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Soundfield Imaging in the Ray Space

D. Markovic, F. Antonacci, A. Sarti, S. Tubaro

Abstract

In this work we propose a general approach to acoustic saalgsis based on a novel data structure
(ray-space image) that encodes the directional plenacousiction over a line segment (Observation
Window, OW). We define and describe a system for acquiring espage image using a microphone
array and refer to it as ray-space (or “soundfield”) camelee Method consists of acquiring the pseudo-
spectra corresponding to a grid of sampling points over tNé @nd remapping them onto the ray
space, which parameterizes acoustic paths crossing theT@®\tesulting ray-space image displays the
information gathered by the sensors in such a way that thmesies of the acoustic scene (sources
and reflectors) will be easy to discern, recognize and extide key advantage of this method is that
ray-space images, irrespective of the application, arergéed by a common (and highly parallelizable)
processing layer, and can be processed using methods cdraimgthe extensive literature of pattern
analysis. After defining the ideal ray-space image in terighe directional plenacoustic function, we
show how to acquire it using a microphone array. We also discasolution and aliasing issues and

show two simple examples of applications of ray-space in@gi

I. INTRODUCTION

The interest in space-time audio processing algorithms basiaderably grown in the past decade.
Numerous products, in fact, have appeared in the marketchmaike advantage of multiple sensors
(microphones) to localize, track and extract acoustic &aiin space with the purpose of improving their
SNR [1] or Signal-to-Reverberation ratio [2]; or of enablirganhuman-machine interaction mechanisms
[3]. These solutions are today widely employed in applicaido telecommunications, gaming and
entertainment [4]. As the expectations on space-time apdicgessing algorithms increase, so does

the interest in acoustic scene analysis, intended as theeggoof acquiring geometric and “radiative”
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information on acoustic sources (e.g. [5]) and reflectors.utiber of recently published environment-
aware sound processing algorithms, in fact, exploit thelaa information on the acoustic scene to
boost the performance of space-time processing method$7[6][8]. These solutions rely on acoustic
scene analysis for collecting the required information sTiigenerally done by gathering measurements
and combining the related constraints, through a proceasighspecifically developed for the problem
at hand. In this manuscript we follow a different route, whionsists of collecting the information that
is available on the acoustic scene all at once; organizingtd a data structure that displays it in a
ready-to-interpret fashion; and performing the analydishe collected data afterwards, using various
methodologies, typically from pattern analysis.

The method that we propose is inspired by the conceptasfoptic functior]9], [10], which describes
the optical wave field intensity as a function of position angection (plus time and frequency). Its
acoustic counterpart was first introduced in [11], [12] in tdifferent forms:directional and omnidi-
rectional plenacoustic function. The former mirrored the definition ténoptic function, whereas the
latter dropped the dependency on direction. Optical wanghes, in fact, are much smaller than sensors
and imaged objects, therefore they enable extreme diredtselectivity. In acoustics, on the other hand,
directivity is always an issue. This is why [11] and [12] dessido work on the omnidirectional definition
of the plenacoustic function. In this manuscript we go baxkhe directional definition of plenacoustic
function [13], assuming that the directional informatioiil lwe recovered through space-time processing.
We will be working under the hypotheses of geometrical attosisas this will allow us to use acoustic
rays to describe listening points atwbk directions in a compact and effective representation freonle

If we want to measure the plenacoustic function in a singlatpave can do so by centering a
microphone array in that location, and estimating (throbghmforming) the acoustic radiance along all
look directions. A device of this sort is commonly known asdastic camera”, and is often based on the
computation of a pseudo-spectrum [14] as a function of thection of arrival. A natural extension of
this concept would be that of a “plenacoustic camera”, idéehas a theoretical device that acquires the
plenacoustic function over a spatially extended “Obs@&watvindow” (OW) facing the acoustic scene,
as done in the literature of computer vision [15], [16]. Ire tbase of 2D geometry, the OW is a line
segment through which the acoustic scene is being “obsériethe OW became infinite (a whole
line), then knowing the plenacoustic function on it wouldaneknowing it everywhere in space. This is
indeed true because of Huygens' Principle, but it is also beeause of the Radiance Invariance Law,
which is a fundamental principle of geometrical acoustits tstates that the acoustic radiance remains

constant along rays. By limiting our knowledge of the plemastic function to an OW of finite extension,
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the plenacoustic function will only be approximately known space, the approximation depending
on visibility and occlusion conditions. Nonetheless, kirgythe directional plenacoustic function over
a whole OW means gathering a great deal of information on thbat) acoustic wave field. In this
manuscript we elaborate this idea by exploring how thisrimftion can be acquired, organized, analyzed
and exploited. In order to approach the problem with the s&mgy progression, as done for example in
[11], we address here the 2D case only, as it allows us to defpsameter space (ray space) that can
be readily visualized and understood. Although based orsémee principles and approach, in fact, the
3D case requires a different set of geometric tools, theeefiodeserves to be discussed in a separate
manuscript. The 2D case, however, is also relevant for atyaakapplications, ranging from source
localization and separation to wave field rendering, and ligl ¥ar a wide range of enclosures [17].

We are interested in implementing a device that captureglérgacoustic function over an OW based
on an array of microphones. One rather straightforward wagoing so is to think of this device as an
array of acoustic cameras that sample the OW. The unavoidabipactness of these cameras, however,
causes one such device to exhibit severe resolution limnisit This means that this system cannot
represent the direct acoustic counterpart of a plenoptimeca. We will, however, introduce a novel
parameterization for the domain of the plenacoustic famc{ray space), which conveniently displays
(as an image) all the elements of the acoustic scene in suchyaonacilitate its analysis despite this
loss of resolution. The resulting image will be here refet®a@s “ray-space” image, and the device for
capturing it, we will call “ray-space” or “soundfield” camer@/ith this new parameterization, acoustic
primitives such as sources and reflectors, are mapped ortibnesr features/regions of the ray-space
image, which greatly simplifies acoustic scene analysisralgos. In fact, this allows us to approach
space-time processing problems with pattern analysis tadlich are readily available in the rich literature
of computer vision and multidimensional signal process{bge other key aspect of this approach is that
we are defining a single space-time processing layer (thasfttems acoustic acquisitions into ray-space
images), which can be shared “as is” by a wide variety of apfibins. In order to exemplify this aspect, in
this manuscript we describe two simple examples of aptioat multiple near-field source localization
and reflector localization. These problems have been addressmeerous times in the literature. For
example a near-field beamforming method for the localizatibacoustic sources is proposed in [18].
Reflector localization methods were proposed in [19] and.[Z0se, however, were effective ad-hoc
solutions devised for the specific problem at hand. We willreglsl such problems with the sole purpose
of showing how they can be successfully turned into problefgattern analysis.

