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Soundfield Imaging in the Ray Space
D. Marković, F. Antonacci, A. Sarti, S. Tubaro

Abstract

In this work we propose a general approach to acoustic scene analysis based on a novel data structure

(ray-space image) that encodes the directional plenacoustic function over a line segment (Observation

Window, OW). We define and describe a system for acquiring a ray-space image using a microphone

array and refer to it as ray-space (or “soundfield”) camera. The method consists of acquiring the pseudo-

spectra corresponding to a grid of sampling points over the OW, and remapping them onto the ray

space, which parameterizes acoustic paths crossing the OW.The resulting ray-space image displays the

information gathered by the sensors in such a way that the elements of the acoustic scene (sources

and reflectors) will be easy to discern, recognize and extract. The key advantage of this method is that

ray-space images, irrespective of the application, are generated by a common (and highly parallelizable)

processing layer, and can be processed using methods comingfrom the extensive literature of pattern

analysis. After defining the ideal ray-space image in terms of the directional plenacoustic function, we

show how to acquire it using a microphone array. We also discuss resolution and aliasing issues and

show two simple examples of applications of ray-space imaging.

I. I NTRODUCTION

The interest in space-time audio processing algorithms has considerably grown in the past decade.

Numerous products, in fact, have appeared in the market, which take advantage of multiple sensors

(microphones) to localize, track and extract acoustic sources in space with the purpose of improving their

SNR [1] or Signal-to-Reverberation ratio [2]; or of enabling new human-machine interaction mechanisms

[3]. These solutions are today widely employed in applications to telecommunications, gaming and

entertainment [4]. As the expectations on space-time audioprocessing algorithms increase, so does

the interest in acoustic scene analysis, intended as the process of acquiring geometric and “radiative”
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information on acoustic sources (e.g. [5]) and reflectors. A number of recently published environment-

aware sound processing algorithms, in fact, exploit the available information on the acoustic scene to

boost the performance of space-time processing methods [6], [7], [8]. These solutions rely on acoustic

scene analysis for collecting the required information. This is generally done by gathering measurements

and combining the related constraints, through a process that is specifically developed for the problem

at hand. In this manuscript we follow a different route, which consists of collecting the information that

is available on the acoustic scene all at once; organizing itinto a data structure that displays it in a

ready-to-interpret fashion; and performing the analysis of the collected data afterwards, using various

methodologies, typically from pattern analysis.

The method that we propose is inspired by the concept ofplenoptic function[9], [10], which describes

the optical wave field intensity as a function of position and direction (plus time and frequency). Its

acoustic counterpart was first introduced in [11], [12] in twodifferent forms:directional and omnidi-

rectional plenacoustic function. The former mirrored the definition of plenoptic function, whereas the

latter dropped the dependency on direction. Optical wavelengths, in fact, are much smaller than sensors

and imaged objects, therefore they enable extreme directional selectivity. In acoustics, on the other hand,

directivity is always an issue. This is why [11] and [12] decided to work on the omnidirectional definition

of the plenacoustic function. In this manuscript we go back to thedirectional definition of plenacoustic

function [13], assuming that the directional information will be recovered through space-time processing.

We will be working under the hypotheses of geometrical acoustics, as this will allow us to use acoustic

rays to describe listening points andlook directions in a compact and effective representation framework.

If we want to measure the plenacoustic function in a single point, we can do so by centering a

microphone array in that location, and estimating (throughbeamforming) the acoustic radiance along all

look directions. A device of this sort is commonly known as “acoustic camera”, and is often based on the

computation of a pseudo-spectrum [14] as a function of the direction of arrival. A natural extension of

this concept would be that of a “plenacoustic camera”, intended as a theoretical device that acquires the

plenacoustic function over a spatially extended “Observation Window” (OW) facing the acoustic scene,

as done in the literature of computer vision [15], [16]. In the case of 2D geometry, the OW is a line

segment through which the acoustic scene is being “observed”. If the OW became infinite (a whole

line), then knowing the plenacoustic function on it would mean knowing it everywhere in space. This is

indeed true because of Huygens’ Principle, but it is also truebecause of the Radiance Invariance Law,

which is a fundamental principle of geometrical acoustics that states that the acoustic radiance remains

constant along rays. By limiting our knowledge of the plenacoustic function to an OW of finite extension,
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the plenacoustic function will only be approximately knownin space, the approximation depending

on visibility and occlusion conditions. Nonetheless, knowing the directional plenacoustic function over

a whole OW means gathering a great deal of information on the global acoustic wave field. In this

manuscript we elaborate this idea by exploring how this information can be acquired, organized, analyzed

and exploited. In order to approach the problem with the necessary progression, as done for example in

[11], we address here the 2D case only, as it allows us to define aparameter space (ray space) that can

be readily visualized and understood. Although based on thesame principles and approach, in fact, the

3D case requires a different set of geometric tools, therefore it deserves to be discussed in a separate

manuscript. The 2D case, however, is also relevant for a variety of applications, ranging from source

localization and separation to wave field rendering, and is valid for a wide range of enclosures [17].

We are interested in implementing a device that captures theplenacoustic function over an OW based

on an array of microphones. One rather straightforward way of doing so is to think of this device as an

array of acoustic cameras that sample the OW. The unavoidablecompactness of these cameras, however,

causes one such device to exhibit severe resolution limitations. This means that this system cannot

represent the direct acoustic counterpart of a plenoptic camera. We will, however, introduce a novel

parameterization for the domain of the plenacoustic function (ray space), which conveniently displays

(as an image) all the elements of the acoustic scene in such a way to facilitate its analysis despite this

loss of resolution. The resulting image will be here referredto as “ray-space” image, and the device for

capturing it, we will call “ray-space” or “soundfield” camera. With this new parameterization, acoustic

primitives such as sources and reflectors, are mapped onto rectilinear features/regions of the ray-space

image, which greatly simplifies acoustic scene analysis algorithms. In fact, this allows us to approach

space-time processing problems with pattern analysis tools, which are readily available in the rich literature

of computer vision and multidimensional signal processing. One other key aspect of this approach is that

we are defining a single space-time processing layer (that transforms acoustic acquisitions into ray-space

images), which can be shared “as is” by a wide variety of applications. In order to exemplify this aspect, in

this manuscript we describe two simple examples of applications: multiple near-field source localization

and reflector localization. These problems have been addressed numerous times in the literature. For

example a near-field beamforming method for the localizationof acoustic sources is proposed in [18].

Reflector localization methods were proposed in [19] and [20]. These, however, were effective ad-hoc

solutions devised for the specific problem at hand. We will address such problems with the sole purpose

of showing how they can be successfully turned into problemsof pattern analysis.

