estimator (LSE) [6]-[9], which at-
tempts to minimize a squared error function that incorporates
both source location and measurements. In [10], the authors
provide exact solution procedures for efficiently estimating the
source location based on squared range difference-least squares
(SRD-LS) and squared range-least squares cost functions.

In the past few years, however, low-cost integrated digital ar-
rays of microphones have begun to appear, paving the way to a
new scenario in which multiple independent (unsynchronized)
arrays are employed. Various examples of applications that use
this pervasive sensing configuration can be found in the liter-
ature, for example in [11] and [12]. These articles describe a
two-step solution for the localization problem, which accommo-
dates multiple clusters of sensors. Source localization is based
on the directions of arrival (DOAs) that are measured from two
clusters of sensors. Triangulating DOAs, in fact, does not re-
quire synchronization of the two arrays, but it does imply an as-
sumption of far field operation. If we are working in a near-field
scenario, however, we need to resort to TDOAs, which normally
require that the arrays be synchronized with each other. If array
synchronization is not an option, synchronization of measure-
ments is usually required.

The fact that TDOA measurements relative to different
arrays might not be synchronized with each other is a rather
common scenario to expect, particularly when working with
numerous low-cost arrays. Furthermore, even if synchroniza-
tion were possible, TDOAs obtained from distant microphones
turn out to be less reliable than those obtained from closely
spaced ones [13]. There is, therefore, a growing interest to-
wards localization using TDOAs extracted from independent
(i.e., unsynchronized) microphone arrays. In [14], source lo-
calization is approached through a ML estimation procedure
using TDOAs measured at independent pairs of microphones,
suitable also for near-field scenarios. A closed-form solution
for the least squares error criterion was recently proposed in
[15]. This paper is particularly interesting not just for its gener-
ality, but also because it partly addresses the case of multiple
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sub-arrays (each with their own reference microphone and time
origin). In fact, after extensively covering the single-array case,
the authors propose a possible extension of their method for
the multiple array scenario, with the goal of improving the
robustness against noise.

In this paper, we address two critical issues within the sce-
nario of localization based on multiple independent arrays: first
we propose a localization methodology that performs the local-
ization using a space-range representation. Second, we intro-
duce a framework for the analytical assessment of the accuracy
that can be achieved by a specific localization technique and for
a given deployment of the individual arrays. As far as the source
localization technique is concerned, we start with TDOA mea-
surements and convert them into geometric constraints, which
are defined in a 3-D space formed by the propagation distance
(range difference extracted from the TDOA) and the geometric
coordinates of the source. In this space, the set of points that cor-
respond to a given range lie on a circle that expands as the range
increases, forming a cone whose apex is the actual location of
the source. Localizing the source, therefore, means finding the
location of the apex of the cone through the minimization of
some cost function. The cone representation is partially inspired
by the light-cone principle, a well-known concept in the litera-
ture of relativistic physics [16].

We first propose an algorithm that performs 2-D source lo-
calization with independent arrays through the minimization of
two cost functions with meaningful geometric interpretations in
the space-range reference frame. We then specialize the con-
cept to the case of a single array in order to show the strong
relationships and the differences existing between the proposed
cost functions and state-of-the-art techniques. We study the 2-D
localization because it allows us to visualize the approach in
the 3-D geometrical space. The method, however, can be rather
straightforwardly generalized to the 3-D localization case.

In a general scenario, the deployment of the individual arrays
are not expected to be optimized for localization purposes, as
it might be subject to constraints of a different nature (e.g. ar-
chitectural). It is therefore important to be able to accurately
and swiftly predict the localization accuracy for a given ge-
ometry of clusters. In the literature, researchers typically re-
sort to Monte-Carlo simulations or to the Cramer—Rao Lower
Bound (CRLB) (e.g., [17]). The first alternative is often time-de-
manding, as for each location of interest of the source a huge
number of simulations is required. For this reason, CRLB is
used as a theoretical lower bound of the achievable accuracy
under the hypothesis that no bias is introduced in the estima-
tion. In this paper, we propose a novel method that combines
the advantages of Monte Carlo simulations (algorithm-depen-
dent prediction of the accuracy) and CRLB (low computational
cost) to predict the root mean square localization error, which
consists of a linear relationship between the covariance matrix
of the measurement errors and localization errors that is valid
under the same hypothesis of CRLB (i.e., small bias). The pro-
posed analysis, however, goes a bit beyond CRLB, as it pre-
dicts the error achievable by a specific localization technique,
assumed that it is based on the minimization of a cost function.
We remark, moreover, that the proposed error propagation anal-
ysis can be used also not only in the context of source local-
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ization, but also for the estimation of other variables. For this
purpose, a Matlab toolbox is available online [18].