The manuscript is organized as follows: in Section Il we defiredbmain of the ray-space images
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and show how geometric primitives of interest and acoust@asnurements are mapped onto it. Section
Il describes more in detail the acquisition process of spgee images. Here we also discuss the impact
of spatial sampling and the related issues of resolutionadiading phenomena. Section IV discusses the
two examples of application related to source and reflecttimaton. We also show some simulative

and experimental results to prove the feasibility of theppsed technique.

I[I. THE PLENACOUSTIC FUNCTION AND ITS PARAMETERIZATION

In this Section we derive a suitable parameterization fomdofields, which serves as a basis for

defining the soundfield camera and understanding the struofulee pattern that it captures.

A. The Plenacoustic Function

Quite symmetrically to its optical counterpart, the plemastic function can be thought of as a
parameterization of the sound field, which is a function thescdibes the acoustic radiance in every
direction through every point in space. This means that, éndhse of a 2D geometric domain, it can
be written as a functiorf(z,y, ,w,t) of position (z,y); direction #; frequencyw; and timet [11]. In
particular, we are interested in the dependency on spacg) and directiond, therefore we simplify
the notation by dropping botta and¢. We will specify later in the manuscript whether the deperge
from time and frequency is to be considered. Under the hygsishof validity of geometrical acoustics,
expressing the soundfield as a function of the spatial/doeak parameters;, y and f, corresponds to
adopting a representation based on acoustic rays.

We recall that (in a homogeneous medium) an acoustic ray @rianted line that identifies a planar
acoustic wavefront component and is inherently perperalicio it (i.e. it is collinear with the wave
vector). A beam of acoustic rays originating from an acaustiurce, therefore, identifies an infinite
combination of infinitesimal planar wavefront contributioreach identified by a ray that will be locally
orthogonal to the wavefront. In geometrical acousticst(jike in optical radiometry) we can rely on
the principle of Radiance Invariance Law, which states thatecoustic radiance remains constant along
the acoustic path. In fact, the reduction of sound intensityh distance is explained by the fact that
the density of acoustic rays per unit area decreases asdbiwae moves farther from the source [21].
This is, of course, true in the absence of propagation lossesta@ absorption, etc. This invariance, in
fact, tells us thatf(z,y,6) has only two degrees of freedom instead of three, which sigges that
we should look for an alternate and more compact paramateniz for the soundfield, as done in the

optical domain [22],[23]. In the acoustic domain one suclhapeeterizations was introduced in [17],
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[24] for defining visibility diagrams and combining them indodata structure that could be iteratively
looked up for readily tracing beams of acoustic rays in eswles. The parameterization that we adopt
in this manuscript is designed after that one, as it has d&r@aoven effective not just for applications

of acoustic modeling, but also for acoustic scene analy&$ dnd rendering [26].

B. Parametrization: the ray space

We want to define a compact and simple parameterization forahe on an Observation Window
(OW). As we are interested in defining a soundfield camera, otanpeterization will be “one-sided”,
as it will cover only the rays that cross the OW in just one & two possible directions. The invariance
of the acoustic radiance along the direction of rays, allowgo establish an equivalence between rays
and oriented lines that cross that window in the same doectiVe therefore need a rule for implicitly
and uniquely specifying the orientation of a line given thee Iparameters.

Let us consider a reference frame positioned in such a waythleaOW lies on the; axis between
y = —qo andy = ¢qo. The equation

y=mx+q, Q)

of parametergm, q), describes any line that is not parallel to thexis (m| < o). This line has two
possible directions: one pointing towards thexis from the “positive” half-space > 0, and one against.
As we are interested in defining a soundfielmerawhose OW lies on theg axis, we conventionally
assign the line the orientation towards thexis from the positive half-space > 0. This allows us to
establish an equivalence between rays and lines, which yswehrefer to the(m, ¢) space as the “ray
space”. From now on, therefore, we will be able to interchabgetalk about rays and lines.

If the spaceP of all possible parametersn, ¢) covers the rays that point towards theaxis from
the positive half-space, the subset of such rays that otiiynfinate” the OW lies within the region
V={(m,q) € P:—q < q<q}, which we call “visibility region” of the OW, as done in [17Given
an acoustic primitive (a source, a reflector, etc.), we amrésted in finding which of the “visible” rays
(those inV) are coming from points of that primitive, in order to ass@skat” of the radiance produced
by that primitive could be picked up by the soundfield camerds Tegion of the ray space, referred
to as the Region Of Interest (ROI) of the primitive, is clgsetlated to the concept of visibility region
introduced in [17]. In order to have a better idea of what agjpgce image is expected to look like, let

us begin with characterizing the ROIs of some acoustic piies.
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1) Points: A point p = [z,7]7, Z > 0, can be equivalently thought of as the set of all the lines
that pass through it. These lines, in fact, identify only thogys that depart from the source and point
towards they axis. The region of the ray space describing the parameteygabf lines is called thdual
[17] Z,, of the pointp and is represented by the lige= —2m +7y. The ROI ofp is the set of lines that
pass through botlp and the OW:

Rp=VNI,={r=[mq’ €V :q=-Tm+7y} . 2)

As shown in Fig. IR, dividesV in the two regions)/;r andV, . Rays inv;; reach the OW after going

—q0 N

Fig. 1. ROIRz of the pointz, and related regions of visibility that this ROI defines ¥n

aroundp in a clockwise fashion (i.e. while keepingon their right); while rays i/, fall on the OW
after going aroungp counterclockwise (i.e. while keeping on their left). A similar definition can be
given for the two half-space@;,* and P, thatZ, divides the parameter space into. These definitions
will come at handy later.

2) SegmentsAs done for points, the dual, of a segmenppp is the region of the plan®

APB

corresponding to the set of all lines passing throwgipg. The ROIR,,,, of the segmenpapp is

the set of rays that pass through the segment and are, atrtieetsae, visible from the OW:
Rpaps = Lpaps NV .