The manuscript is organized as follows: in Section II we define the domain of the ray-space images
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and show how geometric primitives of interest and acoustic measurements are mapped onto it. Section

III describes more in detail the acquisition process of ray-space images. Here we also discuss the impact

of spatial sampling and the related issues of resolution andaliasing phenomena. Section IV discusses the

two examples of application related to source and reflector estimation. We also show some simulative

and experimental results to prove the feasibility of the proposed technique.

II. T HE PLENACOUSTIC FUNCTION AND ITS PARAMETERIZATION

In this Section we derive a suitable parameterization for sound fields, which serves as a basis for

defining the soundfield camera and understanding the structureof the pattern that it captures.

A. The Plenacoustic Function

Quite symmetrically to its optical counterpart, the plenacoustic function can be thought of as a

parameterization of the sound field, which is a function that describes the acoustic radiance in every

direction through every point in space. This means that, in the case of a 2D geometric domain, it can

be written as a functionf(x, y, θ, ω, t) of position (x, y); direction θ; frequencyω; and timet [11]. In

particular, we are interested in the dependency on space(x, y) and directionθ, therefore we simplify

the notation by dropping bothω and t. We will specify later in the manuscript whether the dependency

from time and frequency is to be considered. Under the hypothesis of validity of geometrical acoustics,

expressing the soundfield as a function of the spatial/directional parametersx, y and θ, corresponds to

adopting a representation based on acoustic rays.

We recall that (in a homogeneous medium) an acoustic ray is anoriented line that identifies a planar

acoustic wavefront component and is inherently perpendicular to it (i.e. it is collinear with the wave

vector). A beam of acoustic rays originating from an acoustic source, therefore, identifies an infinite

combination of infinitesimal planar wavefront contributions, each identified by a ray that will be locally

orthogonal to the wavefront. In geometrical acoustics (just like in optical radiometry) we can rely on

the principle of Radiance Invariance Law, which states that the acoustic radiance remains constant along

the acoustic path. In fact, the reduction of sound intensitywith distance is explained by the fact that

the density of acoustic rays per unit area decreases as the receiver moves farther from the source [21].

This is, of course, true in the absence of propagation losses due to absorption, etc. This invariance, in

fact, tells us thatf(x, y, θ) has only two degrees of freedom instead of three, which suggests us that

we should look for an alternate and more compact parameterization for the soundfield, as done in the

optical domain [22],[23]. In the acoustic domain one such parameterizations was introduced in [17],
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[24] for defining visibility diagrams and combining them intoa data structure that could be iteratively

looked up for readily tracing beams of acoustic rays in enclosures. The parameterization that we adopt

in this manuscript is designed after that one, as it has already proven effective not just for applications

of acoustic modeling, but also for acoustic scene analysis [25] and rendering [26].

B. Parametrization: the ray space

We want to define a compact and simple parameterization for therays on an Observation Window

(OW). As we are interested in defining a soundfield camera, our parameterization will be “one-sided”,

as it will cover only the rays that cross the OW in just one of the two possible directions. The invariance

of the acoustic radiance along the direction of rays, allowsus to establish an equivalence between rays

and oriented lines that cross that window in the same direction. We therefore need a rule for implicitly

and uniquely specifying the orientation of a line given the line parameters.

Let us consider a reference frame positioned in such a way thatthe OW lies on they axis between

y = −q0 andy = q0. The equation

y = mx+ q , (1)

of parameters(m, q), describes any line that is not parallel to they axis (|m| < ∞). This line has two

possible directions: one pointing towards they axis from the “positive” half-spacex > 0, and one against.

As we are interested in defining a soundfieldcamerawhose OW lies on they axis, we conventionally

assign the line the orientation towards they axis from the positive half-spacex > 0. This allows us to

establish an equivalence between rays and lines, which is why we refer to the(m, q) space as the “ray

space”. From now on, therefore, we will be able to interchangeably talk about rays and lines.

If the spaceP of all possible parameters(m, q) covers the rays that point towards they axis from

the positive half-space, the subset of such rays that only “illuminate” the OW lies within the region

V = {(m, q) ∈ P : −q0 ≤ q ≤ q0}, which we call “visibility region” of the OW, as done in [17].Given

an acoustic primitive (a source, a reflector, etc.), we are interested in finding which of the “visible” rays

(those inV) are coming from points of that primitive, in order to assess“what” of the radiance produced

by that primitive could be picked up by the soundfield camera. This region of the ray space, referred

to as the Region Of Interest (ROI) of the primitive, is closely related to the concept of visibility region

introduced in [17]. In order to have a better idea of what a ray-space image is expected to look like, let

us begin with characterizing the ROIs of some acoustic primitives.
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1) Points: A point p = [x, y]T , x > 0, can be equivalently thought of as the set of all the linesr

that pass through it. These lines, in fact, identify only those rays that depart from the source and point

towards they axis. The region of the ray space describing the parameters ofsuch lines is called thedual

[17] Ip of the pointp and is represented by the lineq = −xm+ y. The ROI ofp is the set of lines that

pass through bothp and the OW:

Rp = V ∩ Ip =
{
r = [m, q]T ∈ V : q = −xm+ y

}
. (2)

As shown in Fig. 1Rp dividesV in the two regionsV+
p

andV−
p

. Rays inV+
p

reach the OW after going

m

q

V−
p

V+
pRp

q0

−q0 IpP−
p

P+
p

Fig. 1. ROIRx of the pointx, and related regions of visibility that this ROI defines onV.

aroundp in a clockwise fashion (i.e. while keepingp on their right); while rays inV−
p

fall on the OW

after going aroundp counterclockwise (i.e. while keepingp on their left). A similar definition can be

given for the two half-spacesP+
p

andP−
p

that Ip divides the parameter space into. These definitions

will come at handy later.

2) Segments:As done for points, the dualIpApB
of a segmentpApB is the region of the planeP

corresponding to the set of all lines passing throughpApB. The ROIRpApB
of the segmentpApB is

the set of rays that pass through the segment and are, at the same time, visible from the OW:

RpApB
= IpApB

∩ V .

With reference to Fig. 2,IpApB
can be found by first determining the dualsIpA

andIpB
of the endpoints,

and then by identifying the related half-spacesP+
pA

, P−
pA

, P+
pB

, andP−
pB

as done above. Such half-spaces

allow us to identify the set of rays that cross the segment from one side

I(1)
pApB

= P−

pA
∩ P+

pB
,

July 16, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

which is a wedge-shaped region in the ray spaceP; or those that cross the segment from the other side

I(2)
pApB

= P+
pA

∩ P−

pB
,

which is the opposite wedge to the previous one. All rays thatcross the segment are therefore given by

the double wedge

IpApB
= I(1)

pApB
∪ I(2)

pApB
.