The paper is structured as follows. Section II presents the
problem formulation and introduces the adopted 3-D param-
eter space. Section III introduces two cost-functions for the
multiple arrays case and then shows that other state-of-the-art
single-array localization algorithms are easily represented in
the space-range framework. In Section IV, we introduce the
theoretical study of the error propagation from measurements
to source location estimation. Section V presents some results
from simulations and experiments aimed at validating the
theoretical error analysis; at presenting the influence of the
number of sub-arrays on localization accuracy; at showing a
comparison between the proposed algorithms and those found
in literature in different scenarios. Finally, in Section VI we
draw some concluding remarks.

II. PROBLEM FORMULATION

As anticipated above, for reasons of representational clarity,
in this paper we focus on the localization of a single acoustic
source in a 2-D geometry. The proposed framework, however,
can be rather straightforwardly extended to the 3-D space. Let
us consider L independent microphone sub-arrays, each com-
posed of N; + 1,1 =1,..., L sensors. The ith sensor in the /th
sub-array is denoted with the index (") and it is located at co-
ordinates (x,gl), ygl)). The sub-arrays are not assumed as being
synchronized with each other. The first microphone in each sub-
array is the local reference microphone, i.e., the TDOAs within
each sub-array are computed between the i(!th sensor (i #0)
and the reference one (i = 0), while TDOAs between micro-
phones belonging to different sub-arrays are not directly avail-
able because of the lack of synchronization. In order to derive
the cone-based representation, let us assume for the moment
that the source located at (g, ys) produces a pulse at time 0
and that source and microphones are synchronized. The i(Dth
microphone receives the pulse at time tgl). Correspondingly,
the propagation distance from the source to the i(!th micro-
phone is zi(l) = ntgl), 7 being the sound speed. In the space-
range representation, the sensor i(!) is at coordinates xz(.l) =
[$§Z)7 y,gl), z,gl)]T. We notice that by moving the source to a po-
sition with a different range the coordinate zgl) changes, which
means that the space-range representation depends on the source
position.

In a homogeneous and isotropic 2-D plane, a wavefront that
propagates from a point-like source describes a circle centered
in the source location, whose radius grows proportionally with
time. In the novel space-range representation introduced here,
each propagation distance from the source corresponds to a dif-
ferent value of z and, therefore, the expansion of the “propaga-
tion circle” originates a cone (see Fig. 1) whose apex lies in X,
whose angular aperture is 45°. This cone is therefore character-
ized by the equation

(x—25)*+ (y—ys)* = (z — z5)*. (1

Notice that a microphone co-located at the source position
would have coordinates (z s, ys, 0).
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Fig. 1. Propagation cone in the space-range reference frame: x and y describe
the object location, while the range z is proportional to the TDOAs with respect
to the global reference microphone. The cone apex is located at x5, while the
point x; represents the ¢th microphone. This point is bound to lie on the cone
surface but measurement errors displace points from the surface of the cone. We
therefore define the distance d from x to the cone and use it in the cone fitting

procedure. The relationship between measurements obtained by TDOAs (zgl))
and resynchronized measurements ( 2 fl) +Az() at different microphones clus-
ters is also shown from a top view.

We now remove the assumption of synchronization between
the source and the microphones and between microphones be-
longing to different arrays. The lack of synchronization between
source and microphones means that the origin of the z-axis does
not correspond to the source, but it is arbitrarily placed. Fur-
thermore, the lack of synchronization between sub-arrays im-
plies that TDOAs relative to microphones belonging to different
sub-arrays are not available.

In order to use a representation that addresses both issues, we
set the zero of the z-axis to correspond to the global reference
microphone (z = 0, ! = 1). This way the actual range differ-
ences zi(l) are proportional to the TDOAs between the global ref-
erence microphone and the (! th sensor, and the proportionality
factor is the sound speed 7). However, only 251),1 =1,...,L
.t = 0,...,N; — 1 are available, which are referenced to the
local reference microphone. In order to go from 21@ to z,gl) we
define the difference of distance of propagation from the source
to the global reference sensor and to the local reference sensor
of the Ith sub-array as Az().1 = 1,..., L. The range differ-
ence of the 7(Vth sensor referred to the global reference sensor
is therefore

z,i(l) = 21@ + Az0.

Fig. 1 represents the geometry of the problem. In particular,
the top plot represents a scenario in which three sub-arrays (de-
noted with the shaded clouds) are present, and the bottom plot
shows the corresponding situation in the 2-D geometry, where
also the terms Az(") are represented. With this geometry in
mind, we define the following problem.
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Source Localization Problem: Given a set of independent
(i.e., unsynchronized) arrays, find in the space-range reference
frame the apex of the cone that best fits the xgl) points. The first
two coordinates of the apex of the cone are the searched source
location.

In the next section we propose the localization algorithm
based on this cone-fitting approach.

III. LOCALIZATION OF ACOUSTIC SOURCES

In order to approach the above source localization problem,
we introduce two error definitions that tell us how points in the
space-range reference frame fit a prescribed cone. These defini-
tions will then be used for constructing two different cone-based
localization functions in the most general case of multiple inde-
pendent arrays. After then, we will show that working with a
single array, which is the situation that is addressed the most
in the literature, can be treated as a special case of the multiple
arrays one. Finally, we will discuss the problem of efficiently
minimizing the derived cost functions.