With reference to Fig. 2,,,,,, can be found by first determining the dudls, andZ,, of the endpoints,

and then by identifying the related half-spad%, P, Pt

par Ppy» @ndP, —as done above. Such half-spaces

allow us to identify the set of rays that cross the segmemh fome side

Tpps = Py, O Py,

pPB
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which is a wedge-shaped region in the ray spR¢®r those that cross the segment from the other side
I py = Py, Py,

which is the opposite wedge to the previous one. All rays thass the segment are therefore given by
the double wedge

1 2
IPAPB = IISA)I)B UII(M)pB .

Correspondingly, the rays that pass through the OW aftegsang the segment from one side only are

RSB,,B = I,E,?,,B Uy and R,(,ijs = é?pB UV, respectively. The duals,, andZ,, of the endpoints of

(2)
Ay . Tpars!
. 3
ry .
ow Qo
rs ‘ o 4 |
p PB \ RPAPB
] rap -
r, gz \ \m
ry
~ . ‘
5 S B
(b) | Toarn Ip,
(CL) ttpp

Fig. 2. A segment in the geometric domain (a) and the correspondingB3OExamples of rays and corresponding points in

the ray space.

the segment are the lines that delimit the double weflgg,,, in the ray space. Such lines meet in the

pointr,p € P of coordinates

YA —YB YBTA —YATRB
m=—— =

Tp—xB’ YB — YA

which are the parameters of the line thatpp lies upon, corresponding to the side view of the segment.

3) Managing multiple primitivesiet us now consider two acoustic sourges andpg (points) lying
on a line that passes through the OW, as shown in Fig. 3(a).elmay spaceP this line corresponds to
the pointr = [m,q|” of intersection between the RORB,,, andR,,, which exists because the ray
points to the OW. In fact, the raw is the only direction of observation of the many covered iy @W
that sees the sourcgs, andpg aligned.

The situation becomes more complex when we need to accouotétusions. The ROI defined above,
in fact, does not do so. For example, let us consider the twodic reflectors (segments) of Fig. 4(a).
Here the reflectop app occludes a portion of the rays that depart frpppp and point to theDW. This

occlusion results in two overlapping ROIs in the ray spacepApg occludespcpp, Rp.p, replaces
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Fig. 3. The sourceps andpg in the geometric domain (a) and the corresponding ROIs (b), whichrg&nan overlap.

Rpeps In the overlap. The Region Of Visibility (ROV) of the reflectpppp is a subset of its RO,

after visibility culling, i.e. after removing the portiorf ®OI occluded byR,,, . :
1%
R(PC)PD - RPCPD - (RPAPB N RPCPD) .

The reduction of the ROI into a ROV can be similarly defined fdteors occluding sources or other

configurations of the acoustic scene.

A
Yy
qgo PA
ow pc
PB T
—qo PpD

@)

Fig. 4. Reflectorpapr andpcpp in the geometric domain (a) and the corresponding ROVsRB).,,, is partially occluded

by Ryp.,py. therefore the corresponding RORL,.,,, is smaller.

IIl. SOUNDFIELD IMAGES IN THE RAY SPACE

We now introduce the concept of ray-space image as the @gegparameterization of the sound field.

A. The Ideal Soundfield Camera

In order to define a ray-space image, we start from the cldssarameterizationf(z,y,0) of the
plenacoustic function discussed in Section I, and map it tmgaay spacé® defined in Section Il. This

mapping is defined by = 0 (the OW is on they axis); § = arctan(m), —7/2 < 6 < 7/2; andq = v.
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The resulting ray-space image is therefp(e:, ¢) = f(0, ¢, arctan(m)). This image carries information
on both magnitude and phase of the acoustic radiance, theréfis generally complex-valued. For
reasons that will be clearer later, however, the images whatvill work with in this manuscript are
power images such aB(m, q) = |p(m, q)|?>. Depending on the application, however, phase information
can be used as well.

Consider the acoustic scene of Fig. 5(a), where a ray-spacerag OW) acquires direct acoustic paths
from a sourcepg in direct visibility, as well as acoustic paths that boundereflector pspp. These
reflective paths can be thought of as generated by the sgyrcémage ofpg on the acoustic “mirror”
papp. We immediately notice that the sourpeg is “visible” from only some of the points of the OW,
due to a partial occlusion on the part of the reflector. Alsoithage sourcepg: is only “visible” by a
portion of the OW, this time because visibility must be guéead throughthe mirror”. It is important
to underline that reflectors always act as occluders exceghéimage sources that they generate, in
which case they act as a “window of visibility”. The two acaasteams (i.e. wedges delimited by dashed
lines) of Fig. 5(a), one originating frorps and one frompg., delimit the rays that actually end up on
the OW. Those originating frompg work their way around the reflector while those originatingnirpg:
must pass through the reflector.

Fig. 5(b) illustrates the same situation in the ray spacerevtiee above beams of ray are now visualized
as segments. As the points of these segments correspond tmithrays that illuminate the OW, these
are the only points where the ideal ray-space image takesoorzero values. The RO\RSQ of the

sourcepg can be readily obtained as
V —
R;s) = IIJS ﬁII?'APB ny )

whereZ,,p, = P — I, is the complementary region of the ROI of the reflector; while ROV

APB

R;? of the sourcepg is given by
RO =T, NTpps NV .

The plenacoustic function in these ROVs can be determinetjukie radiance beampattelp, (¢) of
the source, which is the distribution of acoustic radiancsdpced by the source, as a function of the
angled = arctan(m). The invariance of the acoustic radiance along the ray allosvio write

by (axctan(m)) ,  (m.q) € Rp,

Pps (M, q) = : 3)
0 , elsewhere
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Fig. 5. A simple acoustic scene “observed” by an ideal soundfield atag¢ and the corresponding representation in the ray
space (b).

The contribution of the image sourgg; is

1%
kpApB bps’ (9) ’ (m7 Q) € R(ps/)

Pps (M, q) = , (4)
0 , elsewhere

whereb,,_, (0) is the radiance beampattern p§., which is a specularly reflected version &g, (¢); and
kp.ps 1S @ function that accounts wall reflection attenuation, acfiom that generally depends on the
parametergm, q) of the incident ray as well as the frequency. The ray-spacgémshown in Fig. 5(b),
will be the sum of the two complex contributions (3) and (4)isTimage is a simplification of reality
for a twofold reason: the camera is idealized (no issuesnoitdd resolution or aliasing phenomena);
and the scene is idealized (no diffraction or diffusion pgirerna). The issues related to the camera will
be discussed in the next Section.