Correspondingly, the rays that pass through the OW after crossing the segment from one side only are

R(1)
pApB

= I(1)
pApB

∪V andR(2)
pApB

= I(2)
pApB

∪V, respectively. The dualsIpA
andIpB

of the endpoints of

m

q

RpApB

q0

−q0

r1

r1

r2

r2

r3

r3

r4

r4

pA

pB

rAB

(b)

OW

(a)

x

y

IpA

IpB

I
(1)
pApB

I
(2)
pApB

Fig. 2. A segment in the geometric domain (a) and the corresponding ROI(b). Examples of rays and corresponding points in

the ray space.

the segment are the lines that delimit the double wedgeIpApB
in the ray space. Such lines meet in the

point rAB ∈ P of coordinates

m =
yA − yB
xA − xB

, q = −yBxA − yAxB
yB − yA

,

which are the parameters of the line thatpApB lies upon, corresponding to the side view of the segment.

3) Managing multiple primitives:Let us now consider two acoustic sourcespA andpB (points) lying

on a line that passes through the OW, as shown in Fig. 3(a). In the ray spaceP this line corresponds to

the pointr = [m, q]T of intersection between the ROIsRpA
andRpB

, which exists because the rayr

points to the OW. In fact, the rayr is the only direction of observation of the many covered by the OW

that sees the sourcespA andpB aligned.

The situation becomes more complex when we need to account forocclusions. The ROI defined above,

in fact, does not do so. For example, let us consider the two acoustic reflectors (segments) of Fig. 4(a).

Here the reflectorpApB occludes a portion of the rays that depart frompCpD and point to theOW . This

occlusion results in two overlapping ROIs in the ray space. As pApB occludespCpD, RpApB
replaces
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m

q

RpB

q0 q0

−q0 −q0

OW
pA

pB

RpA

r

r

(a) (b)

x

y

Fig. 3. The sourcespA andpB in the geometric domain (a) and the corresponding ROIs (b), which generate an overlap.

RpCpD
in the overlap. The Region Of Visibility (ROV) of the reflectorpCpD is a subset of its ROI,

after visibility culling, i.e. after removing the portion of ROI occluded byRpApB
:

R(V )
pCpD

= RpCpD
− (RpApB

∩RpCpD
) .

The reduction of the ROI into a ROV can be similarly defined for reflectors occluding sources or other

configurations of the acoustic scene.

pA

pB

pC

pD

q0q0

−q0
−q0

RpApB

R
(V )
pCpD

m

q

OW

(a) (b)

x

y

Fig. 4. ReflectorspApB andpCpD in the geometric domain (a) and the corresponding ROVs (b).RpCpD
is partially occluded

by RpApB
, therefore the corresponding ROVR(V )

pCpD
is smaller.

III. SOUNDFIELD IMAGES IN THE RAY SPACE

We now introduce the concept of ray-space image as the ray-space parameterization of the sound field.

A. The Ideal Soundfield Camera

In order to define a ray-space image, we start from the classical parameterizationf(x, y, θ) of the

plenacoustic function discussed in Section I, and map it ontothe ray spaceP defined in Section II. This

mapping is defined byx = 0 (the OW is on they axis); θ = arctan(m), −π/2 < θ < π/2; andq = y.

July 16, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

The resulting ray-space image is thereforep(m, q) = f(0, q, arctan(m)). This image carries information

on both magnitude and phase of the acoustic radiance, therefore it is generally complex-valued. For

reasons that will be clearer later, however, the images thatwe will work with in this manuscript are

power images such asP (m, q) = |p(m, q)|2. Depending on the application, however, phase information

can be used as well.

Consider the acoustic scene of Fig. 5(a), where a ray-space camera (OW) acquires direct acoustic paths

from a sourcepS in direct visibility, as well as acoustic paths that bounce off reflector pApB. These

reflective paths can be thought of as generated by the sourcepS′ , image ofpS on the acoustic “mirror”

pApB. We immediately notice that the sourcepS is “visible” from only some of the points of the OW,

due to a partial occlusion on the part of the reflector. Also theimage sourcepS′ is only “visible” by a

portion of the OW, this time because visibility must be guaranteed “through the mirror”. It is important

to underline that reflectors always act as occluders except for the image sources that they generate, in

which case they act as a “window of visibility”. The two acoustic beams (i.e. wedges delimited by dashed

lines) of Fig. 5(a), one originating frompS and one frompS′ , delimit the rays that actually end up on

the OW. Those originating frompS work their way around the reflector while those originating from pS′

must pass through the reflector.

Fig. 5(b) illustrates the same situation in the ray space, where the above beams of ray are now visualized

as segments. As the points of these segments correspond to the only rays that illuminate the OW, these

are the only points where the ideal ray-space image takes on non-zero values. The ROVR(V )
pS

of the

sourcepS can be readily obtained as

R(V )
pS

= IpS
∩ IpApB

∩ V ,

whereIpApB
= P − IpApB

is the complementary region of the ROI of the reflector; while the ROV

R(V )
pS′ of the sourcepS′ is given by

R(V )
pS′ = IpS′ ∩ IpApB

∩ V .

The plenacoustic function in these ROVs can be determined using the radiance beampatternbpS
(θ) of

the source, which is the distribution of acoustic radiance produced by the source, as a function of the

angleθ = arctan(m). The invariance of the acoustic radiance along the ray allowsus to write

ppS
(m, q) =





bpS
(arctan(m)) , (m, q) ∈ R(V )

pS

0 , elsewhere
. (3)
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pS

pS′

pA
pB

OW

Rp
S′

RpS

RpApB

m

q

(a) (b)

x

y

Fig. 5. A simple acoustic scene “observed” by an ideal soundfield camera (a) and the corresponding representation in the ray

space (b).

The contribution of the image sourcepS′ is

ppS′ (m, q) =





kpApB
bpS′ (θ) , (m, q) ∈ R(V )

pS′

0 , elsewhere
, (4)

wherebpS′ (θ) is the radiance beampattern ofpS′ , which is a specularly reflected version ofbpS
(θ); and

kpApB
is a function that accounts wall reflection attenuation, a function that generally depends on the

parameters(m, q) of the incident ray as well as the frequency. The ray-space image, shown in Fig. 5(b),

will be the sum of the two complex contributions (3) and (4). This image is a simplification of reality

for a twofold reason: the camera is idealized (no issues of limited resolution or aliasing phenomena);

and the scene is idealized (no diffraction or diffusion phenomena). The issues related to the camera will

be discussed in the next Section.