A. Cone-Based Error Definitions

As discussed in Section II, the source localization problem
can be formulated in terms of propagation cone fitting [see (1)].

We assume the TDOA measurement 7, at sensor () to be
affected by noise

w0 =0 40, 2)

TL-(I) being the nominal TDOA and sgl) being an additive noise
term. We assume errors associated to TDOAs measured on inde-
pendent pairs of microphones to be uncorrelated. In reverberant
environments TDOAs could be affected by noise that cannot
be modeled as additive. In fact, TDOAs coming from reflec-
tive paths can be confused with the direct-path ones. In such
scenarios, TDOA-disambigaution techniques (see for example
[19]) could be used to discriminate between direct-path and re-
flective-path TDOAs before performing localization. We con-
sider only the case of direct-path TDOAs. Because of the mea-
surement noise, range differences Z,L-(l) are affected by noise as
well, therefore we cannot expect the points xgl) to lie on the
cone, as assumed in (1). The localization problem, therefore,
needs to be treated as a problem of fitting a cone from noisy
measurements of points lying on it.

In order to assess how well a generic point [z, y, 2] lies on
a cone with apex in x5 = [rs,¥s, 2s]T and with aperture 45°
we consider two different metrics, which are the most natural to
be used in such a fitting problem [20]:

* Cone Equation: a definition of the error that tells us how

well (1) is satisfied is

ce=(z—25)’+ (y—ys)* — (z — 25)*. 3)

* Distance from the cone: a definition of the error that ac-
counts for the distance of the point [z, y, z] from the cone
surface is

ca=V(z—25)2+ (y —ys)? — (z — zs). “4)
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We notice that (4) is proportional to the distance d of a generic
point x from the cone surface. With reference to Fig. 1 we obtain

= =P =i - sl

The next step consists in defining a cost function that mea-
sures the £2-norm of any of the above errors and localizes the
source as the point xg that minimizes this cost function.

B. Multiple Independent Arrays

We now address the problem of localizing the acoustic source
using multiple independent arrays. As mentioned above, we as-
sume all of the TDOAs of an array to be referred to the local
reference microphone. This means that we have all the Zi(l) mea-
surements at our disposal. However, in order to be able to use
the cone-based cost function, we need the terms zfl) obtained
by referring all the measurements to a single global reference
microphone. In order to attain this goal, we need to determine
the displacements Az() [ = 1,..., L between local reference
microphones of dlfferent arrays and the global reference micro-
phone. We accomplish this task by expressing Az as a func-
tion of the unknown xg.

We notice that

Az = \/(x(()l) _ $5)2 N (y((]l) B ?Js)2+
o) (- )

I=2, ...,

L (6)
while
Az =0, [=1. @)

The expressions of the errors (3) and (4) for the point x; there-
fore become

0 = (o —as) + (4 - s’

— (59 + 820 - 25)” ®)
0= (o =)+ (7 -’
~ (A0 820 — 2) ©)

and the source location can be estimated as

%s = argmin (J.,) = argmin (£ e.) (10)
Xs Xs
or
%s = argmin (J.,) = argmin (el ¢,) (11)
Xs Xs
where

1 1
B e

™
e

2) D ]T
,0 Ek,Ny

Il
—
[0}

€k
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and the subscript k is replaced by a or e according to which error
definition is adopted. We notice that by substituting Az [ =
1, ..., N; with their expressions as a function of the source po-
sition in (11) and (10) allows us to keep the number of unknown
parameters to three ([zs, ys, 25| ), instead of L+2 (75, ys, 25
and Azl 1 =2,...,L).

C. Special Case: The Single Array

In this section, we consider the case of having one array (L =
1). This situation is widely addressed in the literature, as, for
example, in [9], [10], and [21]. We show that the cone-based
representation is useful also in this case and it sheds light on
the relationship existing between the proposed approach and the
methods existing in the literature.

We notice from (6) that Az = 0 when [ = 1; thus, the
term Az () disappears from (8) and (9). We omit for reasons of
compactness the apex [ in the notation. The two error definitions
(8) and (9) become

ei = (2 —2s)” + (yi —ys)” — (3 — 25)” (12)
€ai =V (wi —w5)2+ (yi —ys)2 — (% —zs). (13)
The source is then localized as
Xg = argmin (Js(f)) = argmin (sgS)TES)) (14)
Xg xXs
or
Xg = argmin (Js(f)) = argmin (EGS)TEGS)) (15)
Xs xXs
where
525) = [Ek,o €k,1 €k,N]T

and the subscript k is replaced by a or e according to which error
definition is adopted. The index (s) denotes that we are working
with a single array.

With reference to (12) it is interesting to notice that the cost
function Js(f) matches that of SRD-LS if we set .o = 0. In-
deed, the terms that appear in (14) include also the error on the
reference microphone, while this is discarded in SRD-LS. Dif-
ferently from SRD-LS, in [21] and [22] the authors add the dis-
tance between source and reference sensor as an additional un-
known. These similarities give support to the validity of our ap-
proach, showing that other techniques, although independently
developed, can admit a geometrical reinterpretation based on the
propagation cone idea.