When multiple reflectors are present in the acoustic scemerdirspace image collects numerous
contributions, each coming from either a real source or agarsource. The computation of the individual
contributions of such sources follows a similar approad#d described above. Given an image source of
orderi, i.e. resulting from consecutive wall reflections, we first compute its ROV throdghihtersection
of the ROIs of the intermediate reflecting walls and the viijbregion V, and then we compute the
value of the ray-space image within the ROV as the producvdsen the beam pattern of the image
source and the reflection functions of the intermediate reflectf we wanted to predict the ray-space
image from an object-based description of the acousticesoga would need to keep track of the image
sources and their visibility, which can be done by using tearb tracing algorithm introduced in [17].
In normal conditions, however, second-order or higheeoneflective paths do not produce relevant
contributions to the ray-space image. We can also neglecintpact of diffraction and diffusion, as we

assessed from preliminary measurements that these pheaayeaerate features in the ray-space image
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whose magnitude is much smaller with respect to echoes iagstdo direct and first-order reflective
paths.

Notice that, as the spatial extension of the OW increaseslogs the thickness of the strip. An
infinitely wide OW in fact, could ideally capture the plenastia functionp(m, ¢q) over the whole ray

spaceP, as discussed in the Introduction.

B. The Real Soundfield Camera

So far we have discussed the ideal soundfield (ray-space) aaandrthe structure of the images that
it captures. We now discuss how to acquire a ray-space imsigg @& microphone array. In principle,
just like in the optical domain, the soundfield camera can beght of as an array of acoustic cameras,
placed on a grid that samples the OW. Different setups arsilflesfor this measurement procedure. If
the acoustic scene is static and the signal emitted by thece®us stationary, the soundfield could be
measured by simply moving an acoustic camera along the OWdelfacoustic scene is not static, then
we need to resort to a one-shot acquisition procedure based spatially extended microphone array.
In order to do so, we can adopt different geometric configonatiof microphones. The simplest is a
Uniform Linear Array (ULA), partitioned into smaller compastib-arrays. An alternate configuration that
we define in this manuscript is obtained by organizing the opicones in three parallel and staggered
linear arrays, which allows us to define a linear and uniforstriiution of small hexagonal sub-arrays.
Whatever the configuration, we apply beamforming to eachastdy and map the output onto the ray
space to form one row of the ray-space image.

The resulting image is in the complex domain. If the applaratioes not require phase information
(as in the two examples discussed in this manuscript), treg@rformation process simplifies. In this
case it is convenient to construct the power ray-space inf4ge, ¢): for each location of the array the
angular distribution of acoustic power is estimated thiotlge computation of a pseudospectrum [14].

We remark that the use of geometrical acoustics is consiatiéim the near-field assumption (spatially
extended array). In fact, near-field refers to the fact thaustic sources produce wavefronts that cannot
be considered as planar over the whole extension of the,amfale they can be confused with planar
wavefronts if observed on the (smaller) sub-arrays. Untié&s tondition each sub-array is able to
consistently determine the directions of arrival of therses, as if they were in the far-field. Different
sub-arrays, on the other hand, observe the sources undenedif angles (i.e. from different positions),

due to the spherical shape of wavefronts.
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Fig. 6. Implementation of a soundfield camera using a ULA.

1) ULA soundfield cameraConsider the simple setup in Fig. 6. The acoustic source idddda pg
and the microphone array is placed on thaxis, betweeny, = ¢p andy = —¢q. Theith microphone, in
particular, is inm; = [0,q0 —2q0(i — 1)/(M —1)]T, i = 1,..., M. Let us consider a sub-array centered
in m; (the microphone inm,; is the reference sensor of the sub-array). The sensors inuthargay
are located atn;,j = i — @, R @ where W is the (odd) number of microphones of the
sub-array. The signals acquired by the sensors in the sag-ares;(t),j =i — %, N %

In this example of implementation, we chose to process) through a wideband Minimum Variance
Distortionless Response (MVDR) beamformer [27], althowghious alternatives could be employed.
The first step is to process(t) with a filter bank to obtairs;(t,wy), k =1,..., K, w; being the central
frequency of thekth sub-band. The signals produced by the filterbank are thehkestanto the vector

si(t,wr) = [sicw—1)/2(t;wk), - - - Siyw—1)/2(t, wi)]T, which allows us to compute the autocorrelation
matrix .
Rip = si(t,wp)si(t,wp) . (5)
t=1

The MVDR pseudospectrum [27] of thieth sub-band, relative to the sub-array centered onithe
microphone is
1

hi(0) = aH(g’wk)RZ,ia(H,wk) ’ K

wherea(f,wy) is the propagation vector for frequeney, and directiond [28]. The wideband version

of the pseudospectrum is obtained as

K
. W+1 W+1
HZ(H):HhZ7k(9)7Z: 2 7"'7M_ 2 Y (7)
k=1

1 being the index of the subarray. In general, we can choos¢hehwe want to work with separate sub-

bands (e.g. in the presence of frequency-dependent regctorwith wideband MVDR pseudospectra.
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Whatever the choice, pseudospectra must be mapped ontytbpace. We recall that the pseudospectrum
H;(6) measures the power distribution of rays passing througHattegtion m,; of the ith microphone.

An acoustic ray passing through such point at an afigkas parameters

m = tan(0)
. (8)
4G =q — 29071
therefore we can write
P(m, q;) = H;(arctan(m)) , 9)

wherei = (W +1)/2,...,M — (W + 1)/2. The scanlines; = ¢; are the dashed ones in Fig. 6(b).
The real ray-space imagﬁ(m, gi) that we obtain will differ from what we would obtain with anedl
soundfield camera (see Subsection IlI-A) for a twofold rea#ois: sampled along (due to the limited
number of subarrays); and it is blurred alomg(due to the limited number of sensors in each subarray).
We will see that, given a total number of microphones, insirega the sampling density along and
increasing the resolution along are two contrasting needs.

Fig. 8(a) shows an acoustic scene that includes a ULA of 15 mpinoes spaced 0f11 m. An acoustic
source placed ips = [1,1]7 produces a pass-band signal whose spectrum lies betd@geriz and
10 kHz. The corresponding simulated ray-space image is shown ir8fiy. For clarity of visualization,
the resulting image is displayed after order-zero intexfioh (piecewise constant) with respecttalong
m the number of samples is very large). The dashed line of Fig.i8(the dualZ,,_ of the source, i.e.
the representation of the source in the ray space. As we @riteeray-space imagé(m, q) exhibits
a ridge in the same location & . This ridge is, in fact, a blurred version of the visible pontiof the
dual of the source and the magnitude of the blurring varigk Wwoth ¢ and m. This is due to the fact
that a ULA (subarray) does not exhibit a uniform resolutioera¥ [28]. As we can see in Fig. 8(b), in
particular, the farther the point from the source, the latge incidence angle, the greater the blurring.
This loss of resolution could prevent us from being able tontelltiple acoustic objects apart when they
lie too close to each other.