When multiple reflectors are present in the acoustic scene, the ray-space image collects numerous

contributions, each coming from either a real source or an image source. The computation of the individual

contributions of such sources follows a similar approach tothat described above. Given an image source of

orderi, i.e. resulting fromi consecutive wall reflections, we first compute its ROV through the intersection

of the ROIs of the intermediate reflecting walls and the visibility region V, and then we compute the

value of the ray-space image within the ROV as the product between the beam pattern of the image

source and the reflection functions of the intermediate reflectors. If we wanted to predict the ray-space

image from an object-based description of the acoustic scene, we would need to keep track of the image

sources and their visibility, which can be done by using the beam tracing algorithm introduced in [17].

In normal conditions, however, second-order or higher-order reflective paths do not produce relevant

contributions to the ray-space image. We can also neglect the impact of diffraction and diffusion, as we

assessed from preliminary measurements that these phenomena generate features in the ray-space image
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whose magnitude is much smaller with respect to echoes associated to direct and first-order reflective

paths.

Notice that, as the spatial extension of the OW increases, sodoes the thickness of the stripV. An

infinitely wide OW in fact, could ideally capture the plenacoustic functionp(m, q) over the whole ray

spaceP, as discussed in the Introduction.

B. The Real Soundfield Camera

So far we have discussed the ideal soundfield (ray-space) camera and the structure of the images that

it captures. We now discuss how to acquire a ray-space image using a microphone array. In principle,

just like in the optical domain, the soundfield camera can be thought of as an array of acoustic cameras,

placed on a grid that samples the OW. Different setups are possible for this measurement procedure. If

the acoustic scene is static and the signal emitted by the sources is stationary, the soundfield could be

measured by simply moving an acoustic camera along the OW. Ifthe acoustic scene is not static, then

we need to resort to a one-shot acquisition procedure based on a spatially extended microphone array.

In order to do so, we can adopt different geometric configurations of microphones. The simplest is a

Uniform Linear Array (ULA), partitioned into smaller compactsub-arrays. An alternate configuration that

we define in this manuscript is obtained by organizing the microphones in three parallel and staggered

linear arrays, which allows us to define a linear and uniform distribution of small hexagonal sub-arrays.

Whatever the configuration, we apply beamforming to each sub-array and map the output onto the ray

space to form one row of the ray-space image.

The resulting image is in the complex domain. If the application does not require phase information

(as in the two examples discussed in this manuscript), the image formation process simplifies. In this

case it is convenient to construct the power ray-space imageP (m, q): for each location of the array the

angular distribution of acoustic power is estimated through the computation of a pseudospectrum [14].

We remark that the use of geometrical acoustics is consistent with the near-field assumption (spatially

extended array). In fact, near-field refers to the fact that acoustic sources produce wavefronts that cannot

be considered as planar over the whole extension of the array, while they can be confused with planar

wavefronts if observed on the (smaller) sub-arrays. Under this condition each sub-array is able to

consistently determine the directions of arrival of the sources, as if they were in the far-field. Different

sub-arrays, on the other hand, observe the sources under different angles (i.e. from different positions),

due to the spherical shape of wavefronts.
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Fig. 6. Implementation of a soundfield camera using a ULA.

1) ULA soundfield camera:Consider the simple setup in Fig. 6. The acoustic source is located inpS

and the microphone array is placed on they axis, betweeny = q0 andy = −q0. The ith microphone, in

particular, is inmi = [0, q0− 2q0(i− 1)/(M − 1)]T , i = 1, . . . ,M . Let us consider a sub-array centered

in mi (the microphone inmi is the reference sensor of the sub-array). The sensors in the sub-array

are located atmj , j = i − W−1
2 , . . . , i + W−1

2 , whereW is the (odd) number of microphones of the

sub-array. The signals acquired by the sensors in the sub-array aresj(t), j = i − W−1
2 , . . . , i + W−1

2 .

In this example of implementation, we chose to processsj(t) through a wideband Minimum Variance

Distortionless Response (MVDR) beamformer [27], althoughvarious alternatives could be employed.

The first step is to processsj(t) with a filter bank to obtainsj(t, ωk), k = 1, . . . ,K, ωk being the central

frequency of thekth sub-band. The signals produced by the filterbank are then stacked into the vector

si(t, ωk) = [si−(W−1)/2(t, ωk), . . . , si+(W−1)/2(t, ωk)]
T , which allows us to compute the autocorrelation

matrix

Ri,k =

T∑

t=1

si(t, ωk)si(t, ωk)
H . (5)

The MVDR pseudospectrum [27] of thekth sub-band, relative to the sub-array centered on theith

microphone is

hi,k(θ) =
1

aH(θ, ωk)R
−1
i,ka(θ, ωk)

, (6)

wherea(θ, ωk) is the propagation vector for frequencyωk and directionθ [28]. The wideband version

of the pseudospectrum is obtained as

Hi(θ) =

K∏

k=1

hi,k(θ) , i =
W + 1

2
, . . . ,M − W + 1

2
, (7)

i being the index of the subarray. In general, we can choose whether we want to work with separate sub-

bands (e.g. in the presence of frequency-dependent reflectors), or with wideband MVDR pseudospectra.
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Whatever the choice, pseudospectra must be mapped onto the ray space. We recall that the pseudospectrum

Hi(θ) measures the power distribution of rays passing through thelocationmi of the ith microphone.

An acoustic ray passing through such point at an angleθ has parameters

m = tan(θ)

qi = q0 − 2q0
i−1
M−1 ,

(8)

therefore we can write

P̃ (m, qi) = Hi(arctan(m)) , (9)

where i = (W + 1)/2, . . . ,M − (W + 1)/2. The scanlinesq = qi are the dashed ones in Fig. 6(b).

The real ray-space imagẽP (m, qi) that we obtain will differ from what we would obtain with an ideal

soundfield camera (see Subsection III-A) for a twofold reason:it is sampled alongq (due to the limited

number of subarrays); and it is blurred alongm (due to the limited number of sensors in each subarray).

We will see that, given a total number of microphones, increasing the sampling density alongq and

increasing the resolution alongm are two contrasting needs.

Fig. 8(a) shows an acoustic scene that includes a ULA of 15 microphones spaced of0.11 m. An acoustic

source placed inpS = [1, 1]T produces a pass-band signal whose spectrum lies between300 Hz and

10 kHz. The corresponding simulated ray-space image is shown in Fig.8(b). For clarity of visualization,

the resulting image is displayed after order-zero interpolation (piecewise constant) with respect toq (along

m the number of samples is very large). The dashed line of Fig. 8(b) is the dualIpS
of the source, i.e.

the representation of the source in the ray space. As we can see, the ray-space imagẽP (m, q) exhibits

a ridge in the same location asIpS
. This ridge is, in fact, a blurred version of the visible portion of the

dual of the source and the magnitude of the blurring varies with both q andm. This is due to the fact

that a ULA (subarray) does not exhibit a uniform resolution over θ [28]. As we can see in Fig. 8(b), in

particular, the farther the point from the source, the larger the incidence angle, the greater the blurring.