D. Minimization

In order to efficiently minimize the four cost functions defined
above, we use an iterative Taylor series expansion.

At this purpose we expand . and €, with a first-order
Taylor series expansion about the reference point Xso =
[1175,0;3/5,0725,0]T as

€k ™ €klxg, + Verlxs, - (Xs —Xs,0) (16)
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where x ¢ is the initial guess of the source position

- 5.1 (1) 1
92, aek,o 92, %
ozrg Jys Ozs
(1) ¢5) 1
Bsk’Nl Bak,Nl Bsk’Nl
_ org 9ys 9zs
Ve, = 5 e )
k,0 k,0 k,0
Oxs 8’!]5 Ozs
5.(1) 5. (L) 5.(L)
ey N, 9N, 9N,
L Ozg dys Ozg A
s — TS0
Xs —Xs5,0 = | Ys — Ys,0 (17
| 25 — Z5,0

and the subscript k is replaced by a or e according to which
error definition is adopted. If we use (16) in (10), or (11), we
readily obtain the update equation of the iterative minimization
procedure

-V Eﬂﬁm €k
(18)

N N T -
XSw+1 = XS0 — (Vsk |,A(S . V5k|fcs.v)

where the symbol v is the iteration number. We assume

Xs = X§,v+1 (19)
when |Xg,4+1 — Xg,,| is smaller or equal to a given threshold.
The cone-based cost functions exhibit a smooth behavior; there-
fore, we resort to a randomly chosen starting point X5 o within
the area of interest. This iterative procedure turns out to con-
verge quite rapidly to a solution. Through numerical simula-
tions we show in Section V that convergence time is comparable
to that of state-of-the-art techniques such as [10] or [15]. This
makes this iterative estimation method suitable for real-time
applications.

IV. ANALYSIS OF THE ERROR PROPAGATION

In this section, we present a novel approach to error propa-
gation analysis that allows us to predict the impact of measure-
ment errors on the minimization process. This formulation is
based on introductory concepts of Catastrophe Theory [23], and
can be applied to a wide range of situations and cost functions.
In Section V, we will assess the accuracy of this analytical ap-
proach through numerical simulations. We also claim that it is
possible to prove the equivalence of our error prediction with
other different theoretical approaches to the characterization of
the (asymptotic) first-order efficiency of a given estimator (see
for example [24, Sec. 4.4]). This analysis, however, is beyond
the scope of this paper, and therefore will not be included in it.

Let f(x;c) be a generic cost function, with variables x =
[71,..., 2] and parameters ¢ = [c1, ..., cn]T. The param-
eters correspond to the experimental measurements (in our case
the range differences) and the variables represent the object of
the estimation (in our case the position of the source). Let x( be
the true location that we intend to determine and ¢ the related
error-free measurements. In a real situation we are given noisy
measurements € = cg + dc, dc being the additive noise. Conse-
quently, the new position of the minimum of f(x;¢) becomes
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X = xp + 0x. Assuming the error dc to be sufficiently small,
we want to determine 6x through a truncated Taylor expansion
of f(x,c).
The second-order Taylor series expansion of f(x;c), cen-
tered at (xo; co) can be written as
F(x5€) = [ lxoe0 + (V)| o, 0%

+(Vef)T]. be

X0,Co

1
+ §5XTHX,X(f)|x07C05X
+ 6CTHc,x(f)|x01C0 ox

B e[l e (20)
where
Vof = [gfflgf Vef = fersoos fen]”
fzz- = 8_:1:1 ij = 8—03
[ foran Sorzn
H.o.(f)=1] 1)
[ ferer feren
Heo(f)=| : (22)
| fener fexen
[ forer feren
Hyo(f)=| : (23)
 fower foren
and
o%f 0% f
foiz, = R foes = 5o o
P
“9 Oeide”

Notice that (Vxf)T|x,.c, = 0, as the function with the true
parameters co has a minimum in xg.

Now we study V f(x; €) = 0 to search for the new minimum
X, using the Taylor series expansion (20). We obtain

Hoc s (£)lxo,000% + Hie () | ,e06¢ = 0 24)
and finally we can write
6x = ~Hoex(/)lites - Hre(Hlxpeode.  (25)

A. Discussion

The above analysis relies on the hypothesis that we can trun-
cate the Taylor series expansion of f to the second order. This
is, of course, true if 6x and §c can be assumed as being suffi-
ciently small. Related to this, in [24, Sec. 4.4] a demonstration
is given, which confirms that higher order terms are not relevant
for the asymptotic analysis of the error.

It is also important to notice that (25) does not envision the
possibility of estimation bias, as x and dc are linearly related.
For the cost functions that we propose in this paper, the small
error hypothesis is sufficient to prevent bias. However, as we
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will see in Section V, some localization techniques presented
in the literature do introduce a noticeable estimation bias for
small measurement errors. If this case happens, a different error
propagation analysis is in order.