In the lower left area of the ray-space image in Fig. 8(b) we alstice a rather large bright area,
caused by aliasing. The signal emitted by the source, in ffiast frequency content that goes beyond the
spatial Nyquist frequency. This phenomenon and its impatitbei better characterized later on in the
manuscript.

2) Quincunx soundfield camerdn order to address, at least in part, the problems of resolut

seen with ULA cameras, we consider here a different configuratif microphones. The Quincunx
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Fig. 7. Implementation of a soundfield camera based on three staggaraitel ULAs. Single sub-arrays are marked with

alternate solid and dashed strokes.

(or hexagonal) array of Fig. 7(a) is formed by three paralfel ataggered ULAs ofV, N + 1 and N
microphones, respectively. The former lies on the line —d,; the second inc = 0; and the latter in

x = d,. Distances between adjacent sensorsdarandd,. This setup allows us to group microphones
into N — 1 hexagonal sub-arrays, as shown in Fig. 7 f= v/3/2d,, then the hexagons become regular,
and the subarrays become Uniform Circular Arrays (UCA). BespectraH;(6), i = 2,...,N — 1 are
computed for each sub-array and the ray-space image isneldtas in eq. (9). UCAs are known for
offering a more uniform resolution than ULAs [28], we can tifere expect this camera to introduce more
of a uniform blurring throughout the image. This improvemedrgwever, comes at a cost. The number
of pseudospectrdl;(0) contributing to the ray-space image, in fact,N5— 1, whereas the number of
sensors iISN + 1. For example, with 23 microphones we can only extract segengospectra, therefore
the ray-space imagé(m, qi), iIs made of 7 rows. If we want to build a ray-space image of 7srawth

a ULA camera, we need a minimum of 9 microphones (7 lapped saysaof W = 3 microphones
each). Fig. 8(c) shows an acoustic scene acquired with awguwncamera. The source, as in the previous
example, is inps = [1,1]7 and produces a signal with a pass-band spectrum ranging $6ontz to

10 kHz Hz. Fig. 8(d) shows the corresponding ray-space image. &ldiat the resolution is now quite
uniform throughout the ray space and aliasing issues ardhmare under control with respect to the

case of ULA cameras.

C. Angular Aliasing

Aliasing is a well known phenomenon in space-time processirhich causes an error in the localiza-
tion of the acoustic source. An aliased pseudospectrunbimultiple lobes of comparable magnitude,

known as grating lobes [28], which are replicas of the malreldn order to prevent aliasing, the distance
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1 B8
0.5 § * Microphone: * Microphone:
E o © Sources E © Sources
> H >
-0.5 E
-1 -1
xl[m] 2 d—s [ & 0 xl[m] 2 0.5 3 ) i 2
(a) Geometric space (b) Is(m, q)[dB] (c) Geometric space (d) Is(m, q)[dB]

Fig. 8. An acoustic scene with a ULA camera (a) and with a quincunx Gaiedrfor a source at coordinates; = [1,1]7
and the corresponding ray-space imaj%{sn,q) (b) and (d), respectively. The amplitude has been normalized arnessqd

in adB scale.

d between adjacent sensors needs to be kept sufficiently small.

As far as ULAs are concerned, the no-alias conditiondis< \/2, where \ is the wavelength
corresponding to the maximum frequency contained in theasigndd is the distance between adjacent
sensors. We focus here on the impact of spatial aliasing yspace images. The presence of aliasing
depends only on the deployment of sensors. As a closed-foaracterization of aliasing for MVDR is
not possible, we present analytical results for the caseelafyeand-sum beamformer [28], which can be
applied with some approximation to the MVDR.

Let us consider théth subarray, whose central microphone i) = [0, g0 — 2qo(i —1)/(M —1)].

The angle under which this sub-array sees the acoustic soujee = [zs,ys|” is
g0 — 2qo(i —1)/(M —1) — ys)

_‘/L’S

0; = arctan (

The acoustic source produces a single tone of wavelengfor the delay-and-sum beamformer, the

contribution of the sub-array to the ray-space image is

sin [™44 (sin 6 — sin 6;)] ?

H;(0) = (10)
sin [ (sin @ — sin 90]2
whereC' is a positive constant. Spatial aliasing occurs when the méragor is zero, i.e. when
d
% (sin@ —sinb;) =lIm, L € Z,
which gives
f = arcsin <l;\+sin9i> ,—T/2<0<pi/2,l€Z (12)

Fig. (9) shows the same ray-space image of Fig. 8(b). Smallesanark the location of aliasing peaks,

as detected with a peak-picking algorithm. In this figure adsolirve marks the location of the grating
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Fig. 9. Example of ray-space image with aliasing. The geometric setup isathe as in Fig. 8(a). The dashed line is the
dual of the source; crosses mark the detected aliasing peaks; theuowmstitine, computed from (11) approximately predicts

the location of aliasing peaks.

lobes as predicted with eq. (11), with= —1. As we can see, although derived for the delay-and-sum
beamformer, the curve well approximates the location ofdteging lobes also in the case of MVDR
beamforming. We also notice that the grating lobes form @nitmage a nonlinear pattern. This means
that any line detection tool such as the Hough transform avallbw us to easily discriminate between
peaks related to real sources and peaks due to grating lobes.

In the case of the quincunx camera the derivation of the abiasribution of each subarray to the ray-
space image is more complex [28] and goes beyond the scopé&sahanuscript. It is worth mentioning,
however, that the no-aliasing condition in this case besome

5A
dy <. (12)

D. Resolution

The resolution is defined as the minimum angular distance leivweo sources that makes the
related pseudospectrum peaks discernible. The discrimgnability depends on the adopted peak-picking
algorithm, therefore it is more of an operative definitionthrs manuscript the resolution is evaluated by
sizing the width of the lobe of the pseudospectrum corredipgnto the direction of arrival of a point-like
source, i.e. we characterize it as a point-spread functiars¢an lines of the ray-space image). hgtax
be the value ofn corresponding to the Direction Of Arrival (DOA) of the soaranddm™ > 0 be the
interval on them axis such that

ﬁ(mmax‘f' 5m+, Qi)|dB = ]S(mmaXa Qi)|dB - A,
A being a given threshold. Similarly we defide:~ < 0 as the value ofn such that

P(mmax+ om”, Qz‘)|dB = P(mmaX7 qi)‘dB AN
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Finally, we define the width of the lobe as
dm = om*T —ém~ (13)

which clearly depends od\. For the applications presented in this manuscript (se¢ 8egtion) we
preliminarily verified that the peak picking algorithm adegtin this manuscript require& > 4 dB in
order to discriminate between peaks in the pseudospecoziated to multiple sources.