This loss of resolution could prevent us from being able to tell multiple acoustic objects apart when they

lie too close to each other.

In the lower left area of the ray-space image in Fig. 8(b) we also notice a rather large bright area,

caused by aliasing. The signal emitted by the source, in fact,has frequency content that goes beyond the

spatial Nyquist frequency. This phenomenon and its impact will be better characterized later on in the

manuscript.

2) Quincunx soundfield camera:In order to address, at least in part, the problems of resolution

seen with ULA cameras, we consider here a different configuration of microphones. The Quincunx
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Fig. 7. Implementation of a soundfield camera based on three staggeredparallel ULAs. Single sub-arrays are marked with

alternate solid and dashed strokes.

(or hexagonal) array of Fig. 7(a) is formed by three parallel and staggered ULAs ofN , N + 1 andN

microphones, respectively. The former lies on the linex = −dx; the second inx = 0; and the latter in

x = dx. Distances between adjacent sensors aredx anddy. This setup allows us to group microphones

into N−1 hexagonal sub-arrays, as shown in Fig. 7. Ifdx =
√
3/2dy, then the hexagons become regular,

and the subarrays become Uniform Circular Arrays (UCA). PseudospectraHi(θ), i = 2, . . . , N − 1 are

computed for each sub-array and the ray-space image is obtained as in eq. (9). UCAs are known for

offering a more uniform resolution than ULAs [28], we can therefore expect this camera to introduce more

of a uniform blurring throughout the image. This improvement, however, comes at a cost. The number

of pseudospectraHi(θ) contributing to the ray-space image, in fact, isN − 1, whereas the number of

sensors is3N +1. For example, with 23 microphones we can only extract seven pseudospectra, therefore

the ray-space imagẽP (m, qi), is made of 7 rows. If we want to build a ray-space image of 7 rows with

a ULA camera, we need a minimum of 9 microphones (7 lapped subarrays of W = 3 microphones

each). Fig. 8(c) shows an acoustic scene acquired with a quincunx camera. The source, as in the previous

example, is inpS = [1, 1]T and produces a signal with a pass-band spectrum ranging from300 Hz to

10 kHz Hz. Fig. 8(d) shows the corresponding ray-space image. Notice that the resolution is now quite

uniform throughout the ray space and aliasing issues are much more under control with respect to the

case of ULA cameras.

C. Angular Aliasing

Aliasing is a well known phenomenon in space-time processing, which causes an error in the localiza-

tion of the acoustic source. An aliased pseudospectrum exhibits multiple lobes of comparable magnitude,

known as grating lobes [28], which are replicas of the main lobe. In order to prevent aliasing, the distance
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Fig. 8. An acoustic scene with a ULA camera (a) and with a quincunx camera (c) for a source at coordinatespS = [1, 1]T

and the corresponding ray-space imagesP̃ (m, q) (b) and (d), respectively. The amplitude has been normalized and expressed

in a dB scale.

d between adjacent sensors needs to be kept sufficiently small.

As far as ULAs are concerned, the no-alias condition isd < λ/2, where λ is the wavelength

corresponding to the maximum frequency contained in the signal andd is the distance between adjacent

sensors. We focus here on the impact of spatial aliasing on ray-space images. The presence of aliasing

depends only on the deployment of sensors. As a closed-form characterization of aliasing for MVDR is

not possible, we present analytical results for the case of delay-and-sum beamformer [28], which can be

applied with some approximation to the MVDR.

Let us consider theith subarray, whose central microphone is inmi = [0, q0 − 2q0(i− 1)/(M − 1)]T .

The angle under which this sub-array sees the acoustic sourcein pS = [xS , yS ]
T is

θi = arctan

(
q0 − 2q0(i− 1)/(M − 1)− yS

−xS

)
.

The acoustic source produces a single tone of wavelengthλ. For the delay-and-sum beamformer, the

contribution of the sub-array to the ray-space image is

Hi(θ) = C
sin

[
πWd
λ (sin θ − sin θi)

]2

sin
[
πd
λ (sin θ − sin θi)

]2 , (10)

whereC is a positive constant. Spatial aliasing occurs when the denominator is zero, i.e. when

πd

λ
(sin θ − sin θi) = lπ, l ∈ Z ,

which gives

θ = arcsin

(
lλ

d
+ sin θi

)
,−π/2 ≤ θ < pi/2 , l ∈ Z (11)

Fig. (9) shows the same ray-space image of Fig. 8(b). Small crosses mark the location of aliasing peaks,

as detected with a peak-picking algorithm. In this figure a solid curve marks the location of the grating
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Fig. 9. Example of ray-space image with aliasing. The geometric setup is thesame as in Fig. 8(a). The dashed line is the

dual of the source; crosses mark the detected aliasing peaks; the continuous line, computed from (11) approximately predicts

the location of aliasing peaks.

lobes as predicted with eq. (11), withl = −1. As we can see, although derived for the delay-and-sum

beamformer, the curve well approximates the location of thegrating lobes also in the case of MVDR

beamforming. We also notice that the grating lobes form on the image a nonlinear pattern. This means

that any line detection tool such as the Hough transform would allow us to easily discriminate between

peaks related to real sources and peaks due to grating lobes.

In the case of the quincunx camera the derivation of the aliascontribution of each subarray to the ray-

space image is more complex [28] and goes beyond the scope of this manuscript. It is worth mentioning,

however, that the no-aliasing condition in this case becomes

dy ≤ 5λ

4π
. (12)

D. Resolution

The resolution is defined as the minimum angular distance between two sources that makes the

related pseudospectrum peaks discernible. The discriminating ability depends on the adopted peak-picking

algorithm, therefore it is more of an operative definition. Inthis manuscript the resolution is evaluated by

sizing the width of the lobe of the pseudospectrum corresponding to the direction of arrival of a point-like

source, i.e. we characterize it as a point-spread function (on scan lines of the ray-space image). Letmmax

be the value ofm corresponding to the Direction Of Arrival (DOA) of the source andδm+ > 0 be the

interval on them axis such that

P̃ (mmax+ δm+, qi)|dB = P̃ (mmax, qi)|dB −∆ ,

∆ being a given threshold. Similarly we defineδm− < 0 as the value ofm such that

P̃ (mmax+ δm−, qi)|dB = P̃ (mmax, qi)|dB −∆ .
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Finally, we define the width of the lobe as

δm = δm+ − δm− , (13)

which clearly depends on∆. For the applications presented in this manuscript (see next Section) we

preliminarily verified that the peak picking algorithm adopted in this manuscript requires∆ ≥ 4 dB in

order to discriminate between peaks in the pseudospectra associated to multiple sources.