Finally, (25) is wvalid under the hypothesis that
det(Hx x(f))|xo,co 7 0. Mathematically, this condition means
that f should have an isolated non-degenerate minimum at
(Xo; Co) .

In Appendix A, we provide the expressions of Hy «(f) and
H, .(f) for the cost functions proposed in this paper and for
SRD-LS [10].

In Section V, we validate this error propagation analysis.

We remark, finally, that the proposed error propagation anal-
ysis is valid not only for the analytical assessment of the accu-
racy source localization, but also for other estimation problems,
under the hypothesis of small bias. For this reason, a Matlab
toolbox is available online [18], which includes also a number
of demos that show the accuracy of the error prediction.

B. Statistical Error Analysis

In a real scenario we cannot assume the measurement noise
dc to be known. However, some statistical information could be
available or could be estimated from data. It is therefore impor-
tant to find a relation between statistical descriptors of the noise
0c and of 6x. In this paragraph, we provide examples for the
case of zero-averaged Gaussian error on c. We reformulate the
expression in (25) as

ox = Aéc (26)

where A = —H, »(f)I5, ¢, - Hx,e(f)|xo.co- The relationship
between the covariance matrix My of the localization error, and
the covariance matrix M, of the measurements is

M, = AM.AT (27)
where
[ 02 Oz0y 040
My = | 0,0y (7,13 Oyo (28)
| 0202 Oy0 o
and
0 0'32 0
M= | . (29)
L 0 o --- J?N

under the assumption of statistical independence of measure-
ment errors. As a consequence, given an array geometry and
the noise variance of the TDOASs, we can estimate the corre-
sponding error on the coordinates g and ys of the source.

V. RESULTS

In this section, we validate the theoretical error analysis under
the small-bias hypothesis. After that we evaluate the perfor-
mance of the cone-based algorithms.

We start introducing the metrics adopted for accuracy evalu-
ation, and then we describe the simulation setup in both cases
of single and multiple arrays.
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Fig. 2. Setup used for simulations with (a) a single array, (b) multiple arrays,
and (c) real experiments. Crosses represent sources, the other symbols represent
microphones. In the multiple array case (b), white circles represent microphones
positions used during the main simulations while filled circles and asterisks rep-
resent the added microphones used for the six and eight sub-arrays cases.

A. Setup and Evaluation Metrics

The setup used for simulations and experiments is shown in
Fig. 2. In particular, Fig. 2(a) shows the setup for single-array
simulations, Fig. 2(b) shows the setup for multiple-array simu-
lations, and Fig. 2(c) shows the setup used for real data experi-
ments. Circles and asterisks denote microphones, while crosses
mark possible positions of the source. In particular, the area cov-
ered by the microphones in the simulations is a square of 4 m x 4
m, while the area covered in the real experiment is a rectangle
of 2.8 m x 2.4 m. We assume that microphone locations are cal-
ibrated, i.e., their positions are not affected by errors.

The accuracy of the localization algorithms is evaluated using
the following metrics:

— average bias on the x coordinate of the localized source:

1 n
bz — n Z(SES xS,z)

=1

(30)

where n is the number of noisy measurements tested for
each source location, = g is the = coordinate of the source,
and Z s ; is its estimation based on the ¢th realization. This
is the measure of the average x-coordinate distance be-
tween the estimated source and real one.

— RMSE on

W=

n

1 . _
Rx = m ;(LESJ — 1175)2

(3D

where n is the number of noisy measurements tested for
each source location, and

ITs = (32)

S|

n
E TSi-
i=1

All the geometries in Fig. 2 are symmetrical. We also intro-
duced asymmetries in the setup and we verified that the variation
of accuracy is quite modest. We resorted nonetheless to symmet-
rical deployments in order to maximize the area covered by the
source location.

In the next subsection, we proceed by validating the error
propagation analysis proposed in Section I'V. Later on, we com-
pare the accuracy of the proposed cost functions with state-of-
the-art techniques. In particular, for the case of a single array
we compare J,gf) and Js(f) with the squared-range-difference-
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Fig. 3. Comparison for the geometry in 2(a) between CRLB 3(a) and RMSE
of MLE [4] 3(b) foreseen by (27). We notice that the RMSE of MLE perfectly
matches the CRLB, thus validating the theoretical analysis. (a) CRLB. (b) MLE.

based least squares technique (SRD-LS, [10]), which is suit-
able for arbitrary configurations of synchronized microphones
and it is characterized by state-of-the-art performance. In order
to test the robustness of the algorithm against reverberations,
we also show the average root mean square error of proposed
and state-of-the-art algorithms as a function of the reverbera-
tion time. At this purpose, the setup in Fig. 2(a) has been simu-
lated in a room with variable reflection coefficients. Early reflec-
tions, up to the tenth-order, have been simulated using the beam
tracing algorithm [25]. We also compare the different localiza-
tion techniques under the case of a variable amount of noise in
the TDOA measurements. We finally proceed with the evalua-
tion of our approach for source localization using multiple in-
dependent arrays. We do so for both cost functions J._and J._,
through a comparison with a state-of-the-art technique proposed
by Gillette and Silverman in [15] (GS). Finally, we show the
feasibility of the proposed localization techniques with experi-
mental results.