A closed-form expression afin can only be found for the delay-and-sum beamformer, and oot f
MVDR beamformer. This is why we performed simulations. Fig.dots jm for W =3 andW =5
for various source positions. More specifically, the souscplaced at a distance of5 m, and the angle
# formed by the source and theaxis varies betweefi® and45°. The microphone array has the same
configuration of Fig. 8(a). For visualization convenience, ialue ofym has been converted in angles,
as the range of variability ofn is too large for a clear representation. Notice that fore= 8 dB there

are angles for whichim/|ag = 7. In this situationdm™ is not defined, as the lobe d@f(m, ¢;)|qs does

not decrease t@(mmax, qi)|as — A for m > mmax. Notice that there is no significant improvement on

<©-A=4dB
*A=8dB

02 04 06 08 1 02 04 06 08 1
0 [rad] 0 [rad

@w=3 (b) W =5

Fig. 10. om as a function of the angle of the source for the ULA camera.

the resolution fold = 3 andW = 5 when A = 4 dB. As for the quincunx camera, the resolution turns
out to be almost constant as the angléormed by the source and theaxis varies. When the angle of
the source ranges frof to 90° the width of the lobe forA = 4 dB oscillates betweeR® and 13°.

To summarize, resolution is a critical factor for decidingi@h array configuration to use. The quincunx
camera has relevant advantages over the ULA camera when tineesis viewed from a particularly

disadvantaged angle (e.§> w/4).

E. Computational complexity

In this subsection we aim at providing an upper-bound estimaf the cost, in terms of multiplication

and memory accesses, for the generation of a ray-space .iégedentify five steps performed to
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generate the image. First the signals acquired by each nhionep;(t),j = 1,..., M are divided inT
frames made byv samples. FFT is applied to each frame to obtgift,w;),t =1,..., T, k=1,..., K
(step 1). The autocorrelation mati; ;. of eq. (5) is computed (step 2) and inverted (step 3) for eabh s
array and each sub-band. The total number of subarraysdis\/ — W + 1, wherel is the total number

of microphones anéll” is the number of microphones per subarray. The MVDR pseudtspe ;(6;) are
computed for directiong;,l = 1,..., L, as in eq. (6) (step 4). Finally, the wideband pseudospétiié)

are obtained as in eq. (7) (step 5). For each of these stepstingate the number of multiplications with
accumulation (MACs) and of the accesses to the memory (AM®.results are shown in Table I. Notice,
however, that the image generation is a highly-parallblzapplication-independent pre-processing step

to optimize which several solutions can be devised [29]].[30

TABLE |

ESTIMATED COST FOR THE GENERATION OF A RAYSPACE IMAGE.

MACs AMs
STEP 1 MT% log, N MTN
STEP 2 SKW?T SKWT
STEP 3| SK(AW?* + 3W? + W) SKW?
STEP 4| SKL(W?+W +1) | SKL(W?+2W)
STEP 5 SLK SLK

IV. EXAMPLES OF APPLICATION

In order to illustrate how to analyze and interpret the infation gathered by the soundfield cameras
defined in Section Ill, we now discuss two examples of applbceti one focusing on the localization of

multiple sources and one discussing the localization of atefie.

A. Multiple Source Localization

Let us consider the problem of localizing multiple acousticrses with the ULA and the quincunx
cameras. The first step is the disambiguation of measureme@ay, TOAs, TDOAS) obtained from
the arrays and their matching to the corresponding sou@ssmbiguation of TDOAs, for example,
can be performed as in [31]. A method for matching measurésmand sources is proposed in [32],
based on a Guassian likelihood function. When using ragesjpaaging, the disambiguation and pairing

of information is greatly simplified because the ray-spag@esentation of the plenacoustic function
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enables the clustering of DOAs of the same source on lineerpa. Consider, for example, the setup
shown in Fig. 11(a). The acoustic scene consists of two souptased inp; = [0.8 m, —0.5 m]”
and p» = [0.8 m,0.5 m|”, and of a ULA of N = 15 sensors. The acquired ray-space image is
shown in Fig. 11(b). The dashed lines represent the diiglsand Z,,, of the sources. Circles mark
the peaks of the pseudospectra (horizontal rows) correlépgro the two sources. Crosses are located in

correspondence of secondary peaks. In order to localizépteusources we need to distinguish between

1
:
0.5 § op2
E o8
-0.5 ¢ o
L ® Microphones
-1 O Sources
|
1
x [m]
(a) Setup (b) ray-space image

Fig. 11. Geometry of an acoustic scene with two sources and cormisgoray-space image.

useful and spurious peaks in the ray-space image and, aathe 8me, assign useful peaks to one of
the corresponding sources. This can be readily accomplissied a Hough transform ([33], [34]) on the
ray-space image. The Hough transform, in fact, detectsnealli local maxima and finds the parameters
of the related lines, which become an estimate of the souhsesder to achieve sufficient accuracy in
source localization, however, we need the grid density efHlough map to be prohibitively large. This
is why the Hough transform is here used only to find a first appnation of the source locations, which
allows us to assign the peaks to the corresponding souretterRstimates of the source locations can
then be obtained through linear regression over measutsmérthe same source. Notice also that the
Hough transform is not necessary if we focus on the singleegocase in no-aliasing and moderately
noisy conditions (no grating lobes and spurious peaks).
Through the Hough transform we first obtain the approximatedioates(z;,7,) of the Ns sources

pj, j = 1,...,Ng and determine the sdt; of indices that identify the rows of the ray-space image

where the sourcg is present (visible). For each sourpg, we then determine the set of maxima (one
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per row) on the image, which are matched to that source
m g+l
L=< (mi,q): ;7 <e ieliy, 14

where the index identifies the subarray (row of the ray-space image) aisdan appropriate threshold.
Notice that the number of sourcéés could either be known in advance or be estimated by the Hough
transform itself. Notice also thdt; can be used for estimating of the ROV of the source to be edli
Fig. 11(b) shows the detected lines in the case of two souReaks belonging t;, j = 1,2 are
marked with small circles, while outliers are marked witlhsges.