A closed-form expression ofδm can only be found for the delay-and-sum beamformer, and not for

MVDR beamformer. This is why we performed simulations. Fig. 10plots δm for W = 3 andW = 5

for various source positions. More specifically, the source is placed at a distance of1.5 m, and the angle

θ formed by the source and thex axis varies between0◦ and45◦. The microphone array has the same

configuration of Fig. 8(a). For visualization convenience, the value ofδm has been converted in angles,

as the range of variability ofm is too large for a clear representation. Notice that for∆ = 8 dB there

are angles for whichδm|rad = π. In this situationδm+ is not defined, as the lobe of̃P (m, qi)|dB does

not decrease tõP (mmax, qi)|dB −∆ for m > mmax. Notice that there is no significant improvement on
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Fig. 10. δm as a function of the angle of the source for the ULA camera.

the resolution forW = 3 andW = 5 when∆ = 4 dB. As for the quincunx camera, the resolution turns

out to be almost constant as the angleθ formed by the source and thex axis varies. When the angle of

the source ranges from0◦ to 90◦ the width of the lobe for∆ = 4 dB oscillates between3◦ and13◦.

To summarize, resolution is a critical factor for deciding which array configuration to use. The quincunx

camera has relevant advantages over the ULA camera when the source is viewed from a particularly

disadvantaged angle (e.g.θ > π/4).

E. Computational complexity

In this subsection we aim at providing an upper-bound estimation of the cost, in terms of multiplication

and memory accesses, for the generation of a ray-space image. We identify five steps performed to
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generate the image. First the signals acquired by each microphonesj(t), j = 1, . . . ,M are divided inT

frames made byN samples. FFT is applied to each frame to obtainsj(t, ωk), t = 1, . . . , T, k = 1, . . . ,K

(step 1). The autocorrelation matrixRi,k of eq. (5) is computed (step 2) and inverted (step 3) for each sub-

array and each sub-band. The total number of subarrays isS = M−W +1, whereM is the total number

of microphones andW is the number of microphones per subarray. The MVDR pseudospectrahi,k(θl) are

computed for directionsθl, l = 1, . . . , L, as in eq. (6) (step 4). Finally, the wideband pseudospectraHi(θl)

are obtained as in eq. (7) (step 5). For each of these steps we estimate the number of multiplications with

accumulation (MACs) and of the accesses to the memory (AMs).The results are shown in Table I. Notice,

however, that the image generation is a highly-parallelizable application-independent pre-processing step

to optimize which several solutions can be devised [29], [30].

TABLE I

ESTIMATED COST FOR THE GENERATION OF A RAY-SPACE IMAGE.

MACs AMs

STEP 1 MT N

2
log2 N MTN

STEP 2 SKW 2T SKWT

STEP 3 SK( 1
2
W 3 + 3

2
W 2 +W ) SKW 2

STEP 4 SKL(W 2 +W + 1) SKL(W 2 + 2W )

STEP 5 SLK SLK

IV. EXAMPLES OF APPLICATION

In order to illustrate how to analyze and interpret the information gathered by the soundfield cameras

defined in Section III, we now discuss two examples of applications: one focusing on the localization of

multiple sources and one discussing the localization of reflectors.

A. Multiple Source Localization

Let us consider the problem of localizing multiple acoustic sources with the ULA and the quincunx

cameras. The first step is the disambiguation of measurements (DOAs, TOAs, TDOAs) obtained from

the arrays and their matching to the corresponding sources.Disambiguation of TDOAs, for example,

can be performed as in [31]. A method for matching measurements and sources is proposed in [32],

based on a Guassian likelihood function. When using ray-space imaging, the disambiguation and pairing

of information is greatly simplified because the ray-space representation of the plenacoustic function
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enables the clustering of DOAs of the same source on linear patterns. Consider, for example, the setup

shown in Fig. 11(a). The acoustic scene consists of two sources, placed inp1 = [0.8 m,−0.5 m]T

and p2 = [0.8 m, 0.5 m]T , and of a ULA of N = 15 sensors. The acquired ray-space image is

shown in Fig. 11(b). The dashed lines represent the dualsIp1
and Ip2

of the sources. Circles mark

the peaks of the pseudospectra (horizontal rows) corresponding to the two sources. Crosses are located in

correspondence of secondary peaks. In order to localize multiple sources we need to distinguish between
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Fig. 11. Geometry of an acoustic scene with two sources and corresponding ray-space image.

useful and spurious peaks in the ray-space image and, at the same time, assign useful peaks to one of

the corresponding sources. This can be readily accomplishedusing a Hough transform ([33], [34]) on the

ray-space image. The Hough transform, in fact, detects collinear local maxima and finds the parameters

of the related lines, which become an estimate of the sources. In order to achieve sufficient accuracy in

source localization, however, we need the grid density of the Hough map to be prohibitively large. This

is why the Hough transform is here used only to find a first approximation of the source locations, which

allows us to assign the peaks to the corresponding sources. Better estimates of the source locations can

then be obtained through linear regression over measurements of the same source. Notice also that the

Hough transform is not necessary if we focus on the single-source case in no-aliasing and moderately

noisy conditions (no grating lobes and spurious peaks).

Through the Hough transform we first obtain the approximate coordinates(xj , yj) of theNS sources

pj , j = 1, . . . , NS and determine the setIj of indices that identify the rows of the ray-space image

where the sourcej is present (visible). For each sourcepj , we then determine the set of maxima (one

July 16, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

20

per row) on the image, which are matched to that source

Lj =

{
(mi, qi) :

∣∣mixj − yj + qi
∣∣

√
1 +m2

< ǫ, i ∈ Ij

}
, (14)

where the indexi identifies the subarray (row of the ray-space image) andǫ is an appropriate threshold.

Notice that the number of sourcesNS could either be known in advance or be estimated by the Hough

transform itself. Notice also thatIj can be used for estimating of the ROV of the source to be localized.

Fig. 11(b) shows the detected lines in the case of two sources.Peaks belonging toLj , j = 1, 2 are

marked with small circles, while outliers are marked with crosses.