B. Validation of the Error Propagation Analysis

In order to validate the theoretical analysis, we consider the
single array setup. The global reference microphone is located
in (2, 2). It is well known in the literature (see for example
[26]) that maximum-likelihood estimation techniques (e.g., [4])
asymptotically attain the Cramer-Rao Lower Bound. We val-
idate, therefore, the theoretical analysis by showing that the
RMSE foreseen by (27) for the log-likelihood used in [4] is
equal to the CRLB. For reasons of compactness we omit the
derivation of the matrices in (25) for the ML technique in [4].

Fig. 3 shows the results. We notice that, as envisioned by
the theory, the theoretical analysis of MLE exactly matches the
CRLB, thus validating the error propagation analysis.

C. Single Array

In this section, we adopt the same setup of the previous one.
For each position of the source, the set of nominal range dif-
ferences has been corrupted by 200 repetitions of a uniformly
distributed zero-averaged Gaussian noise of standard deviation
o = 3 cm. This is a consolidated approach to testing, also
adopted in [22]. With this data all techniques under examination
produced results whose bias b, turned out to be small and uni-
formly distributed over the whole area of interest. The average
values of the bias over the whole set of 400 source positions and
for all the repetitions of the experiment can be found in Table I.
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0.08
£ 10.06
0.04

0.02

Fig. 4. Comparison between (left) simulated and (right) predicted R, for a
single-array setup. Measures are expressed in meters. We notice from the com-
parison between (a) and (d) that J{*) is close to the CRLB. (a) J{*) (simulation),
(b) J{) (theoretical), (¢) J{*) (simulation), (d) J{2) (theoretical), (¢) SRD-LS
(simulation), and (f) SRD-LS (theoretical).

TABLE I
AVERAGE VALUE OF b, FOR THE THREE ALGORITHMS
IN THE SINGLE-ARRAY SETUP

[[ Algorithm | b, [m] ||

g 1.6¢-3
) 1.1e-3
SRD-LS | 1.5¢-3

Notice that our cost functions produce an average bias that is
comparable with that of the SRD-LS method. The spatial distri-
bution of the RMS error for J<*, J&*) and SRD-LS is shown in
Fig. 4. If we compare the two cone-based algorithms, we notice
that the two methods are comparable when the source is far from
the microphones, while Jg(f) performs better in the proximity of
the microphones.

Notice that the values of the bias are small with respect to the
RMS error; therefore, the theoretical analysis method proposed
in Section IV can be safely applied. In particular Fig. 4(b), (d),
and (f) show the RMSE predicted with (27), while Fig. 4(a), (c),
and (e) show the spatial distribution of R, obtained with simu-
lations. Notice that the theoretical error and the simulations are
well matched, as confirmed by values of the average and peak
differences between RMSE collected in Table II.
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TABLE II
AVERAGE AND PEAK R, VALUES FOR THE THREE ALGORITHMS
IN THE SINGLE-ARRAY SETUP

Algorithm R, [m] (Simulation) | R, [m] (Theoretical)
mean max mean max
J& 27e-3 | 85.7e3 | 264e3 | 90e-3
J&) 202e-3 | 31.5e3 | 20e-3 | 31.6e3
SRD-LS | 25.5¢-3 | 85.8¢-3 | 24.8¢-3 | 87.6e-3
02 J.
=
- 7,
=*-SRD-LS

0.15 -

0.1 -

RMSE [m]

0.05 -

0 . H i i H i i i i
0 002 004 006 008 01 012 014 016 018 02
TDOA Std. dev. [m]

Fig. 5. Root mean square error as a function of the standard deviation of the
error introduced on the TDOAs.

We can thus conclude that:

* the theoretical error propagation analysis performs cor-
rectly for the tested cost functions;

¢ the minimization of all the examined cost functions (Jg(f)7
Jg(f) and SRD-LS) do converge to the global minimum. We
should remember that the error propagation analysis only
considers cost functions and not the minimization proce-
dure;

* the RMSE of Jg(j) matches quite well that of CRLB and
MLE shown in Fig. 3(a) and (b), suggesting that this
method, even if it is based on a different idea, has an accu-
racy comparable with the maximum-likelihood approach
in [4];

e SRD-LS and Jg(f) attain the same accuracy. This has a
mathematical explanation in the fact that they match except
for the presence of the error on the reference microphone
in Jgf) and it is also confirmed by the similarity of the ma-
trices in the theoretical error analysis reported in (38) and
(36).

Fig. 5 shows the RMS localization error averaged on all the
points of the grid as a function of the standard deviation of the
TDOA error, ranging from 0 to 0.2 meters. We notice that the
accuracy of J._ and SRD-LS are comparable, while .J., is more
robust.