Now that we have associated the maxima to the correspondinges we can find a better estimate
of the location of the sources using a least-squares teglniget us consider an acoustic source in
pj = [z;,y;]7. From eq. (1) we know that all rays departing frgm must satisfy the constrainbaz; —

y; +q = 0, which can be rewritten as’ p; = —q, whereh = [m, —1]7. For each set of maxim4; we

can therefore define the system of equations

h;,p; =-q,
: (15)
hiy o, Pi = —ding,
where the subscripts, . . ., iy(;) are the indices in;. Equation (15) can be written in the matrix form
Hp; =q, (16)
whereH = [h;, ... h;,,]" andq=[-g¢;, ... —qi,,,]". We findp; using least squares, i.e.
pj=H'H)'H'q. (17)

The localization procedure is repeated for all the €&ts

As we can see, source localization and, in particular, tlwblpm of disambiguating measurements
and matching them with sources is here turned into a patteafysis problem performed on an image.
The fact that the patterns are rectilinear, turns the loaatin algorithm into that of solving a system of
linear equations, which is quite a desirable feature.

In order to numerically assess the accuracy of the abovesdacalization algorithm we performed
three simulations and three real acoustic experiments. &tup ©f the first simulation is shown in Fig.
12(a). The two sources, the firstjn = [1.25,0]7 and the second ip, = [1.25 cos(Aa), 1.25sin(Aa)]?,
both expressed in meters, produce independent noises wotlaé bandwidth(300 - 4000Hz). The signal

acquired by the sensors is affected by an additive gaussianwith a SNR of10 dB. The localization
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experiment is repeated for each locationpaf100 times, each with a different noise realization. Simu-
lations have been performed with both ULA and quincunx casjaadopting the deployment of sensors

shown in Fig. 8(a) and Fig. 8(c), respectively. Figs. 13(a) ddshow the localization error g§; and

Y Yy
P2
ow ow
Aa P1 —
rmm FIR
(@) (b)

Fig. 12. Setup for the simulations to assess the accuracy of multiple sogaization.

p2, respectively, a?\« varies from10° to 80°. The error onp; is nearly constant and no noticeable
difference between ULA and quincunx cameras can be noticedoBp-, the quincunx camera, due to
the higher resolution on the: axis, guarantees an almost constant localization errak@waries. On
the other hand, the localization @k is possible using the ULA camera only fdtaw < 60°. Beyond

that angle the resolution loss on the axis becomes too relevant to guarantee a correct localizaii
peaks inP(m, q).

0.0 0.8

0.04 -©-Linear - Linear

) -¥Quincunx 0. % Quincunx

£0.03
]

& 0.02

0.01 3

20 60 80 20 60 80

40 40
Aaldeg] Aaldeg]

@) p (b) p2

Fig. 13. Localization error op; (a) andp: (b) for linear and quincunx arrays as a function of the angular diffege\«
depicted in Fig.12(a). Notice that scales are different.

In the following simulations we focus on the same configurativat we employed for the real-world
experiments, a ULA array of 16 microphones spaced).06 m. Fig. 12(b) shows the setup of the
second simulation. The sources are aligned on the gine 0 m. In particular the first source is in
p1 = [1 m,0 m]T, and the second one is p, = [d,0 m]?, whered ranges betweeh.4 m and2.6 m.

Notice that in this setup the ROIR,, andR,, of the two sources meet ip = 0, which makes the
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localization more challenging due to mutual occlusion lestw sources. Localization results are shown
in Fig. 14(a). If the sources are close to each other the qurelng lines on the ray-space image are
not distinguishable due to resolution limits, which restt a higher localization error. However, the
technique guarantees a good localization accuracy whesnd p, are not too close to each other. The
error onp, increases slightly as it moves far away from the array, adithieed size of the observation
window, compared tal, reduces the localization performance.
We also conducted experiments to verify the accuracy of therithm on real-world data. All the

experiments are conducted in a low-reverberation room. Tke dxperiment follows the setup of Fig.
12(b). Localization results are shown in Fig. 14 (b). As seethaabove simulations, also in this case

the localization improves as the distance betwperand p, increases.

E
-©-Source 20.13
¥ Source 2 ;‘3‘

--Source
-*Source 2

25 15 2.5

2 2
Ad[m] Ad[m]

(a) Simulations (b) Experiments

Fig. 14. Simulation and experimental results for the setup shown in Fit) I@( the linear array.

Fig. 15(a) shows the setup of the second experiment. Two #cossurces are placed ip; =
[1.5 m, Ay/2]7 (coordinates in meters) ang, = [1.5 m, —Ay/2]”, respectively. The distancAy
between sources ranges frdh2 m to 1.8 m. Results in Fig. 15(b) show that an accurate estimate is
obtained even foA\y = 0.2 m, i.e. when the sources are very close to each otherAAsncreases the
estimation error first diminishes and then increases agantaluesolution loss.

In the third experiment we tested the system in a more chgilignscenario of four acoustic sources.
The setup and the estimated source positions are shown in &{g). FFig. 16(c) shows the acquired
ray-space image. In order to assess how well real data mimtchasive data, we performed a simulation
for the same scenario. Fig. 16(b) shows the simulated ragesipgage. The algorithm is able to correctly
discriminate between contributions of different sources estimate their positions due to the fact that the
corresponding peaks naturally cluster on lines on the pagea image, as shown in Figs. 16(b) and 16(c),
thus enabling an accurate localization with both real-d/@md simulated data. The average localization

error of the four sources 8.1052 m and0.1151 m for the real-world and simulated data, respectively.
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Fig. 15. Setup (a) and results of the second experiment (b). Tweewlie on a line that is parallel to theaxis at a varying
distanceAy.
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Fig. 16. Geometric domain (a), modeled ray-space image (b) andredqay-space image (c) with four sources present in
the acoustic scene.

In the last simulation we test the robustness of the algoright different values of Signal-to-Noise
Ratio. The Table Il shows the average localization error @aaddard deviation for a single source placed
in p1 = [1 m,0 m]”. What rules the ability of the algorithm to correctly lozaithe source is the fact
that the peak of the pseudospectrum related to the sourdstisgdishable from the background noise.
Under the acceptable assumption of spatially white nolse,computation of the pseudospectrum turns
out to concentrate the energy of the signal at the DirectibAi@val of the source, while spreading the
energy of the noise at all the possible DOAs. As a consequéineelgorithm is robust against additive
noise and the localization is still possible even-a&0 dB. Furthermore, if the additive noise does not
produce spurious peaks of magnitude comparable to the petdtsd to the signal and does not alter

their location, only small deviations in the localizatioancbe observed as shown in Table Il for higher
values of SNR.
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TABLE I

LOCALIZATION ERROR |p — p|[M] AT DIFFERENT VALUES OFSNR: AVERAGE ERROR AND STANDARD DEVIATION.