Now that we have associated the maxima to the corresponding source, we can find a better estimate

of the location of the sources using a least-squares technique. Let us consider an acoustic source in

pj = [xj , yj ]
T . From eq. (1) we know that all rays departing frompj must satisfy the constraintmxj −

yj + q = 0, which can be rewritten ashT
pj = −q, whereh = [m,−1]T . For each set of maximaLj we

can therefore define the system of equations




hi1pj = −qi1

...

hiN(j)
pj = −qiN(j)

, (15)

where the subscriptsi1, . . . , iN(j) are the indices inIj . Equation (15) can be written in the matrix form

Hpj = q , (16)

whereH = [hi1 . . . hiN(j)
]T andq = [−qi1 . . . − qiN(j)

]T . We findpj using least squares, i.e.

p̂j = (HTH)−1HTq . (17)

The localization procedure is repeated for all the setsLj .

As we can see, source localization and, in particular, the problem of disambiguating measurements

and matching them with sources is here turned into a pattern analysis problem performed on an image.

The fact that the patterns are rectilinear, turns the localization algorithm into that of solving a system of

linear equations, which is quite a desirable feature.

In order to numerically assess the accuracy of the above source localization algorithm we performed

three simulations and three real acoustic experiments. The setup of the first simulation is shown in Fig.

12(a). The two sources, the first inp1 = [1.25, 0]T and the second inp2 = [1.25 cos(∆α), 1.25 sin(∆α)]T ,

both expressed in meters, produce independent noises in thevocal bandwidth(300÷4000Hz). The signal

acquired by the sensors is affected by an additive gaussian error with a SNR of10 dB. The localization
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experiment is repeated for each location ofp2 100 times, each with a different noise realization. Simu-

lations have been performed with both ULA and quincunx cameras, adopting the deployment of sensors

shown in Fig. 8(a) and Fig. 8(c), respectively. Figs. 13(a) and (b) show the localization error ofp1 and

x

y
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p2

∆α
1.25 m

(a)
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p1 p2
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(b)

Fig. 12. Setup for the simulations to assess the accuracy of multiple sourcelocalization.

p2, respectively, as∆α varies from10◦ to 80◦. The error onp1 is nearly constant and no noticeable

difference between ULA and quincunx cameras can be noticed. As for p2, the quincunx camera, due to

the higher resolution on them axis, guarantees an almost constant localization error as∆α varies. On

the other hand, the localization ofp2 is possible using the ULA camera only for∆α ≤ 60◦. Beyond

that angle the resolution loss on them axis becomes too relevant to guarantee a correct localization of

peaks inP̃ (m, q).
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Fig. 13. Localization error ofp1 (a) andp2 (b) for linear and quincunx arrays as a function of the angular difference∆α

depicted in Fig.12(a). Notice that scales are different.

In the following simulations we focus on the same configuration that we employed for the real-world

experiments, a ULA array of 16 microphones spaced of0.06 m. Fig. 12(b) shows the setup of the

second simulation. The sources are aligned on the liney = 0 m. In particular the first source is in

p1 = [1 m, 0 m]T , and the second one is inp2 = [d, 0 m]T , whered ranges between1.4 m and2.6 m.

Notice that in this setup the ROIsRp1
andRp2

of the two sources meet inq = 0, which makes the
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localization more challenging due to mutual occlusion between sources. Localization results are shown

in Fig. 14(a). If the sources are close to each other the corresponding lines on the ray-space image are

not distinguishable due to resolution limits, which results in a higher localization error. However, the

technique guarantees a good localization accuracy whenp1 andp2 are not too close to each other. The

error onp2 increases slightly as it moves far away from the array, as thelimited size of the observation

window, compared tod, reduces the localization performance.

We also conducted experiments to verify the accuracy of the algorithm on real-world data. All the

experiments are conducted in a low-reverberation room. The first experiment follows the setup of Fig.

12(b). Localization results are shown in Fig. 14 (b). As seen inthe above simulations, also in this case

the localization improves as the distance betweenp1 andp2 increases.
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Fig. 14. Simulation and experimental results for the setup shown in Fig. 12(b) for the linear array.

Fig. 15(a) shows the setup of the second experiment. Two acoustic sources are placed inp1 =

[1.5 m,∆y/2]T (coordinates in meters) andp2 = [1.5 m,−∆y/2]T , respectively. The distance∆y

between sources ranges from0.2 m to 1.8 m. Results in Fig. 15(b) show that an accurate estimate is

obtained even for∆y = 0.2 m, i.e. when the sources are very close to each other. As∆y increases the

estimation error first diminishes and then increases again due to resolution loss.

In the third experiment we tested the system in a more challenging scenario of four acoustic sources.

The setup and the estimated source positions are shown in Fig. 16(a). Fig. 16(c) shows the acquired

ray-space image. In order to assess how well real data match simulative data, we performed a simulation

for the same scenario. Fig. 16(b) shows the simulated ray-space image. The algorithm is able to correctly

discriminate between contributions of different sources and estimate their positions due to the fact that the

corresponding peaks naturally cluster on lines on the ray-space image, as shown in Figs. 16(b) and 16(c),

thus enabling an accurate localization with both real-world and simulated data. The average localization

error of the four sources is0.1052 m and0.1151 m for the real-world and simulated data, respectively.
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Fig. 15. Setup (a) and results of the second experiment (b). Two sources lie on a line that is parallel to they axis at a varying

distance∆y.
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Fig. 16. Geometric domain (a), modeled ray-space image (b) and acquired ray-space image (c) with four sources present in

the acoustic scene.

In the last simulation we test the robustness of the algorithm at different values of Signal-to-Noise

Ratio. The Table II shows the average localization error and standard deviation for a single source placed

in p1 = [1 m, 0 m]T . What rules the ability of the algorithm to correctly localize the source is the fact

that the peak of the pseudospectrum related to the source is distinguishable from the background noise.

Under the acceptable assumption of spatially white noise, the computation of the pseudospectrum turns

out to concentrate the energy of the signal at the Direction Of Arrival of the source, while spreading the

energy of the noise at all the possible DOAs. As a consequence, the algorithm is robust against additive

noise and the localization is still possible even at−20 dB. Furthermore, if the additive noise does not

produce spurious peaks of magnitude comparable to the peaksrelated to the signal and does not alter

their location, only small deviations in the localization can be observed as shown in Table II for higher

values of SNR.
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TABLE II

LOCALIZATION ERROR |p̂− p|[M] AT DIFFERENT VALUES OFSNR: AVERAGE ERROR AND STANDARD DEVIATION.