In order to show the robustness of the proposed algorithms
against reverberations, we also performed simulations in a room
with variable reverberations. This has been accomplished by
simulating that the setup in Fig. 2(a) is placed at the center of
a5 m X 5 m room, whose walls are characterized by reflection
coefficients ranging from 0.5 to 0.94, corresponding to a rever-
beration time from 0.2 s to 1.0 s. The impulse responses (simu-
lated using the fast beam tracing algorithm [25]) from each pos-
sible source location to each microphone have been convolved
with the source signal. TDOAs are then extracted from the re-
verberant signal using the GCC-PHAT algorithm and are fed to
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Fig. 6. Absolute value of the average localization error as a function of the
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Fig. 7. b, from simulations for multiple array setup. (a) J._, (b) J.,, and
(c) GS.

the localization algorithms. Fig. 6 shows the average localiza-
tion error for all the points on the grid in Fig. 2(a) as a function
of the reverberation time T60, measured in seconds. We notice
that the accuracies of SRD-LS and J., are comparable, while
J., more accurately localizes the source, even in the presence
of strong reverberations.

D. Multiple Arrays

The global reference microphone of the multiple arrays is lo-
cated in (2, 2). For every source position, 200 sets of corrupted
TDOAs were tested. The noise standard deviation on range dif-
ferences is 1 cm.

Fig. 7 shows that the small-bias hypothesis is verified only by
Je_ and J._ algorithms, while the GS method turns out to be af-
fected by such a large bias to prevent us from reliably applying
our error propagation analysis method. The GS method, in fact,
exhibits a rather uneven spatial distribution of the bias, partic-
ularly with a very scattered distribution of microphone arrays,
with a limited area of modest bias.

The spatial distributions of b, and R, shown in Figs. 7 and
8, respectively, confirm that both cone-based algorithms are
suitable for this microphone configuration, especially when the
source is not too close to the microphone pairs. The resulting
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Fig. 8. Comparison between simulated (left) and theoretical (right) R, for
multiple arrays setup. Measures are expressed in meters. (a) J.. (simulation),
(b) J._ (theoretical), (c) J., (simulation), and (d) J., (theoretical).

TABLE III
AVERAGE AND PEAK I, VALUES FOR THE THREE ALGORITHMS
IN THE MULTI-ARRAY SETUP
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Fig. 9. b, values obtained with different algorithms used in a real experiment.
(a) Je., (b) J.,,and (c) SRD-LS.

TABLE V
MEAN CONVERGENCE TIME AND R, FOR THE TESTED ALGORITHMS

[[ Algorithm | Time [ms] | R [m] [|

R, [m] (Simulation)

R, [m] (Theoretical)

&) 0.804 0.0293
J& 0.94 0.0693
SRD-LS 1.6 0.0337

Algorithm
mean | max mean | max
Je, 80.5¢-3 239.8e-3 63.4e-3 185.8e-3
ca 78.4¢-3 395.1e-3 57.2e-3 178e-3
TABLE IV

AVERAGE R, ON THE CONSIDERED AREA INCREASING THE NUMBER
OF THE SUB-ARRAYS. WITH RESPECT TO Fig. 2(b), MICROPHONES ARE
PLACED ON WHITE CIRCLES IN THE 4 ARRAYS CASE, ON WHITE AND
BLACK CIRCLES IN THE SIX ARRAYS CASE, AND ON ALL CIRCLES
AND SQUARES IN THE EIGHT ARRAYS CASE

Average R, [m]

Algorithm 4 arrays | 6 arrays | 8 arrays
Jeo 80.5¢e-3 52.2e-3 38.9¢e-3
Je, 78.4e-3 43.7e-3 30.2e-3

RMSE, averaged over the area of interest are shown in Table III.
Notice that the predicted and simulated RMSE values in the
multi-array case do not match perfectly like in the single-array
case. We recall, in fact, that the error propagation analysis is
valid under the hypothesis of small errors for 6x. This is not the
case for the white regions in Fig. 8(a) and (c); therefore, we can
expect that for these areas the theoretical error analysis repre-
sents an approximation of the simulation error. In Table IV, we
show the relationship between the number of sub-arrays and
the RMSE over the area of interest. As expected, the RMSE
value averaged on many simulations decreases if we use six or
eight sub-arrays instead of only four.

E. Experimental Results

In order to further confirm the validity of the proposed
method, we also conducted a set of experiments with real data.
Here too we adopt b,, and R, as evaluation metrics.

The experimental setup is described in Fig. 2(c). The TDOA
measurements are associated to a source that produces a seg-
ment of white noise with a duration of 10 s in a low-reverber-
ation room. The recorded signal was then windowed into seg-
ments of 100 ms each. We then performed source localization
for each segment.

Fig. 9 shows b, for Js(f), Jg(j), and SRD-LS. The results con-
firm that the three cost functions perform similarly, as shown in
the simulations. Table V shows the mean convergence time and
the mean value of R, for the tested algorithms.

Table V confirms that, even if the minimization techniques
proposed in this paper are of iterative nature, the average con-
vergence time turns out to be comparable with that of SRD-LS.