SNR[dB] | average error [m] standard deviation [m]
20 0.0016 0.0002
10 0.0017 0.0004
0 0.0017 0.0007
-10 0.0027 0.0018
-20 0.1406 0.5537
-30 1.8115 1.5839

B. Reflector Localization

Consider the acoustic scene of Fig. 17 which has a sourpe and an acoustic reflectgrypg. In this
case the array senses not only the contribution of the dpaitt frompg, but also the echo associated
to the reflective path coming from the image soupge. Notice that the line that the reflector lies on is
the axis of the segmenisps.. This means that by localizings and ps: we also localize the line that

the reflector lies on.

Fig. 17. A reflector causes a reflective path from the image squgcdo be sensed by the microphone array.

The reflector localization procedure is, in principle, simtiathe multiple source localization problem.
However, as the reflective signal is a delayed replica of thectisignal, they are strongly correlated,
which reduces the resolution aﬁ(m, gi) Wwith respect to the case of multiple independent sources, th
affecting the localization accuracy. We also notice in Fig.tdatps. can only be sensed by the portion
of the array that falls within the reflective beam frgrg., delimited by dashed lines. We can therefore

expect that the estimation qgfs, will suffer a loss of accuracy of some degree. The line joinihg
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estimated sourcegs andpg: has parameters
_Ys—ys  _ Ys — ys
m = q=1Ys — s
rg — g xrs —Tg
The line that the reflector lies on is therefore given by
~ 1 -~ 1 1
m=-—, q=;lys—ys +=(ys —ys)] (18)
m 2 m

We tested the accuracy of the reflector localization algerithrough simulations based on the setup

of Fig. 18. The source is ipg = [0.5 m,0 m]”, and the reflector is at a distané from the y axis,

Fig. 18. Setup of the simulation for the reflector localization.

which ranges fron9.6 m to 1.5 m, and it is parallel to it. The source produces a white nois@iwithe
bandwidth(300 -+ 4000Hz) with a SNR 0of20 dB. We conducted the test using the ULA of Fig. 8(a), as
a gquincunx camera with a small number of microphones is nibatde for this setup, as shown in the
previous paragraph. Figs. 19(a) and 19(b) plot the loc&bmatrror of ps and pg:, respectively. Figs.
19(c) and 19(d) plot the error on the distance and the angthefestimated reflector with respect to
the actual one, respectively. The errorf is nearly constant for all the distances. A different situat
arises forpg.. In fact, whenD is below 0.7 m, ps and pg. are close each other, and the algorithm
exhibits a poor accuracy in localizings:. For intermediate distances the localization error desagalf

D is abovel.2 m the error ornpg: becomes larger, due to the limited extension of the arraly veispect

to D.

We also conducted an experiment to verify the accuracy ofatgerithm on real-world data. Setup
and results are shown in Fig. 20, based on a ULA camer&3ahicrophones. The source, placed in
ps = [0.8,0.62]7, (expressed inn) produces a white noise within the bandwidB00 + 4000Hz). The
actual location of the reflector is marked by the solid segmeile the dashed line represents the
estimated line that the reflector lies on. Stars and circlek e estimated and actual locations of the
direct and image sources, respectively. If we look at Figa0fe notice that the direct rays are sensed

from all viewpoints within the OW. The image source, on theeothand, is only visible from those
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Fig. 19. Localization error of source and image source and of thectefléor the setup in Figure 18

points of the OW that are “illuminated” by the beam that arajes fromps: and crosses the reflector
papp- This situation is described in a dual fashion on the ray-spamge of Fig. 20(b). Here we can
see two dashed lines, corresponding to the dual of the sdiyrcand of the image sourcg,_,. Of Z,,,
we can only image its ROV, which is given by the intersectietweenZ, , and the ROI of the reflector,
delimited by the solid lineg,, andZ,,,.

The resulting localization error of the direct and image sesrare of4.5 cm and approximatelyt
cm, respectively, for the image source. This difference is tuthe fact that the direct source is angled

with respect to the array, while the image one is almost &lont

y[m]

(@) (b)

Fig. 20. Reflector localization. Continuous and dashed lines are thetoeflnd the estimated lying lines of the reflector,
respectively.

V. CONCLUSIONS

In this manuscript we proposed a novel approach to acousticesanalysis based on the concept of

ray-space imaging. We first defined the soundfield camera as eedit captures the acoustic radiance
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along all the acoustic rays that cross an observation winddter discussing the process of ideal ray-
space image formation we introduced two implementatiorsethan arrays of different geometries, and
discussed their behavior in terms of resolution and algasin

We found ray-space imaging to be a powerful analysis pamaday multiple reasons

o it turns problems of acoustic analysis in space and time prmblems of pattern analysis on
images, which can be approached with methods found in the lierature of pattern analysis
and multidimensional signal processing;

o image generation becomes a pre-processing step that iethairsame throughout a wide range of
applications and is highly parallelizable, thus pavingway to the production of a shared hardware
framework;

« objects in the acoustic scene correspond to the image patieat are easily discerned and modeled,
which simplifies pattern analysis/detection/extractionr @efinition of the ray space, in particular,

makes such patterns linear, with clear advantages in tefrdstection performance.

The experiments presented in this manuscript have the paigfosffering an initial proof of concept of
these points and will be further explored and expanded iréutvorks.

Indeed, the larger the number of microphones of the arraygthater the detail in the acquired images.
Recent progress in MEMS and integrated electronics techgaoggests that the number of microphones
that can be managed in integrated arrays is on a growing.tRaytspace imaging can therefore become
particularly useful for managing and organizing the massiata that such devices will be able to collect.
In the meantime, the two examples that we discussed in thigigtaipt show that even a limited number
of microphones can be useful and very informative.

We believe that this approach to the analysis could enatdeddvelopment of novel solutions for
a wide class of applications such as wave field analysisfeition; image fusion; image-based self-
calibration; source separation; environment inferente, e are, in fact, currently working on these

applications with encouraging results.
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