SNR [dB] average error [m] standard deviation [m]

20 0.0016 0.0002

10 0.0017 0.0004

0 0.0017 0.0007

-10 0.0027 0.0018

-20 0.1406 0.5537

-30 1.8115 1.5839

B. Reflector Localization

Consider the acoustic scene of Fig. 17 which has a source inpS and an acoustic reflectorpApB. In this

case the array senses not only the contribution of the directpath frompS , but also the echo associated

to the reflective path coming from the image sourcepS′ . Notice that the line that the reflector lies on is

the axis of the segmentpSpS′ . This means that by localizingpS andpS′ we also localize the line that

the reflector lies on.

x

y

OW

pS

pS′pA

pB

Fig. 17. A reflector causes a reflective path from the image sourcepS′ to be sensed by the microphone array.

The reflector localization procedure is, in principle, similar to the multiple source localization problem.

However, as the reflective signal is a delayed replica of the direct signal, they are strongly correlated,

which reduces the resolution of̃P (m, qi) with respect to the case of multiple independent sources, thus

affecting the localization accuracy. We also notice in Fig. 17 thatpS′ can only be sensed by the portion

of the array that falls within the reflective beam frompS′ , delimited by dashed lines. We can therefore

expect that the estimation ofpS′ will suffer a loss of accuracy of some degree. The line joiningthe
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estimated sourceŝpS and p̂S′ has parameters

m =
yS − yS′

xS − xS′

, q = yS − xS
yS − yS′

xS − xS′

.

The line that the reflector lies on is therefore given by

m̃ = − 1

m
, q̃ =

1

2
[yS − yS′ +

1

m
(yS − yS′)] (18)

We tested the accuracy of the reflector localization algorithm through simulations based on the setup

of Fig. 18. The source is inpS = [0.5 m, 0 m]T , and the reflector is at a distanceD from the y axis,

x

y

pS pS′

OW

D

Fig. 18. Setup of the simulation for the reflector localization.

which ranges from0.6 m to 1.5 m, and it is parallel to it. The source produces a white noise within the

bandwidth(300÷ 4000Hz) with a SNR of20 dB. We conducted the test using the ULA of Fig. 8(a), as

a quincunx camera with a small number of microphones is not suitable for this setup, as shown in the

previous paragraph. Figs. 19(a) and 19(b) plot the localization error ofpS andpS′ , respectively. Figs.

19(c) and 19(d) plot the error on the distance and the angle ofthe estimated reflector with respect to

the actual one, respectively. The error onpS is nearly constant for all the distances. A different situation

arises forpS′ . In fact, whenD is below 0.7 m, pS and pS′ are close each other, and the algorithm

exhibits a poor accuracy in localizingpS′ . For intermediate distances the localization error decreases. If

D is above1.2 m the error onpS′ becomes larger, due to the limited extension of the array with respect

to D.

We also conducted an experiment to verify the accuracy of thealgorithm on real-world data. Setup

and results are shown in Fig. 20, based on a ULA camera of13 microphones. The source, placed in

pS = [0.8, 0.62]T , (expressed inm) produces a white noise within the bandwidth(300÷ 4000Hz). The

actual location of the reflector is marked by the solid segment, while the dashed line represents the

estimated line that the reflector lies on. Stars and circles mark the estimated and actual locations of the

direct and image sources, respectively. If we look at Fig. 20(a), we notice that the direct rays are sensed

from all viewpoints within the OW. The image source, on the other hand, is only visible from those

July 16, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs−permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

26

0.5 1 1.5
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

D[m]

|p̂
S
−

p
S
|[
m

]

(a) Direct sourcepS

0.5 1 1.5
0

0.2

0.4

0.6

0.8

D[m]

|p̂
S

′
−

p
S

′
|[
m

]

(b) Image sourcepS′

0.5 1 1.5
0

0.1

0.2

0.3

0.4

D[m]

E
[|
D̂

−
D
|]
[m

]

(c) Distance error

0.5 1 1.5
−7

−6

−5

−4

−3

−2

−1

0x 10
−3

D[m]

E
[t
a
n
−

1
(p

S
−

p
S

′
)]
[r

a
d
]

(d) Angle error

Fig. 19. Localization error of source and image source and of the reflector for the setup in Figure 18

points of the OW that are “illuminated” by the beam that originates frompS′ and crosses the reflector

pApB. This situation is described in a dual fashion on the ray-space image of Fig. 20(b). Here we can

see two dashed lines, corresponding to the dual of the sourceIpS
and of the image sourceIpS′ . Of IpS′

we can only image its ROV, which is given by the intersection betweenIpS′ and the ROI of the reflector,

delimited by the solid linesIpA
andIpB

.

The resulting localization error of the direct and image sources are of4.5 cm and approximately1

cm, respectively, for the image source. This difference is due to the fact that the direct source is angled

with respect to the array, while the image one is almost frontal.

0 0.5 1 1.5

−0.5

0

0.5

x [m]

y
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Microphones

Sources

Estimated sources

Estimated reflector

Reflector

p
S′

pS

pA

pB

(a)

IpA
Ip

S′
IpB

IpS

(b)

Fig. 20. Reflector localization. Continuous and dashed lines are the reflector and the estimated lying lines of the reflector,

respectively.

V. CONCLUSIONS

In this manuscript we proposed a novel approach to acoustic scene analysis based on the concept of

ray-space imaging. We first defined the soundfield camera as a device that captures the acoustic radiance
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along all the acoustic rays that cross an observation window. After discussing the process of ideal ray-

space image formation we introduced two implementations based on arrays of different geometries, and

discussed their behavior in terms of resolution and aliasing.

We found ray-space imaging to be a powerful analysis paradigm for multiple reasons

• it turns problems of acoustic analysis in space and time intoproblems of pattern analysis on

images, which can be approached with methods found in the rich literature of pattern analysis

and multidimensional signal processing;

• image generation becomes a pre-processing step that remains the same throughout a wide range of

applications and is highly parallelizable, thus paving theway to the production of a shared hardware

framework;

• objects in the acoustic scene correspond to the image patterns that are easily discerned and modeled,

which simplifies pattern analysis/detection/extraction. Our definition of the ray space, in particular,

makes such patterns linear, with clear advantages in terms of detection performance.

The experiments presented in this manuscript have the purpose of offering an initial proof of concept of

these points and will be further explored and expanded in future works.

Indeed, the larger the number of microphones of the array, the greater the detail in the acquired images.

Recent progress in MEMS and integrated electronics technology suggests that the number of microphones

that can be managed in integrated arrays is on a growing trend. Ray-space imaging can therefore become

particularly useful for managing and organizing the massive data that such devices will be able to collect.

In the meantime, the two examples that we discussed in this manuscript show that even a limited number

of microphones can be useful and very informative.

We believe that this approach to the analysis could enable the development of novel solutions for

a wide class of applications such as wave field analysis/extrapolation; image fusion; image-based self-

calibration; source separation; environment inference, etc. We are, in fact, currently working on these

applications with encouraging results.
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