VI. CONCLUSION

In this paper, we proposed and discussed a method for
the localization of an acoustic source using multiple unsyn-
chronized arrays through the fitting of propagation cones in
the space-range reference frame. Starting from this idea, we
have proposed two different cost functions that express cone
fitting, based on the cone equation and the cone aperture. The
fact that the method allows us to successfully use multiple
unsynchronized arrays results from the generality of the cone
fitting process, which operates on range-shifting clusters of
data. Experimental results showed that our approach performs
well in the considered general scenario. In particular, the cone
function based on the cone aperture results more accurate than
state-of-the-art algorithms.
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In this paper, we also proposed a technique for the pre-
diction of the localization error, which relates the error on
measurements and the localization error. This method is gen-
eral enough to be applied also in other kind of estimation
processes. The effectiveness of the error prediction method
turns it into an effective tool for optimizing the spatial distri-
bution of subarrays.

APPENDIX
EXAMPLES OF ERROR PROPAGATION ANALYSIS

In this appendix we provide details on error propagation anal-
ysis in the various cases examined in this manuscript. In partic-
ular, we discuss our cost functions and those discussed in [10]
using (25). To avoid any possible source of confusion, we refer
to Xgo as the actual position of the source and to ¢ as the nom-
inal measurements.

* In the case of a single array we have N + 1 microphones

in positions (z;,y;), ¢ = 0,..., N, with the reference
microphone at (xo, yo). Let us define

Az; = 1; — w50

Ay = yi — yYso
D,L' =1 A:I?,iz + Ayiz.

The matrices Hy x(f)|xs0,co a0d Hy ¢(f)]xgo,co fOr cost
functions Jg(f) and JE(US are given in (36) and (37), respec-
tively.

* In the case of single array, using the notation of the pre-

and the relative cost function is

N
Jo=Y e (34)
i=1
Let us define
A.’EO
Az; = Az, — —D;
T T Dy
Ayo
Ay; = Ay; — —D;
Y Y Do

The matrices Hy x(f)|xsp,co and Hy ¢(f)]xgq,c, fOr cost
function J_ are given in (38), as shown at the bottom of
the page.

* The case of multiple arrays is slightly more complex. We

have L arrays composed by /N +1 microphones at positions
(xgl),y,gl)), + =0,...,N, I = 1,...,L. Each array |
has its own local reference microphone at (.rgl), y((]l)) and
there is a global reference microphone at (mgl)7 y((]l)). Let
us define

Az = 0 — S0

i i

Ayfl) =3 —yso

i

Dl = () + (s0)

1) (1)
Ae® = Ag® _ (A% _ Az ) PO

: : . D pw i
vious point, the SRD-LS error (see [10]) is 0( ) 0( N
. A A
2 2 2 Ayi(l) - Ayy) N y((l)) - y([i) Dgl)'
esi = (i —25) + (yi —ys)” — (zi + Do) (33) Dy Dy
N Ax; Ax;Ay; —Ax;D; Az1Dy ... AznyDy
H, (J§S>) =83 | AmAy  Ay® —AyD; H, . (J§S>) —8|AyuDi ... AyxDy |(36)
xo.c0 50| —AmD; —AyD; D’ xo-co -Dy? —Dn*
Az? Amdys _ Awg Az, Azy
N D2 D;”. D; D: " Dn
Hox ()] =237 |2zdw 22 2w o\ (00))  =2(dm L Am| @)
0,€0 i=0 | Az Ay 1 0-%0 -1
D, D,
al A 2 Az;A Az, D AzyD
T z; Ay, 1D NDn
Hxx Js X0 .C =8 ~ ~ ~ ch Js x0,C =8| x A 38
o =83 | 2 TR (dbaeo =8| Ryypy . AgwDy o9

i=1
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N Axgzﬂ Aa:,gl)iygl) —A:pE”DE”
<)~ < (2 N
Hyx(J) |xo.co = 8 Z Axgl)Ayf’) Ayf” _Ayfl)pgz)
I=1 i=0 _AzOp® _Ay(l)D(l) D(l)2

AePp® AsBp® | ALUDY APDP . Asp®
Hy c(Je)lxo,co = 8 Ay§1)D§l) Aygl)Dgl) ij(\})D](\}) Ay?)Dg?) Ay%)D%) (39
2 2 2 2 2
ot ot pp o
AzD? AzD Ay Az
L N (1 pO? D
Ar® Ay® Ay 0]
Hx,x(Ja)|x0,(:0 = SZZ $D(l)2 Dy(ll)Q D(%
oo b0 1
A" AllV Azl) AL Azl
A A
Hx,C(Ja)|XO,Co =38 Ayﬁl) Ayél) Ayﬁv” Ayf) AUSVL) (40)
(T DI S R
-1 -1 -1 -1 -1

The matrices Hy x(f)|xsy,0o and Hy ¢(f)|xgo,c, fOr cost
functions J._ and J._, are given in (39) and (40), respec-
tively, shown at the top of the page
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